Julien Pommier | 370d209 | 2011-11-19 18:04:25 +0100 | [diff] [blame^] | 1 | /* Copyright (c) 2011 Julien Pommier ( pommier@modartt.com ) |
| 2 | |
| 3 | Based on original fortran 77 code from FFTPACKv4 from NETLIB |
| 4 | (http://www.netlib.org/fftpack), authored by Dr Paul Swarztrauber |
| 5 | of NCAR, in 1985. |
| 6 | |
| 7 | As confirmed by the NCAR fftpack software curators, the following |
| 8 | FFTPACKv5 license applies to FFTPACKv4 sources. My changes are |
| 9 | released under the same terms. |
| 10 | |
| 11 | FFTPACK license: |
| 12 | |
| 13 | http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html |
| 14 | |
| 15 | Copyright (c) 2004 the University Corporation for Atmospheric |
| 16 | Research ("UCAR"). All rights reserved. Developed by NCAR's |
| 17 | Computational and Information Systems Laboratory, UCAR, |
| 18 | www.cisl.ucar.edu. |
| 19 | |
| 20 | Redistribution and use of the Software in source and binary forms, |
| 21 | with or without modification, is permitted provided that the |
| 22 | following conditions are met: |
| 23 | |
| 24 | - Neither the names of NCAR's Computational and Information Systems |
| 25 | Laboratory, the University Corporation for Atmospheric Research, |
| 26 | nor the names of its sponsors or contributors may be used to |
| 27 | endorse or promote products derived from this Software without |
| 28 | specific prior written permission. |
| 29 | |
| 30 | - Redistributions of source code must retain the above copyright |
| 31 | notices, this list of conditions, and the disclaimer below. |
| 32 | |
| 33 | - Redistributions in binary form must reproduce the above copyright |
| 34 | notice, this list of conditions, and the disclaimer below in the |
| 35 | documentation and/or other materials provided with the |
| 36 | distribution. |
| 37 | |
| 38 | THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 39 | EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF |
| 40 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 41 | NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT |
| 42 | HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL, |
| 43 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 44 | ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 45 | CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE |
| 46 | SOFTWARE. |
| 47 | |
| 48 | |
| 49 | PFFFT : a Pretty Fast FFT. |
| 50 | |
| 51 | This file is largerly based on the original FFTPACK implementation, modified in |
| 52 | order to take advantage of SIMD instructions of modern CPUs. |
| 53 | */ |
| 54 | |
| 55 | /* |
| 56 | ChangeLog: |
| 57 | - 2011/10/02, version 1: This is the very first release of this file. |
| 58 | */ |
| 59 | |
| 60 | #include "pffft.h" |
| 61 | #include <stdlib.h> |
| 62 | #include <stdio.h> |
| 63 | #include <math.h> |
| 64 | #include <assert.h> |
| 65 | |
| 66 | /* detect compiler flavour */ |
| 67 | #if defined(_MSC_VER) |
| 68 | # define COMPILER_MSVC |
| 69 | #elif defined(__GNUC__) |
| 70 | # define COMPILER_GCC |
| 71 | #endif |
| 72 | |
| 73 | #if defined(COMPILER_GCC) |
| 74 | # define ALWAYS_INLINE(return_type) return_type __attribute__ ((always_inline)) |
| 75 | # define NEVER_INLINE(return_type) return_type __attribute__ ((noinline)) |
| 76 | # define RESTRICT __restrict |
| 77 | # define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ varname__[size__]; |
| 78 | #elif defined(COMPILER_MSVC) |
| 79 | # define ALWAYS_INLINE(return_type) __forceinline return_type |
| 80 | # define NEVER_INLINE(return_type) __declspec(noinline) return_type |
| 81 | # define RESTRICT __restrict |
| 82 | # define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ *varname__ = (v4sf*)_alloca(size__ * sizeof(type__)) |
| 83 | #endif |
| 84 | |
| 85 | |
| 86 | /* |
| 87 | vector support macros: the rest of the code is independant of |
| 88 | SSE/Altivec/NEON -- adding support for other platforms with 4-element |
| 89 | vectors should be limited to these macros |
| 90 | */ |
| 91 | |
| 92 | |
| 93 | // define PFFFT_SIMD_DISABLE if you want to use scalar code instead of simd code |
| 94 | //#define PFFFT_SIMD_DISABLE |
| 95 | |
| 96 | /* |
| 97 | Altivec support macros |
| 98 | */ |
| 99 | #if !defined(PFFFT_SIMD_DISABLE) && (defined(__ppc__) || defined(__ppc64__)) |
| 100 | typedef vector float v4sf; |
| 101 | # define SIMD_SZ 4 |
| 102 | # define VZERO() ((vector float) vec_splat_u8(0)) |
| 103 | # define VMUL(a,b) vec_madd(a,b, VZERO()) |
| 104 | # define VADD(a,b) vec_add(a,b) |
| 105 | # define VMADD(a,b,c) vec_madd(a,b,c) |
| 106 | # define VSUB(a,b) vec_sub(a,b) |
| 107 | inline v4sf ld_ps1(const float *p) { v4sf v=vec_lde(0,p); return vec_splat(vec_perm(v, v, vec_lvsl(0, p)), 0); } |
| 108 | # define LD_PS1(p) ld_ps1(&p) |
| 109 | # define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = vec_mergeh(in1, in2); out2 = vec_mergel(in1, in2); out1 = tmp__; } |
| 110 | # define UNINTERLEAVE2(in1, in2, out1, out2) { \ |
| 111 | vector unsigned char vperm1 = (vector unsigned char)(0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27); \ |
| 112 | vector unsigned char vperm2 = (vector unsigned char)(4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31); \ |
| 113 | v4sf tmp__ = vec_perm(in1, in2, vperm1); out2 = vec_perm(in1, in2, vperm2); out1 = tmp__; \ |
| 114 | } |
| 115 | # define VTRANSPOSE4(x0,x1,x2,x3) { \ |
| 116 | v4sf y0 = vec_mergeh(x0, x2); \ |
| 117 | v4sf y1 = vec_mergel(x0, x2); \ |
| 118 | v4sf y2 = vec_mergeh(x1, x3); \ |
| 119 | v4sf y3 = vec_mergel(x1, x3); \ |
| 120 | x0 = vec_mergeh(y0, y2); \ |
| 121 | x1 = vec_mergel(y0, y2); \ |
| 122 | x2 = vec_mergeh(y1, y3); \ |
| 123 | x3 = vec_mergel(y1, y3); \ |
| 124 | } |
| 125 | # define VSWAPHL(a,b) vec_perm(a,b, (vector unsigned char)(16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15)) |
| 126 | # define VALIGNED(ptr) ((((long)(ptr)) & 0xF) == 0) |
| 127 | |
| 128 | /* |
| 129 | SSE1 support macros |
| 130 | */ |
| 131 | #elif !defined(PFFFT_SIMD_DISABLE) && (defined(__x86_64__) || defined(_M_X64) || defined(i386) || defined(_M_IX86)) |
| 132 | |
| 133 | #include <xmmintrin.h> |
| 134 | typedef __m128 v4sf; |
| 135 | # define SIMD_SZ 4 // 4 floats by simd vector -- this is pretty much hardcoded in the preprocess/finalize functions anyway so you will have to work if you want to enable AVX with its 256-bit vectors. |
| 136 | # define VZERO() _mm_setzero_ps() |
| 137 | # define VMUL(a,b) _mm_mul_ps(a,b) |
| 138 | # define VADD(a,b) _mm_add_ps(a,b) |
| 139 | # define VMADD(a,b,c) _mm_add_ps(_mm_mul_ps(a,b), c) |
| 140 | # define VSUB(a,b) _mm_sub_ps(a,b) |
| 141 | # define LD_PS1(p) _mm_set1_ps(p) |
| 142 | # define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_unpacklo_ps(in1, in2); out2 = _mm_unpackhi_ps(in1, in2); out1 = tmp__; } |
| 143 | # define UNINTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(2,0,2,0)); out2 = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(3,1,3,1)); out1 = tmp__; } |
| 144 | # define VTRANSPOSE4(x0,x1,x2,x3) _MM_TRANSPOSE4_PS(x0,x1,x2,x3) |
| 145 | # define VSWAPHL(a,b) _mm_shuffle_ps(b, a, _MM_SHUFFLE(3,2,1,0)) |
| 146 | # define VALIGNED(ptr) ((((long)(ptr)) & 0xF) == 0) |
| 147 | |
| 148 | /* |
| 149 | ARM NEON support macros |
| 150 | */ |
| 151 | #elif !defined(PFFFT_SIMD_DISABLE) && defined(__arm__) |
| 152 | # include <arm_neon.h> |
| 153 | typedef float32x4_t v4sf; |
| 154 | # define SIMD_SZ 4 |
| 155 | # define VZERO() vdupq_n_f32(0) |
| 156 | # define VMUL(a,b) vmulq_f32(a,b) |
| 157 | # define VADD(a,b) vaddq_f32(a,b) |
| 158 | # define VMADD(a,b,c) vmlaq_f32(c,a,b) |
| 159 | # define VSUB(a,b) vsubq_f32(a,b) |
| 160 | # define LD_PS1(p) vld1q_dup_f32(&(p)) |
| 161 | # define INTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vzipq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } |
| 162 | # define UNINTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vuzpq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } |
| 163 | # define VTRANSPOSE4_(x0,x1,x2,x3) { \ |
| 164 | float32x4x2_t t0_ = vzipq_f32(x0, x2); \ |
| 165 | float32x4x2_t t1_ = vzipq_f32(x1, x3); \ |
| 166 | float32x4x2_t u0_ = vzipq_f32(t0_.val[0], t1_.val[0]); \ |
| 167 | float32x4x2_t u1_ = vzipq_f32(t0_.val[1], t1_.val[1]); \ |
| 168 | x0 = u0_.val[0]; x1 = u0_.val[1]; x2 = u1_.val[0]; x3 = u1_.val[1]; \ |
| 169 | } |
| 170 | // marginally faster version |
| 171 | # define VTRANSPOSE4(x0,x1,x2,x3) { asm("vtrn.32 %q0, %q1;\n vtrn.32 %q2,%q3\n vswp %f0,%e2\n vswp %f1,%e3" : "+w"(x0), "+w"(x1), "+w"(x2), "+w"(x3)::); } |
| 172 | # define VSWAPHL(a,b) vcombine_f32(vget_low_f32(b), vget_high_f32(a)) |
| 173 | # define VALIGNED(ptr) ((((long)(ptr)) & 0x3) == 0) |
| 174 | #else |
| 175 | # if !defined(PFFFT_SIMD_DISABLE) |
| 176 | # warning "building with simd disabled !\n"; |
| 177 | # define PFFFT_SIMD_DISABLE // fallback to scalar code |
| 178 | # endif |
| 179 | #endif |
| 180 | |
| 181 | // fallback mode for situations where SSE/Altivec are not available, use scalar mode instead |
| 182 | #ifdef PFFFT_SIMD_DISABLE |
| 183 | typedef float v4sf; |
| 184 | # define SIMD_SZ 1 |
| 185 | # define VZERO() 0.f |
| 186 | # define VMUL(a,b) ((a)*(b)) |
| 187 | # define VADD(a,b) ((a)+(b)) |
| 188 | # define VMADD(a,b,c) ((a)*(b)+(c)) |
| 189 | # define VSUB(a,b) ((a)-(b)) |
| 190 | # define LD_PS1(p) (p) |
| 191 | # define VALIGNED(ptr) ((((long)(ptr)) & 0x3) == 0) |
| 192 | #endif |
| 193 | |
| 194 | // shortcuts for complex multiplcations |
| 195 | #define VCPLXMUL(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VSUB(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VADD(ai,tmp); } |
| 196 | #define VCPLXMULCONJ(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VADD(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VSUB(ai,tmp); } |
| 197 | |
| 198 | #if !defined(PFFFT_SIMD_DISABLE) |
| 199 | typedef union v4sf_union { |
| 200 | v4sf v; |
| 201 | float f[4]; |
| 202 | } v4sf_union; |
| 203 | |
| 204 | #include <string.h> |
| 205 | |
| 206 | #define assertv4(v,f0,f1,f2,f3) assert(v.f[0] == (f0) && v.f[1] == (f1) && v.f[2] == (f2) && v.f[3] == (f3)) |
| 207 | |
| 208 | /* detect bugs with the vector support macros */ |
| 209 | void validate_pffft_simd() { |
| 210 | float f[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 }; |
| 211 | v4sf_union a0, a1, a2, a3, t, u; |
| 212 | memcpy(a0.f, f, 4*sizeof(float)); |
| 213 | memcpy(a1.f, f+4, 4*sizeof(float)); |
| 214 | memcpy(a2.f, f+8, 4*sizeof(float)); |
| 215 | memcpy(a3.f, f+12, 4*sizeof(float)); |
| 216 | |
| 217 | t = a0; u = a1; t.v = VZERO(); |
| 218 | printf("VZERO=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 0, 0, 0, 0); |
| 219 | t.v = VADD(a1.v, a2.v); |
| 220 | printf("VADD(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 12, 14, 16, 18); |
| 221 | t.v = VMUL(a1.v, a2.v); |
| 222 | printf("VMUL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 45, 60, 77); |
| 223 | t.v = VMADD(a1.v, a2.v,a0.v); |
| 224 | printf("VMADD(4:7,8:11,0:3)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 46, 62, 80); |
| 225 | |
| 226 | INTERLEAVE2(a1.v,a2.v,t.v,u.v); |
| 227 | printf("INTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]); |
| 228 | assertv4(t, 4, 8, 5, 9); assertv4(u, 6, 10, 7, 11); |
| 229 | UNINTERLEAVE2(a1.v,a2.v,t.v,u.v); |
| 230 | printf("UNINTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]); |
| 231 | assertv4(t, 4, 6, 8, 10); assertv4(u, 5, 7, 9, 11); |
| 232 | |
| 233 | t.v=LD_PS1(f[15]); |
| 234 | printf("LD_PS1(15)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); |
| 235 | assertv4(t, 15, 15, 15, 15); |
| 236 | t.v = VSWAPHL(a1.v, a2.v); |
| 237 | printf("VSWAPHL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); |
| 238 | assertv4(t, 8, 9, 6, 7); |
| 239 | VTRANSPOSE4(a0.v, a1.v, a2.v, a3.v); |
| 240 | printf("VTRANSPOSE4(0:3,4:7,8:11,12:15)=[%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", |
| 241 | a0.f[0], a0.f[1], a0.f[2], a0.f[3], a1.f[0], a1.f[1], a1.f[2], a1.f[3], |
| 242 | a2.f[0], a2.f[1], a2.f[2], a2.f[3], a3.f[0], a3.f[1], a3.f[2], a3.f[3]); |
| 243 | assertv4(a0, 0, 4, 8, 12); assertv4(a1, 1, 5, 9, 13); assertv4(a2, 2, 6, 10, 14); assertv4(a3, 3, 7, 11, 15); |
| 244 | } |
| 245 | #endif //!PFFFT_SIMD_DISABLE |
| 246 | |
| 247 | /* SSE and co like 16-bytes aligned pointers */ |
| 248 | #define MALLOC_V4SF_ALIGNMENT 64 // with a 64-byte alignment, we are even aligned on L2 cache lines... |
| 249 | void *pffft_aligned_malloc(size_t nb_bytes) { |
| 250 | void *p0, *p; |
| 251 | if (!(p0 = malloc(nb_bytes + MALLOC_V4SF_ALIGNMENT))) return (void *) 0; |
| 252 | p = (void *) (((size_t) p0 + MALLOC_V4SF_ALIGNMENT) & (~((size_t) (MALLOC_V4SF_ALIGNMENT-1)))); |
| 253 | *((void **) p - 1) = p0; |
| 254 | return p; |
| 255 | } |
| 256 | |
| 257 | void pffft_aligned_free(void *p) { |
| 258 | if (p) free(*((void **) p - 1)); |
| 259 | } |
| 260 | |
| 261 | int pffft_simd_size() { return SIMD_SZ; } |
| 262 | |
| 263 | /* |
| 264 | passf2 and passb2 has been merged here, fsign = -1 for passf2, +1 for passb2 |
| 265 | */ |
| 266 | static NEVER_INLINE(void) passf2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1, float fsign) { |
| 267 | int k, i; |
| 268 | int l1ido = l1*ido; |
| 269 | if (ido <= 2) { |
| 270 | for (k=0; k < l1ido; k += ido, ch += ido, cc+= 2*ido) { |
| 271 | ch[0] = VADD(cc[0], cc[ido+0]); |
| 272 | ch[l1ido] = VSUB(cc[0], cc[ido+0]); |
| 273 | ch[1] = VADD(cc[1], cc[ido+1]); |
| 274 | ch[l1ido + 1] = VSUB(cc[1], cc[ido+1]); |
| 275 | } |
| 276 | } else { |
| 277 | for (k=0; k < l1ido; k += ido, ch += ido, cc += 2*ido) { |
| 278 | for (i=0; i<ido-1; i+=2) { |
| 279 | v4sf tr2 = VSUB(cc[i+0], cc[i+ido+0]); |
| 280 | v4sf ti2 = VSUB(cc[i+1], cc[i+ido+1]); |
| 281 | v4sf wr = LD_PS1(wa1[i]), wi = VMUL(LD_PS1(fsign), LD_PS1(wa1[i+1])); |
| 282 | ch[i] = VADD(cc[i+0], cc[i+ido+0]); |
| 283 | ch[i+1] = VADD(cc[i+1], cc[i+ido+1]); |
| 284 | VCPLXMUL(tr2, ti2, wr, wi); |
| 285 | ch[i+l1ido] = tr2; |
| 286 | ch[i+l1ido+1] = ti2; |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | passf3 and passb3 has been merged here, fsign = -1 for passf3, +1 for passb3 |
| 294 | */ |
| 295 | static NEVER_INLINE(void) passf3_ps(int ido, int l1, const v4sf *cc, v4sf *ch, |
| 296 | const float *wa1, const float *wa2, float fsign) { |
| 297 | static const float taur = -0.5f; |
| 298 | float taui = 0.866025403784439f*fsign; |
| 299 | int i, k; |
| 300 | v4sf tr2, ti2, cr2, ci2, cr3, ci3, dr2, di2, dr3, di3; |
| 301 | int l1ido = l1*ido; |
| 302 | float wr1, wi1, wr2, wi2; |
| 303 | assert(ido > 2); |
| 304 | for (k=0; k< l1ido; k += ido, cc+= 3*ido, ch +=ido) { |
| 305 | for (i=0; i<ido-1; i+=2) { |
| 306 | tr2 = VADD(cc[i+ido], cc[i+2*ido]); |
| 307 | cr2 = VADD(cc[i], VMUL(LD_PS1(taur),tr2)); |
| 308 | ch[i] = VADD(cc[i], tr2); |
| 309 | ti2 = VADD(cc[i+ido+1], cc[i+2*ido+1]); |
| 310 | ci2 = VADD(cc[i +1], VMUL(LD_PS1(taur),ti2)); |
| 311 | ch[i+1] = VADD(cc[i+1], ti2); |
| 312 | cr3 = VMUL(LD_PS1(taui), VSUB(cc[i+ido], cc[i+2*ido])); |
| 313 | ci3 = VMUL(LD_PS1(taui), VSUB(cc[i+ido+1], cc[i+2*ido+1])); |
| 314 | dr2 = VSUB(cr2, ci3); |
| 315 | dr3 = VADD(cr2, ci3); |
| 316 | di2 = VADD(ci2, cr3); |
| 317 | di3 = VSUB(ci2, cr3); |
| 318 | wr1=wa1[i], wi1=fsign*wa1[i+1], wr2=wa2[i], wi2=fsign*wa2[i+1]; |
| 319 | VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1)); |
| 320 | ch[i+l1ido] = dr2; |
| 321 | ch[i+l1ido + 1] = di2; |
| 322 | VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2)); |
| 323 | ch[i+2*l1ido] = dr3; |
| 324 | ch[i+2*l1ido+1] = di3; |
| 325 | } |
| 326 | } |
| 327 | } /* passf3 */ |
| 328 | |
| 329 | static NEVER_INLINE(void) passf4_ps(int ido, int l1, const v4sf *cc, v4sf *ch, |
| 330 | const float *wa1, const float *wa2, const float *wa3, float fsign) { |
| 331 | /* isign == -1 for forward transform and +1 for backward transform */ |
| 332 | |
| 333 | int i, k; |
| 334 | v4sf ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; |
| 335 | int l1ido = l1*ido; |
| 336 | if (ido == 2) { |
| 337 | for (k=0; k < l1ido; k += ido, ch += ido, cc += 4*ido) { |
| 338 | tr1 = VSUB(cc[0], cc[2*ido + 0]); |
| 339 | tr2 = VADD(cc[0], cc[2*ido + 0]); |
| 340 | ti1 = VSUB(cc[1], cc[2*ido + 1]); |
| 341 | ti2 = VADD(cc[1], cc[2*ido + 1]); |
| 342 | ti4 = VMUL(VSUB(cc[1*ido + 0], cc[3*ido + 0]), LD_PS1(fsign)); |
| 343 | tr4 = VMUL(VSUB(cc[3*ido + 1], cc[1*ido + 1]), LD_PS1(fsign)); |
| 344 | tr3 = VADD(cc[ido + 0], cc[3*ido + 0]); |
| 345 | ti3 = VADD(cc[ido + 1], cc[3*ido + 1]); |
| 346 | |
| 347 | ch[0*l1ido + 0] = VADD(tr2, tr3); |
| 348 | ch[0*l1ido + 1] = VADD(ti2, ti3); |
| 349 | ch[1*l1ido + 0] = VADD(tr1, tr4); |
| 350 | ch[1*l1ido + 1] = VADD(ti1, ti4); |
| 351 | ch[2*l1ido + 0] = VSUB(tr2, tr3); |
| 352 | ch[2*l1ido + 1] = VSUB(ti2, ti3); |
| 353 | ch[3*l1ido + 0] = VSUB(tr1, tr4); |
| 354 | ch[3*l1ido + 1] = VSUB(ti1, ti4); |
| 355 | } |
| 356 | } else { |
| 357 | for (k=0; k < l1ido; k += ido, ch+=ido, cc += 4*ido) { |
| 358 | for (i=0; i<ido-1; i+=2) { |
| 359 | float wr1, wi1, wr2, wi2, wr3, wi3; |
| 360 | tr1 = VSUB(cc[i + 0], cc[i + 2*ido + 0]); |
| 361 | tr2 = VADD(cc[i + 0], cc[i + 2*ido + 0]); |
| 362 | ti1 = VSUB(cc[i + 1], cc[i + 2*ido + 1]); |
| 363 | ti2 = VADD(cc[i + 1], cc[i + 2*ido + 1]); |
| 364 | tr4 = VMUL(VSUB(cc[i + 3*ido + 1], cc[i + 1*ido + 1]), LD_PS1(fsign)); |
| 365 | ti4 = VMUL(VSUB(cc[i + 1*ido + 0], cc[i + 3*ido + 0]), LD_PS1(fsign)); |
| 366 | tr3 = VADD(cc[i + ido + 0], cc[i + 3*ido + 0]); |
| 367 | ti3 = VADD(cc[i + ido + 1], cc[i + 3*ido + 1]); |
| 368 | |
| 369 | ch[i] = VADD(tr2, tr3); |
| 370 | cr3 = VSUB(tr2, tr3); |
| 371 | ch[i + 1] = VADD(ti2, ti3); |
| 372 | ci3 = VSUB(ti2, ti3); |
| 373 | |
| 374 | cr2 = VADD(tr1, tr4); |
| 375 | cr4 = VSUB(tr1, tr4); |
| 376 | ci2 = VADD(ti1, ti4); |
| 377 | ci4 = VSUB(ti1, ti4); |
| 378 | wr1=wa1[i], wi1=fsign*wa1[i+1]; |
| 379 | VCPLXMUL(cr2, ci2, LD_PS1(wr1), LD_PS1(wi1)); |
| 380 | wr2=wa2[i], wi2=fsign*wa2[i+1]; |
| 381 | ch[i + l1ido] = cr2; |
| 382 | ch[i + l1ido + 1] = ci2; |
| 383 | |
| 384 | VCPLXMUL(cr3, ci3, LD_PS1(wr2), LD_PS1(wi2)); |
| 385 | wr3=wa3[i], wi3=fsign*wa3[i+1]; |
| 386 | ch[i + 2*l1ido] = cr3; |
| 387 | ch[i + 2*l1ido + 1] = ci3; |
| 388 | |
| 389 | VCPLXMUL(cr4, ci4, LD_PS1(wr3), LD_PS1(wi3)); |
| 390 | ch[i + 3*l1ido] = cr4; |
| 391 | ch[i + 3*l1ido + 1] = ci4; |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | } /* passf4 */ |
| 396 | |
| 397 | static NEVER_INLINE(void) radf2_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch, const float *wa1) { |
| 398 | static const float minus_one = -1.f; |
| 399 | int i, k, l1ido = l1*ido; |
| 400 | for (k=0; k < l1ido; k += ido) { |
| 401 | v4sf a = cc[k], b = cc[k + l1ido]; |
| 402 | ch[2*k] = VADD(a, b); |
| 403 | ch[2*(k+ido)-1] = VSUB(a, b); |
| 404 | } |
| 405 | if (ido < 2) return; |
| 406 | if (ido != 2) { |
| 407 | for (k=0; k < l1ido; k += ido) { |
| 408 | for (i=2; i<ido; i+=2) { |
| 409 | v4sf tr2 = cc[i - 1 + k + l1ido], ti2 = cc[i + k + l1ido]; |
| 410 | v4sf br = cc[i - 1 + k], bi = cc[i + k]; |
| 411 | VCPLXMULCONJ(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1])); |
| 412 | ch[i + 2*k] = VADD(bi, ti2); |
| 413 | ch[2*(k+ido) - i] = VSUB(ti2, bi); |
| 414 | ch[i - 1 + 2*k] = VADD(br, tr2); |
| 415 | ch[2*(k+ido) - i -1] = VSUB(br, tr2); |
| 416 | } |
| 417 | } |
| 418 | if (ido % 2 == 1) return; |
| 419 | } |
| 420 | for (k=0; k < l1ido; k += ido) { |
| 421 | ch[2*k + ido] = VMUL(LD_PS1(minus_one), cc[ido-1 + k + l1ido]); |
| 422 | ch[2*k + ido-1] = cc[k + ido-1]; |
| 423 | } |
| 424 | } /* radf2 */ |
| 425 | |
| 426 | |
| 427 | static NEVER_INLINE(void) radb2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1) { |
| 428 | static const float minus_two=-2; |
| 429 | int i, k, l1ido = l1*ido; |
| 430 | v4sf a,b,c,d, tr2, ti2; |
| 431 | for (k=0; k < l1ido; k += ido) { |
| 432 | a = cc[2*k]; b = cc[2*(k+ido) - 1]; |
| 433 | ch[k] = VADD(a, b); |
| 434 | ch[k + l1ido] =VSUB(a, b); |
| 435 | } |
| 436 | if (ido < 2) return; |
| 437 | if (ido != 2) { |
| 438 | for (k = 0; k < l1ido; k += ido) { |
| 439 | for (i = 2; i < ido; i += 2) { |
| 440 | a = cc[i-1 + 2*k]; b = cc[2*(k + ido) - i - 1]; |
| 441 | c = cc[i+0 + 2*k]; d = cc[2*(k + ido) - i + 0]; |
| 442 | ch[i-1 + k] = VADD(a, b); |
| 443 | tr2 = VSUB(a, b); |
| 444 | ch[i+0 + k] = VSUB(c, d); |
| 445 | ti2 = VADD(c, d); |
| 446 | VCPLXMUL(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1])); |
| 447 | ch[i-1 + k + l1ido] = tr2; |
| 448 | ch[i+0 + k + l1ido] = ti2; |
| 449 | } |
| 450 | } |
| 451 | if (ido % 2 == 1) return; |
| 452 | } |
| 453 | for (k = 0; k < l1ido; k += ido) { |
| 454 | a = cc[2*k + ido-1]; b = cc[2*k + ido]; |
| 455 | ch[k + ido-1] = VADD(a,a); |
| 456 | ch[k + ido-1 + l1ido] = VMUL(LD_PS1(minus_two), b); |
| 457 | } |
| 458 | } /* radb2 */ |
| 459 | |
| 460 | static void radf3_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch, |
| 461 | const float *wa1, const float *wa2) { |
| 462 | static const float taur = -0.5f; |
| 463 | static const float taui = 0.866025403784439f; |
| 464 | int i, k, ic; |
| 465 | v4sf ci2, di2, di3, cr2, dr2, dr3, ti2, ti3, tr2, tr3, wr1, wi1, wr2, wi2; |
| 466 | for (k=0; k<l1; k++) { |
| 467 | cr2 = VADD(cc[(k + l1)*ido], cc[(k + 2*l1)*ido]); |
| 468 | ch[3*k*ido] = VADD(cc[k*ido], cr2); |
| 469 | ch[(3*k+2)*ido] = VMUL(LD_PS1(taui), VSUB(cc[(k + l1*2)*ido], cc[(k + l1)*ido])); |
| 470 | ch[ido-1 + (3*k + 1)*ido] = VADD(cc[k*ido], VMUL(LD_PS1(taur), cr2)); |
| 471 | } |
| 472 | if (ido == 1) return; |
| 473 | for (k=0; k<l1; k++) { |
| 474 | for (i=2; i<ido; i+=2) { |
| 475 | ic = ido - i; |
| 476 | wr1 = LD_PS1(wa1[i - 2]); wi1 = LD_PS1(wa1[i - 1]); |
| 477 | dr2 = cc[i - 1 + (k + l1)*ido]; di2 = cc[i + (k + l1)*ido]; |
| 478 | VCPLXMULCONJ(dr2, di2, wr1, wi1); |
| 479 | |
| 480 | wr2 = LD_PS1(wa2[i - 2]); wi2 = LD_PS1(wa2[i - 1]); |
| 481 | dr3 = cc[i - 1 + (k + l1*2)*ido]; di3 = cc[i + (k + l1*2)*ido]; |
| 482 | VCPLXMULCONJ(dr3, di3, wr2, wi2); |
| 483 | |
| 484 | cr2 = VADD(dr2, dr3); |
| 485 | ci2 = VADD(di2, di3); |
| 486 | ch[i - 1 + 3*k*ido] = VADD(cc[i - 1 + k*ido], cr2); |
| 487 | ch[i + 3*k*ido] = VADD(cc[i + k*ido], ci2); |
| 488 | tr2 = VADD(cc[i - 1 + k*ido], VMUL(LD_PS1(taur), cr2)); |
| 489 | ti2 = VADD(cc[i + k*ido], VMUL(LD_PS1(taur), ci2)); |
| 490 | tr3 = VMUL(LD_PS1(taui), VSUB(di2, di3)); |
| 491 | ti3 = VMUL(LD_PS1(taui), VSUB(dr3, dr2)); |
| 492 | ch[i - 1 + (3*k + 2)*ido] = VADD(tr2, tr3); |
| 493 | ch[ic - 1 + (3*k + 1)*ido] = VSUB(tr2, tr3); |
| 494 | ch[i + (3*k + 2)*ido] = VADD(ti2, ti3); |
| 495 | ch[ic + (3*k + 1)*ido] = VSUB(ti3, ti2); |
| 496 | } |
| 497 | } |
| 498 | } /* radf3 */ |
| 499 | |
| 500 | |
| 501 | static void radb3_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch, |
| 502 | const float *wa1, const float *wa2) |
| 503 | { |
| 504 | static const float taur = -0.5f; |
| 505 | static const float taui = 0.866025403784439f; |
| 506 | static const float taui_2 = 0.866025403784439f*2; |
| 507 | int i, k, ic; |
| 508 | v4sf ci2, ci3, di2, di3, cr2, cr3, dr2, dr3, ti2, tr2; |
| 509 | for (k=0; k<l1; k++) { |
| 510 | tr2 = cc[ido-1 + (3*k + 1)*ido]; tr2 = VADD(tr2,tr2); |
| 511 | cr2 = VMADD(LD_PS1(taur), tr2, cc[3*k*ido]); |
| 512 | ch[k*ido] = VADD(cc[3*k*ido], tr2); |
| 513 | ci3 = VMUL(LD_PS1(taui_2), cc[(3*k + 2)*ido]); |
| 514 | ch[(k + l1)*ido] = VSUB(cr2, ci3); |
| 515 | ch[(k + 2*l1)*ido] = VADD(cr2, ci3); |
| 516 | } |
| 517 | if (ido == 1) return; |
| 518 | for (k=0; k<l1; k++) { |
| 519 | for (i=2; i<ido; i+=2) { |
| 520 | ic = ido - i; |
| 521 | tr2 = VADD(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido]); |
| 522 | cr2 = VMADD(LD_PS1(taur), tr2, cc[i - 1 + 3*k*ido]); |
| 523 | ch[i - 1 + k*ido] = VADD(cc[i - 1 + 3*k*ido], tr2); |
| 524 | ti2 = VSUB(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido]); |
| 525 | ci2 = VMADD(LD_PS1(taur), ti2, cc[i + 3*k*ido]); |
| 526 | ch[i + k*ido] = VADD(cc[i + 3*k*ido], ti2); |
| 527 | cr3 = VMUL(LD_PS1(taui), VSUB(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido])); |
| 528 | ci3 = VMUL(LD_PS1(taui), VADD(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido])); |
| 529 | dr2 = VSUB(cr2, ci3); |
| 530 | dr3 = VADD(cr2, ci3); |
| 531 | di2 = VADD(ci2, cr3); |
| 532 | di3 = VSUB(ci2, cr3); |
| 533 | VCPLXMUL(dr2, di2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1])); |
| 534 | ch[i - 1 + (k + l1)*ido] = dr2; |
| 535 | ch[i + (k + l1)*ido] = di2; |
| 536 | VCPLXMUL(dr3, di3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1])); |
| 537 | ch[i - 1 + (k + 2*l1)*ido] = dr3; |
| 538 | ch[i + (k + 2*l1)*ido] = di3; |
| 539 | } |
| 540 | } |
| 541 | } /* radb3 */ |
| 542 | |
| 543 | |
| 544 | static NEVER_INLINE(void) radf4_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf * RESTRICT ch, |
| 545 | const float * RESTRICT wa1, const float * RESTRICT wa2, const float * RESTRICT wa3) |
| 546 | { |
| 547 | static const float minus_hsqt2 = (float)-0.7071067811865475; |
| 548 | int i, k, l1ido = l1*ido; |
| 549 | { |
| 550 | const v4sf *RESTRICT cc_ = cc, * RESTRICT cc_end = cc + l1ido; |
| 551 | v4sf * RESTRICT ch_ = ch; |
| 552 | while (cc < cc_end) { |
| 553 | // this loop represents between 25% and 40% of total radf4_ps cost ! |
| 554 | v4sf a0 = cc[0], a1 = cc[l1ido]; |
| 555 | v4sf a2 = cc[2*l1ido], a3 = cc[3*l1ido]; |
| 556 | v4sf tr1 = VADD(a1, a3); |
| 557 | v4sf tr2 = VADD(a0, a2); |
| 558 | ch[2*ido-1] = VSUB(a0, a2); |
| 559 | ch[2*ido ] = VSUB(a3, a1); |
| 560 | ch[0 ] = VADD(tr1, tr2); |
| 561 | ch[4*ido-1] = VSUB(tr2, tr1); |
| 562 | cc += ido; ch += 4*ido; |
| 563 | } |
| 564 | cc = cc_; ch = ch_; |
| 565 | } |
| 566 | if (ido < 2) return; |
| 567 | if (ido != 2) { |
| 568 | for (k = 0; k < l1ido; k += ido) { |
| 569 | const v4sf * RESTRICT pc = (v4sf*)(cc + 1 + k); |
| 570 | for (i=2; i<ido; i += 2, pc += 2) { |
| 571 | int ic = ido - i; |
| 572 | v4sf wr, wi, cr2, ci2, cr3, ci3, cr4, ci4; |
| 573 | v4sf tr1, ti1, tr2, ti2, tr3, ti3, tr4, ti4; |
| 574 | |
| 575 | cr2 = pc[1*l1ido+0]; |
| 576 | ci2 = pc[1*l1ido+1]; |
| 577 | wr=LD_PS1(wa1[i - 2]); |
| 578 | wi=LD_PS1(wa1[i - 1]); |
| 579 | VCPLXMULCONJ(cr2,ci2,wr,wi); |
| 580 | |
| 581 | cr3 = pc[2*l1ido+0]; |
| 582 | ci3 = pc[2*l1ido+1]; |
| 583 | wr = LD_PS1(wa2[i-2]); |
| 584 | wi = LD_PS1(wa2[i-1]); |
| 585 | VCPLXMULCONJ(cr3, ci3, wr, wi); |
| 586 | |
| 587 | cr4 = pc[3*l1ido]; |
| 588 | ci4 = pc[3*l1ido+1]; |
| 589 | wr = LD_PS1(wa3[i-2]); |
| 590 | wi = LD_PS1(wa3[i-1]); |
| 591 | VCPLXMULCONJ(cr4, ci4, wr, wi); |
| 592 | |
| 593 | /* at this point, on SSE, five of "cr2 cr3 cr4 ci2 ci3 ci4" should be loaded in registers */ |
| 594 | |
| 595 | tr1 = VADD(cr2,cr4); |
| 596 | tr4 = VSUB(cr4,cr2); |
| 597 | tr2 = VADD(pc[0],cr3); |
| 598 | tr3 = VSUB(pc[0],cr3); |
| 599 | ch[i - 1 + 4*k] = VADD(tr1,tr2); |
| 600 | ch[ic - 1 + 4*k + 3*ido] = VSUB(tr2,tr1); // at this point tr1 and tr2 can be disposed |
| 601 | ti1 = VADD(ci2,ci4); |
| 602 | ti4 = VSUB(ci2,ci4); |
| 603 | ch[i - 1 + 4*k + 2*ido] = VADD(ti4,tr3); |
| 604 | ch[ic - 1 + 4*k + 1*ido] = VSUB(tr3,ti4); // dispose tr3, ti4 |
| 605 | ti2 = VADD(pc[1],ci3); |
| 606 | ti3 = VSUB(pc[1],ci3); |
| 607 | ch[i + 4*k] = VADD(ti1, ti2); |
| 608 | ch[ic + 4*k + 3*ido] = VSUB(ti1, ti2); |
| 609 | ch[i + 4*k + 2*ido] = VADD(tr4, ti3); |
| 610 | ch[ic + 4*k + 1*ido] = VSUB(tr4, ti3); |
| 611 | } |
| 612 | } |
| 613 | if (ido % 2 == 1) return; |
| 614 | } |
| 615 | for (k=0; k<l1ido; k += ido) { |
| 616 | v4sf a = cc[ido-1 + k + l1ido], b = cc[ido-1 + k + 3*l1ido]; |
| 617 | v4sf c = cc[ido-1 + k], d = cc[ido-1 + k + 2*l1ido]; |
| 618 | v4sf ti1 = VMUL(LD_PS1(minus_hsqt2), VADD(a, b)); |
| 619 | v4sf tr1 = VMUL(LD_PS1(minus_hsqt2), VSUB(b, a)); |
| 620 | ch[ido-1 + 4*k] = VADD(tr1, c); |
| 621 | ch[ido-1 + 4*k + 2*ido] = VSUB(c, tr1); |
| 622 | ch[4*k + 1*ido] = VSUB(ti1, d); |
| 623 | ch[4*k + 3*ido] = VADD(ti1, d); |
| 624 | } |
| 625 | } /* radf4 */ |
| 626 | |
| 627 | |
| 628 | static NEVER_INLINE(void) radb4_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch, |
| 629 | const float * RESTRICT wa1, const float * RESTRICT wa2, const float *RESTRICT wa3) |
| 630 | { |
| 631 | static const float minus_sqrt2 = (float)-1.414213562373095; |
| 632 | static const float two = 2.f; |
| 633 | int i, k, l1ido = l1*ido; |
| 634 | v4sf ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; |
| 635 | { |
| 636 | const v4sf *RESTRICT cc_ = cc, * RESTRICT ch_end = ch + l1ido; |
| 637 | v4sf *ch_ = ch; |
| 638 | while (ch < ch_end) { |
| 639 | v4sf a = cc[0], b = cc[4*ido-1]; |
| 640 | v4sf c = cc[2*ido], d = cc[2*ido-1]; |
| 641 | tr3 = VMUL(LD_PS1(two),d); |
| 642 | tr2 = VADD(a,b); |
| 643 | tr1 = VSUB(a,b); |
| 644 | tr4 = VMUL(LD_PS1(two),c); |
| 645 | ch[0*l1ido] = VADD(tr2, tr3); |
| 646 | ch[2*l1ido] = VSUB(tr2, tr3); |
| 647 | ch[1*l1ido] = VSUB(tr1, tr4); |
| 648 | ch[3*l1ido] = VADD(tr1, tr4); |
| 649 | |
| 650 | cc += 4*ido; ch += ido; |
| 651 | } |
| 652 | cc = cc_; ch = ch_; |
| 653 | } |
| 654 | if (ido < 2) return; |
| 655 | if (ido != 2) { |
| 656 | for (k = 0; k < l1ido; k += ido) { |
| 657 | const v4sf * RESTRICT pc = (v4sf*)(cc - 1 + 4*k); |
| 658 | v4sf * RESTRICT ph = (v4sf*)(ch + k + 1); |
| 659 | for (i = 2; i < ido; i += 2) { |
| 660 | |
| 661 | tr1 = VSUB(pc[i], pc[4*ido - i]); |
| 662 | tr2 = VADD(pc[i], pc[4*ido - i]); |
| 663 | ti4 = VSUB(pc[2*ido + i], pc[2*ido - i]); |
| 664 | tr3 = VADD(pc[2*ido + i], pc[2*ido - i]); |
| 665 | ph[0] = VADD(tr2, tr3); |
| 666 | cr3 = VSUB(tr2, tr3); |
| 667 | |
| 668 | ti3 = VSUB(pc[2*ido + i + 1], pc[2*ido - i + 1]); |
| 669 | tr4 = VADD(pc[2*ido + i + 1], pc[2*ido - i + 1]); |
| 670 | cr2 = VSUB(tr1, tr4); |
| 671 | cr4 = VADD(tr1, tr4); |
| 672 | |
| 673 | ti1 = VADD(pc[i + 1], pc[4*ido - i + 1]); |
| 674 | ti2 = VSUB(pc[i + 1], pc[4*ido - i + 1]); |
| 675 | |
| 676 | ph[1] = VADD(ti2, ti3); ph += l1ido; |
| 677 | ci3 = VSUB(ti2, ti3); |
| 678 | ci2 = VADD(ti1, ti4); |
| 679 | ci4 = VSUB(ti1, ti4); |
| 680 | VCPLXMUL(cr2, ci2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1])); |
| 681 | ph[0] = cr2; |
| 682 | ph[1] = ci2; ph += l1ido; |
| 683 | VCPLXMUL(cr3, ci3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1])); |
| 684 | ph[0] = cr3; |
| 685 | ph[1] = ci3; ph += l1ido; |
| 686 | VCPLXMUL(cr4, ci4, LD_PS1(wa3[i-2]), LD_PS1(wa3[i-1])); |
| 687 | ph[0] = cr4; |
| 688 | ph[1] = ci4; ph = ph - 3*l1ido + 2; |
| 689 | } |
| 690 | } |
| 691 | if (ido % 2 == 1) return; |
| 692 | } |
| 693 | for (k=0; k < l1ido; k+=ido) { |
| 694 | int i0 = 4*k + ido; |
| 695 | v4sf c = cc[i0-1], d = cc[i0 + 2*ido-1]; |
| 696 | v4sf a = cc[i0+0], b = cc[i0 + 2*ido+0]; |
| 697 | tr1 = VSUB(c,d); |
| 698 | tr2 = VADD(c,d); |
| 699 | ti1 = VADD(b,a); |
| 700 | ti2 = VSUB(b,a); |
| 701 | ch[ido-1 + k + 0*l1ido] = VADD(tr2,tr2); |
| 702 | ch[ido-1 + k + 1*l1ido] = VMUL(LD_PS1(minus_sqrt2), VSUB(ti1, tr1)); |
| 703 | ch[ido-1 + k + 2*l1ido] = VADD(ti2, ti2); |
| 704 | ch[ido-1 + k + 3*l1ido] = VMUL(LD_PS1(minus_sqrt2), VADD(ti1, tr1)); |
| 705 | } |
| 706 | } /* radb4 */ |
| 707 | |
| 708 | static NEVER_INLINE(v4sf *) rfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2, |
| 709 | const float *wa, const int *ifac) { |
| 710 | v4sf *in = (v4sf*)input_readonly; |
| 711 | v4sf *out = (in == work2 ? work1 : work2); |
| 712 | int nf = ifac[1], k1; |
| 713 | int l2 = n; |
| 714 | int iw = n-1; |
| 715 | assert(in != out && work1 != work2); |
| 716 | for (k1 = 1; k1 <= nf; ++k1) { |
| 717 | int kh = nf - k1; |
| 718 | int ip = ifac[kh + 2]; |
| 719 | int l1 = l2 / ip; |
| 720 | int ido = n / l2; |
| 721 | iw -= (ip - 1)*ido; |
| 722 | switch (ip) { |
| 723 | case 4: { |
| 724 | int ix2 = iw + ido; |
| 725 | int ix3 = ix2 + ido; |
| 726 | radf4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]); |
| 727 | } break; |
| 728 | case 3: { |
| 729 | int ix2 = iw + ido; |
| 730 | radf3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]); |
| 731 | } break; |
| 732 | case 2: |
| 733 | radf2_ps(ido, l1, in, out, &wa[iw]); |
| 734 | break; |
| 735 | default: |
| 736 | assert(0); |
| 737 | break; |
| 738 | } |
| 739 | l2 = l1; |
| 740 | if (out == work2) { |
| 741 | out = work1; in = work2; |
| 742 | } else { |
| 743 | out = work2; in = work1; |
| 744 | } |
| 745 | } |
| 746 | return in; /* this is in fact the output .. */ |
| 747 | } /* rfftf1 */ |
| 748 | |
| 749 | static NEVER_INLINE(v4sf *) rfftb1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2, |
| 750 | const float *wa, const int *ifac) { |
| 751 | v4sf *in = (v4sf*)input_readonly; |
| 752 | v4sf *out = (in == work2 ? work1 : work2); |
| 753 | int nf = ifac[1], k1; |
| 754 | int l1 = 1; |
| 755 | int iw = 0; |
| 756 | assert(in != out); |
| 757 | for (k1=1; k1<=nf; k1++) { |
| 758 | int ip = ifac[k1 + 1]; |
| 759 | int l2 = ip*l1; |
| 760 | int ido = n / l2; |
| 761 | switch (ip) { |
| 762 | case 4: { |
| 763 | int ix2 = iw + ido; |
| 764 | int ix3 = ix2 + ido; |
| 765 | radb4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]); |
| 766 | } break; |
| 767 | case 3: { |
| 768 | int ix2 = iw + ido; |
| 769 | radb3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]); |
| 770 | } break; |
| 771 | case 2: |
| 772 | radb2_ps(ido, l1, in, out, &wa[iw]); |
| 773 | break; |
| 774 | default: |
| 775 | assert(0); |
| 776 | break; |
| 777 | } |
| 778 | l1 = l2; |
| 779 | iw += (ip - 1)*ido; |
| 780 | |
| 781 | if (out == work2) { |
| 782 | out = work1; in = work2; |
| 783 | } else { |
| 784 | out = work2; in = work1; |
| 785 | } |
| 786 | } |
| 787 | return in; /* this is in fact the output .. */ |
| 788 | } |
| 789 | |
| 790 | static int decompose(int n, int *ifac, const int ntryh[3]) { |
| 791 | int nl = n, nf = 0, i, j = 0; |
| 792 | for (j=0; j < 3; ++j) { |
| 793 | int ntry = ntryh[j]; |
| 794 | while (nl != 1) { |
| 795 | int nq = nl / ntry; |
| 796 | int nr = nl - ntry * nq; |
| 797 | if (nr == 0) { |
| 798 | ifac[2+nf++] = ntry; |
| 799 | nl = nq; |
| 800 | if (ntry == 2 && nf != 1) { |
| 801 | for (i = 2; i <= nf; ++i) { |
| 802 | int ib = nf - i + 2; |
| 803 | ifac[ib + 1] = ifac[ib]; |
| 804 | } |
| 805 | ifac[2] = 2; |
| 806 | } |
| 807 | } else break; |
| 808 | } |
| 809 | } |
| 810 | ifac[0] = n; |
| 811 | ifac[1] = nf; |
| 812 | return nf; |
| 813 | } |
| 814 | |
| 815 | |
| 816 | |
| 817 | static void rffti1_ps(int n, float *wa, int *ifac) |
| 818 | { |
| 819 | static const int ntryh[3] = { 4,2,3 }; |
| 820 | int k1, j, ii; |
| 821 | |
| 822 | int nf = decompose(n,ifac,ntryh); |
| 823 | float argh = (2*M_PI) / n; |
| 824 | int is = 0; |
| 825 | int nfm1 = nf - 1; |
| 826 | int l1 = 1; |
| 827 | if (nfm1 == 0) return; |
| 828 | for (k1 = 1; k1 <= nfm1; k1++) { |
| 829 | int ip = ifac[k1 + 1]; |
| 830 | int ld = 0; |
| 831 | int l2 = l1*ip; |
| 832 | int ido = n / l2; |
| 833 | int ipm = ip - 1; |
| 834 | for (j = 1; j <= ipm; ++j) { |
| 835 | float argld; |
| 836 | int i = is, fi=0; |
| 837 | ld += l1; |
| 838 | argld = ld*argh; |
| 839 | for (ii = 3; ii <= ido; ii += 2) { |
| 840 | i += 2; |
| 841 | fi += 1; |
| 842 | wa[i - 2] = cos(fi*argld); |
| 843 | wa[i - 1] = sin(fi*argld); |
| 844 | } |
| 845 | is += ido; |
| 846 | } |
| 847 | l1 = l2; |
| 848 | } |
| 849 | } /* rffti1 */ |
| 850 | |
| 851 | void cffti1_ps(int n, float *wa, int *ifac) |
| 852 | { |
| 853 | static const int ntryh[3] = { 3,4,2 }; |
| 854 | int k1, j, ii; |
| 855 | |
| 856 | int nf = decompose(n,ifac,ntryh); |
| 857 | float argh = (2*M_PI)/(float)n; |
| 858 | int i = 1; |
| 859 | int l1 = 1; |
| 860 | for (k1=1; k1<=nf; k1++) { |
| 861 | int ip = ifac[k1+1]; |
| 862 | int ld = 0; |
| 863 | int l2 = l1*ip; |
| 864 | int ido = n / l2; |
| 865 | int idot = ido + ido + 2; |
| 866 | int ipm = ip - 1; |
| 867 | for (j=1; j<=ipm; j++) { |
| 868 | float argld; |
| 869 | int i1 = i, fi = 0; |
| 870 | wa[i-1] = 1; |
| 871 | wa[i] = 0; |
| 872 | ld += l1; |
| 873 | argld = ld*argh; |
| 874 | for (ii = 4; ii <= idot; ii += 2) { |
| 875 | i += 2; |
| 876 | fi += 1; |
| 877 | wa[i-1] = cos(fi*argld); |
| 878 | wa[i] = sin(fi*argld); |
| 879 | } |
| 880 | if (ip > 5) { |
| 881 | wa[i1-1] = wa[i-1]; |
| 882 | wa[i1] = wa[i]; |
| 883 | } |
| 884 | } |
| 885 | l1 = l2; |
| 886 | } |
| 887 | } /* cffti1 */ |
| 888 | |
| 889 | |
| 890 | v4sf *cfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2, const float *wa, const int *ifac, int isign) { |
| 891 | v4sf *in = (v4sf*)input_readonly; |
| 892 | v4sf *out = (in == work2 ? work1 : work2); |
| 893 | int nf = ifac[1], k1; |
| 894 | int l1 = 1; |
| 895 | int iw = 0; |
| 896 | assert(in != out && work1 != work2); |
| 897 | for (k1=2; k1<=nf+1; k1++) { |
| 898 | int ip = ifac[k1]; |
| 899 | int l2 = ip*l1; |
| 900 | int ido = n / l2; |
| 901 | int idot = ido + ido; |
| 902 | switch (ip) { |
| 903 | case 4: { |
| 904 | int ix2 = iw + idot; |
| 905 | int ix3 = ix2 + idot; |
| 906 | passf4_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], isign); |
| 907 | } break; |
| 908 | case 2: { |
| 909 | passf2_ps(idot, l1, in, out, &wa[iw], isign); |
| 910 | } break; |
| 911 | case 3: { |
| 912 | int ix2 = iw + idot; |
| 913 | passf3_ps(idot, l1, in, out, &wa[iw], &wa[ix2], isign); |
| 914 | } break; |
| 915 | default: |
| 916 | assert(0); |
| 917 | } |
| 918 | l1 = l2; |
| 919 | iw += (ip - 1)*idot; |
| 920 | if (out == work2) { |
| 921 | out = work1; in = work2; |
| 922 | } else { |
| 923 | out = work2; in = work1; |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | return in; /* this is in fact the output .. */ |
| 928 | } |
| 929 | |
| 930 | |
| 931 | struct PFFFT_Setup { |
| 932 | int N; |
| 933 | int Ncvec; // nb of complex simd vectors (N/4 if PFFFT_COMPLEX, N/8 if PFFFT_REAL) |
| 934 | int ifac[15]; |
| 935 | pffft_transform_t transform; |
| 936 | v4sf *data; // allocated room for twiddle coefs |
| 937 | float *e; // points into 'data' , N/4*3 elements |
| 938 | float *twiddle; // points into 'data', N/4 elements |
| 939 | }; |
| 940 | |
| 941 | PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform) { |
| 942 | PFFFT_Setup *s = (PFFFT_Setup*)malloc(sizeof(PFFFT_Setup)); |
| 943 | int k, m; |
| 944 | if (transform == PFFFT_REAL) { assert(N >= 32); } |
| 945 | if (transform == PFFFT_COMPLEX) { assert(N >= 16); } |
| 946 | //assert((N % 32) == 0); |
| 947 | s->N = N; |
| 948 | s->transform = transform; |
| 949 | /* nb of complex simd vectors */ |
| 950 | s->Ncvec = (transform == PFFFT_REAL ? N/2 : N)/SIMD_SZ; |
| 951 | s->data = (v4sf*)pffft_aligned_malloc(2*s->Ncvec * sizeof(v4sf)); |
| 952 | s->e = (float*)s->data; |
| 953 | s->twiddle = (float*)(s->data + (2*s->Ncvec*(SIMD_SZ-1))/SIMD_SZ); |
| 954 | |
| 955 | if (transform == PFFFT_REAL) { |
| 956 | for (k=0; k < s->Ncvec; ++k) { |
| 957 | int i = k/SIMD_SZ; |
| 958 | int j = k%SIMD_SZ; |
| 959 | for (m=0; m < SIMD_SZ-1; ++m) { |
| 960 | float A = -2*M_PI*(m+1)*k / N; |
| 961 | s->e[(2*(i*3 + m) + 0) * SIMD_SZ + j] = cos(A); |
| 962 | s->e[(2*(i*3 + m) + 1) * SIMD_SZ + j] = sin(A); |
| 963 | } |
| 964 | } |
| 965 | rffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac); |
| 966 | } else { |
| 967 | for (k=0; k < s->Ncvec; ++k) { |
| 968 | int i = k/SIMD_SZ; |
| 969 | int j = k%SIMD_SZ; |
| 970 | for (m=0; m < SIMD_SZ-1; ++m) { |
| 971 | float A = -2*M_PI*(m+1)*k / N; |
| 972 | s->e[(2*(i*3 + m) + 0)*SIMD_SZ + j] = cos(A); |
| 973 | s->e[(2*(i*3 + m) + 1)*SIMD_SZ + j] = sin(A); |
| 974 | } |
| 975 | } |
| 976 | cffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac); |
| 977 | } |
| 978 | return s; |
| 979 | } |
| 980 | |
| 981 | |
| 982 | void pffft_destroy_setup(PFFFT_Setup *s) { |
| 983 | pffft_aligned_free(s->data); |
| 984 | free(s); |
| 985 | } |
| 986 | |
| 987 | #if !defined(PFFFT_SIMD_DISABLE) |
| 988 | |
| 989 | /* [0 0 1 2 3 4 5 6 7 8] -> [0 8 7 6 5 4 3 2 1] */ |
| 990 | static void reversed_copy(int N, const v4sf *in, int in_stride, v4sf *out) { |
| 991 | v4sf g0, g1; |
| 992 | int k; |
| 993 | INTERLEAVE2(in[0], in[1], g0, g1); in += in_stride; |
| 994 | |
| 995 | *--out = VSWAPHL(g0, g1); // [g0l, g0h], [g1l g1h] -> [g1l, g0h] |
| 996 | for (k=1; k < N; ++k) { |
| 997 | v4sf h0, h1; |
| 998 | INTERLEAVE2(in[0], in[1], h0, h1); in += in_stride; |
| 999 | *--out = VSWAPHL(g1, h0); |
| 1000 | *--out = VSWAPHL(h0, h1); |
| 1001 | g1 = h1; |
| 1002 | } |
| 1003 | *--out = VSWAPHL(g1, g0); |
| 1004 | } |
| 1005 | |
| 1006 | static void unreversed_copy(int N, const v4sf *in, v4sf *out, int out_stride) { |
| 1007 | v4sf g0, g1, h0, h1; |
| 1008 | int k; |
| 1009 | g0 = g1 = in[0]; ++in; |
| 1010 | for (k=1; k < N; ++k) { |
| 1011 | h0 = *in++; h1 = *in++; |
| 1012 | g1 = VSWAPHL(g1, h0); |
| 1013 | h0 = VSWAPHL(h0, h1); |
| 1014 | UNINTERLEAVE2(h0, g1, out[0], out[1]); out += out_stride; |
| 1015 | g1 = h1; |
| 1016 | } |
| 1017 | h0 = *in++; h1 = g0; |
| 1018 | g1 = VSWAPHL(g1, h0); |
| 1019 | h0 = VSWAPHL(h0, h1); |
| 1020 | UNINTERLEAVE2(h0, g1, out[0], out[1]); |
| 1021 | } |
| 1022 | |
| 1023 | void pffft_zreorder(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) { |
| 1024 | int k, N = setup->N, Ncvec = setup->Ncvec; |
| 1025 | const v4sf *vin = (const v4sf*)in; |
| 1026 | v4sf *vout = (v4sf*)out; |
| 1027 | assert(in != out); |
| 1028 | if (setup->transform == PFFFT_REAL) { |
| 1029 | int k, dk = N/32; |
| 1030 | if (direction == PFFFT_FORWARD) { |
| 1031 | for (k=0; k < dk; ++k) { |
| 1032 | INTERLEAVE2(vin[k*8 + 0], vin[k*8 + 1], vout[2*(0*dk + k) + 0], vout[2*(0*dk + k) + 1]); |
| 1033 | INTERLEAVE2(vin[k*8 + 4], vin[k*8 + 5], vout[2*(2*dk + k) + 0], vout[2*(2*dk + k) + 1]); |
| 1034 | } |
| 1035 | reversed_copy(dk, vin+2, 8, (v4sf*)(out + N/2)); |
| 1036 | reversed_copy(dk, vin+6, 8, (v4sf*)(out + N)); |
| 1037 | } else { |
| 1038 | for (k=0; k < dk; ++k) { |
| 1039 | UNINTERLEAVE2(vin[2*(0*dk + k) + 0], vin[2*(0*dk + k) + 1], vout[k*8 + 0], vout[k*8 + 1]); |
| 1040 | UNINTERLEAVE2(vin[2*(2*dk + k) + 0], vin[2*(2*dk + k) + 1], vout[k*8 + 4], vout[k*8 + 5]); |
| 1041 | } |
| 1042 | unreversed_copy(dk, (v4sf*)(in + N/4), (v4sf*)(out + N - 6*SIMD_SZ), -8); |
| 1043 | unreversed_copy(dk, (v4sf*)(in + 3*N/4), (v4sf*)(out + N - 2*SIMD_SZ), -8); |
| 1044 | } |
| 1045 | } else { |
| 1046 | if (direction == PFFFT_FORWARD) { |
| 1047 | for (k=0; k < Ncvec; ++k) { |
| 1048 | int kk = (k/4) + (k%4)*(Ncvec/4); |
| 1049 | INTERLEAVE2(vin[k*2], vin[k*2+1], vout[kk*2], vout[kk*2+1]); |
| 1050 | } |
| 1051 | } else { |
| 1052 | for (k=0; k < Ncvec; ++k) { |
| 1053 | int kk = (k/4) + (k%4)*(Ncvec/4); |
| 1054 | UNINTERLEAVE2(vin[kk*2], vin[kk*2+1], vout[k*2], vout[k*2+1]); |
| 1055 | } |
| 1056 | } |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | void pffft_cplx_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { |
| 1061 | int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks |
| 1062 | v4sf r0, i0, r1, i1, r2, i2, r3, i3; |
| 1063 | v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; |
| 1064 | assert(in != out); |
| 1065 | for (k=0; k < dk; ++k) { |
| 1066 | r0 = in[8*k+0]; i0 = in[8*k+1]; |
| 1067 | r1 = in[8*k+2]; i1 = in[8*k+3]; |
| 1068 | r2 = in[8*k+4]; i2 = in[8*k+5]; |
| 1069 | r3 = in[8*k+6]; i3 = in[8*k+7]; |
| 1070 | VTRANSPOSE4(r0,r1,r2,r3); |
| 1071 | VTRANSPOSE4(i0,i1,i2,i3); |
| 1072 | VCPLXMUL(r1,i1,e[k*6+0],e[k*6+1]); |
| 1073 | VCPLXMUL(r2,i2,e[k*6+2],e[k*6+3]); |
| 1074 | VCPLXMUL(r3,i3,e[k*6+4],e[k*6+5]); |
| 1075 | |
| 1076 | sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2); |
| 1077 | sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3); |
| 1078 | si0 = VADD(i0,i2); di0 = VSUB(i0, i2); |
| 1079 | si1 = VADD(i1,i3); di1 = VSUB(i1, i3); |
| 1080 | |
| 1081 | /* |
| 1082 | transformation for each column is: |
| 1083 | |
| 1084 | [1 1 1 1 0 0 0 0] [r0] |
| 1085 | [1 0 -1 0 0 -1 0 1] [r1] |
| 1086 | [1 -1 1 -1 0 0 0 0] [r2] |
| 1087 | [1 0 -1 0 0 1 0 -1] [r3] |
| 1088 | [0 0 0 0 1 1 1 1] * [i0] |
| 1089 | [0 1 0 -1 1 0 -1 0] [i1] |
| 1090 | [0 0 0 0 1 -1 1 -1] [i2] |
| 1091 | [0 -1 0 1 1 0 -1 0] [i3] |
| 1092 | */ |
| 1093 | |
| 1094 | r0 = VADD(sr0, sr1); i0 = VADD(si0, si1); |
| 1095 | r1 = VADD(dr0, di1); i1 = VSUB(di0, dr1); |
| 1096 | r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1); |
| 1097 | r3 = VSUB(dr0, di1); i3 = VADD(di0, dr1); |
| 1098 | |
| 1099 | *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1; |
| 1100 | *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3; |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | void pffft_cplx_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { |
| 1105 | int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks |
| 1106 | v4sf r0, i0, r1, i1, r2, i2, r3, i3; |
| 1107 | v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; |
| 1108 | assert(in != out); |
| 1109 | for (k=0; k < dk; ++k) { |
| 1110 | r0 = in[8*k+0]; i0 = in[8*k+1]; |
| 1111 | r1 = in[8*k+2]; i1 = in[8*k+3]; |
| 1112 | r2 = in[8*k+4]; i2 = in[8*k+5]; |
| 1113 | r3 = in[8*k+6]; i3 = in[8*k+7]; |
| 1114 | |
| 1115 | sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2); |
| 1116 | sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3); |
| 1117 | si0 = VADD(i0,i2); di0 = VSUB(i0, i2); |
| 1118 | si1 = VADD(i1,i3); di1 = VSUB(i1, i3); |
| 1119 | |
| 1120 | r0 = VADD(sr0, sr1); i0 = VADD(si0, si1); |
| 1121 | r1 = VSUB(dr0, di1); i1 = VADD(di0, dr1); |
| 1122 | r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1); |
| 1123 | r3 = VADD(dr0, di1); i3 = VSUB(di0, dr1); |
| 1124 | |
| 1125 | VCPLXMULCONJ(r1,i1,e[k*6+0],e[k*6+1]); |
| 1126 | VCPLXMULCONJ(r2,i2,e[k*6+2],e[k*6+3]); |
| 1127 | VCPLXMULCONJ(r3,i3,e[k*6+4],e[k*6+5]); |
| 1128 | |
| 1129 | VTRANSPOSE4(r0,r1,r2,r3); |
| 1130 | VTRANSPOSE4(i0,i1,i2,i3); |
| 1131 | |
| 1132 | *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1; |
| 1133 | *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3; |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | |
| 1138 | ALWAYS_INLINE(void) pffft_real_finalize_4x4(const v4sf *in0, const v4sf *in1, const v4sf *in, |
| 1139 | const v4sf *e, v4sf *out) { |
| 1140 | v4sf r0, i0, r1, i1, r2, i2, r3, i3; |
| 1141 | v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; |
| 1142 | r0 = *in0; i0 = *in1; |
| 1143 | r1 = *in++; i1 = *in++; r2 = *in++; i2 = *in++; r3 = *in++; i3 = *in++; |
| 1144 | VTRANSPOSE4(r0,r1,r2,r3); |
| 1145 | VTRANSPOSE4(i0,i1,i2,i3); |
| 1146 | |
| 1147 | /* |
| 1148 | transformation for each column is: |
| 1149 | |
| 1150 | [1 1 1 1 0 0 0 0] [r0] |
| 1151 | [1 0 -1 0 0 -1 0 1] [r1] |
| 1152 | [1 0 -1 0 0 1 0 -1] [r2] |
| 1153 | [1 -1 1 -1 0 0 0 0] [r3] |
| 1154 | [0 0 0 0 1 1 1 1] * [i0] |
| 1155 | [0 -1 0 1 -1 0 1 0] [i1] |
| 1156 | [0 -1 0 1 1 0 -1 0] [i2] |
| 1157 | [0 0 0 0 -1 1 -1 1] [i3] |
| 1158 | */ |
| 1159 | |
| 1160 | //cerr << "matrix initial, before e , REAL:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n"; |
| 1161 | //cerr << "matrix initial, before e, IMAG :\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n"; |
| 1162 | |
| 1163 | VCPLXMUL(r1,i1,e[0],e[1]); |
| 1164 | VCPLXMUL(r2,i2,e[2],e[3]); |
| 1165 | VCPLXMUL(r3,i3,e[4],e[5]); |
| 1166 | |
| 1167 | //cerr << "matrix initial, real part:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n"; |
| 1168 | //cerr << "matrix initial, imag part:\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n"; |
| 1169 | |
| 1170 | sr0 = VADD(r0,r2); dr0 = VSUB(r0,r2); |
| 1171 | sr1 = VADD(r1,r3); dr1 = VSUB(r3,r1); |
| 1172 | si0 = VADD(i0,i2); di0 = VSUB(i0,i2); |
| 1173 | si1 = VADD(i1,i3); di1 = VSUB(i3,i1); |
| 1174 | |
| 1175 | r0 = VADD(sr0, sr1); |
| 1176 | r3 = VSUB(sr0, sr1); |
| 1177 | i0 = VADD(si0, si1); |
| 1178 | i3 = VSUB(si1, si0); |
| 1179 | r1 = VADD(dr0, di1); |
| 1180 | r2 = VSUB(dr0, di1); |
| 1181 | i1 = VSUB(dr1, di0); |
| 1182 | i2 = VADD(dr1, di0); |
| 1183 | |
| 1184 | *out++ = r0; |
| 1185 | *out++ = i0; |
| 1186 | *out++ = r1; |
| 1187 | *out++ = i1; |
| 1188 | *out++ = r2; |
| 1189 | *out++ = i2; |
| 1190 | *out++ = r3; |
| 1191 | *out++ = i3; |
| 1192 | |
| 1193 | } |
| 1194 | |
| 1195 | static NEVER_INLINE(void) pffft_real_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { |
| 1196 | int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks |
| 1197 | /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */ |
| 1198 | |
| 1199 | v4sf_union cr, ci, *uout = (v4sf_union*)out; |
| 1200 | v4sf save = in[7], zero=VZERO(); |
| 1201 | float xr0, xi0, xr1, xi1, xr2, xi2, xr3, xi3; |
| 1202 | static const float s = M_SQRT2/2; |
| 1203 | |
| 1204 | cr.v = in[0]; ci.v = in[Ncvec*2-1]; |
| 1205 | assert(in != out); |
| 1206 | pffft_real_finalize_4x4(&zero, &zero, in+1, e, out); |
| 1207 | |
| 1208 | /* |
| 1209 | [cr0 cr1 cr2 cr3 ci0 ci1 ci2 ci3] |
| 1210 | |
| 1211 | [Xr(1)] ] [1 1 1 1 0 0 0 0] |
| 1212 | [Xr(N/4) ] [0 0 0 0 1 s 0 -s] |
| 1213 | [Xr(N/2) ] [1 0 -1 0 0 0 0 0] |
| 1214 | [Xr(3N/4)] [0 0 0 0 1 -s 0 s] |
| 1215 | [Xi(1) ] [1 -1 1 -1 0 0 0 0] |
| 1216 | [Xi(N/4) ] [0 0 0 0 0 -s -1 -s] |
| 1217 | [Xi(N/2) ] [0 -1 0 1 0 0 0 0] |
| 1218 | [Xi(3N/4)] [0 0 0 0 0 -s 1 -s] |
| 1219 | */ |
| 1220 | |
| 1221 | xr0=(cr.f[0]+cr.f[2]) + (cr.f[1]+cr.f[3]); uout[0].f[0] = xr0; |
| 1222 | xi0=(cr.f[0]+cr.f[2]) - (cr.f[1]+cr.f[3]); uout[1].f[0] = xi0; |
| 1223 | xr2=(cr.f[0]-cr.f[2]); uout[4].f[0] = xr2; |
| 1224 | xi2=(cr.f[3]-cr.f[1]); uout[5].f[0] = xi2; |
| 1225 | xr1= ci.f[0] + s*(ci.f[1]-ci.f[3]); uout[2].f[0] = xr1; |
| 1226 | xi1=-ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[3].f[0] = xi1; |
| 1227 | xr3= ci.f[0] - s*(ci.f[1]-ci.f[3]); uout[6].f[0] = xr3; |
| 1228 | xi3= ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[7].f[0] = xi3; |
| 1229 | |
| 1230 | for (k=1; k < dk; ++k) { |
| 1231 | v4sf save_next = in[8*k+7]; |
| 1232 | pffft_real_finalize_4x4(&save, &in[8*k+0], in + 8*k+1, |
| 1233 | e + k*6, out + k*8); |
| 1234 | save = save_next; |
| 1235 | } |
| 1236 | |
| 1237 | } |
| 1238 | |
| 1239 | ALWAYS_INLINE(void) pffft_real_preprocess_4x4(const v4sf *in, |
| 1240 | const v4sf *e, v4sf *out, int first) { |
| 1241 | v4sf r0=in[0], i0=in[1], r1=in[2], i1=in[3], r2=in[4], i2=in[5], r3=in[6], i3=in[7]; |
| 1242 | /* |
| 1243 | transformation for each column is: |
| 1244 | |
| 1245 | [1 1 1 1 0 0 0 0] [r0] |
| 1246 | [1 0 0 -1 0 -1 -1 0] [r1] |
| 1247 | [1 -1 -1 1 0 0 0 0] [r2] |
| 1248 | [1 0 0 -1 0 1 1 0] [r3] |
| 1249 | [0 0 0 0 1 -1 1 -1] * [i0] |
| 1250 | [0 -1 1 0 1 0 0 1] [i1] |
| 1251 | [0 0 0 0 1 1 -1 -1] [i2] |
| 1252 | [0 1 -1 0 1 0 0 1] [i3] |
| 1253 | */ |
| 1254 | |
| 1255 | v4sf sr0 = VADD(r0,r3), dr0 = VSUB(r0,r3); |
| 1256 | v4sf sr1 = VADD(r1,r2), dr1 = VSUB(r1,r2); |
| 1257 | v4sf si0 = VADD(i0,i3), di0 = VSUB(i0,i3); |
| 1258 | v4sf si1 = VADD(i1,i2), di1 = VSUB(i1,i2); |
| 1259 | |
| 1260 | r0 = VADD(sr0, sr1); |
| 1261 | r2 = VSUB(sr0, sr1); |
| 1262 | r1 = VSUB(dr0, si1); |
| 1263 | r3 = VADD(dr0, si1); |
| 1264 | i0 = VSUB(di0, di1); |
| 1265 | i2 = VADD(di0, di1); |
| 1266 | i1 = VSUB(si0, dr1); |
| 1267 | i3 = VADD(si0, dr1); |
| 1268 | |
| 1269 | VCPLXMULCONJ(r1,i1,e[0],e[1]); |
| 1270 | VCPLXMULCONJ(r2,i2,e[2],e[3]); |
| 1271 | VCPLXMULCONJ(r3,i3,e[4],e[5]); |
| 1272 | |
| 1273 | VTRANSPOSE4(r0,r1,r2,r3); |
| 1274 | VTRANSPOSE4(i0,i1,i2,i3); |
| 1275 | |
| 1276 | if (!first) { |
| 1277 | *out++ = r0; |
| 1278 | *out++ = i0; |
| 1279 | } |
| 1280 | *out++ = r1; |
| 1281 | *out++ = i1; |
| 1282 | *out++ = r2; |
| 1283 | *out++ = i2; |
| 1284 | *out++ = r3; |
| 1285 | *out++ = i3; |
| 1286 | } |
| 1287 | |
| 1288 | static NEVER_INLINE(void) pffft_real_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { |
| 1289 | int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks |
| 1290 | /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */ |
| 1291 | |
| 1292 | v4sf_union Xr, Xi, *uout = (v4sf_union*)out; |
| 1293 | float cr0, ci0, cr1, ci1, cr2, ci2, cr3, ci3; |
| 1294 | static const float s = M_SQRT2; |
| 1295 | assert(in != out); |
| 1296 | for (k=0; k < 4; ++k) { |
| 1297 | Xr.f[k] = ((float*)in)[8*k]; |
| 1298 | Xi.f[k] = ((float*)in)[8*k+4]; |
| 1299 | } |
| 1300 | |
| 1301 | pffft_real_preprocess_4x4(in, e, out+1, 1); // will write only 6 values |
| 1302 | |
| 1303 | /* |
| 1304 | [Xr0 Xr1 Xr2 Xr3 Xi0 Xi1 Xi2 Xi3] |
| 1305 | |
| 1306 | [cr0] [1 0 2 0 1 0 0 0] |
| 1307 | [cr1] [1 0 0 0 -1 0 -2 0] |
| 1308 | [cr2] [1 0 -2 0 1 0 0 0] |
| 1309 | [cr3] [1 0 0 0 -1 0 2 0] |
| 1310 | [ci0] [0 2 0 2 0 0 0 0] |
| 1311 | [ci1] [0 s 0 -s 0 -s 0 -s] |
| 1312 | [ci2] [0 0 0 0 0 -2 0 2] |
| 1313 | [ci3] [0 -s 0 s 0 -s 0 -s] |
| 1314 | */ |
| 1315 | for (k=1; k < dk; ++k) { |
| 1316 | pffft_real_preprocess_4x4(in+8*k, e + k*6, out-1+k*8, 0); |
| 1317 | } |
| 1318 | |
| 1319 | cr0=(Xr.f[0]+Xi.f[0]) + 2*Xr.f[2]; uout[0].f[0] = cr0; |
| 1320 | cr1=(Xr.f[0]-Xi.f[0]) - 2*Xi.f[2]; uout[0].f[1] = cr1; |
| 1321 | cr2=(Xr.f[0]+Xi.f[0]) - 2*Xr.f[2]; uout[0].f[2] = cr2; |
| 1322 | cr3=(Xr.f[0]-Xi.f[0]) + 2*Xi.f[2]; uout[0].f[3] = cr3; |
| 1323 | ci0= 2*(Xr.f[1]+Xr.f[3]); uout[2*Ncvec-1].f[0] = ci0; |
| 1324 | ci1= s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[1] = ci1; |
| 1325 | ci2= 2*(Xi.f[3]-Xi.f[1]); uout[2*Ncvec-1].f[2] = ci2; |
| 1326 | ci3=-s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[3] = ci3; |
| 1327 | } |
| 1328 | |
| 1329 | |
| 1330 | void pffft_transform_internal(PFFFT_Setup *setup, const float *finput, float *foutput, v4sf *scratch, |
| 1331 | pffft_direction_t direction, int ordered) { |
| 1332 | int k, Ncvec = setup->Ncvec; |
| 1333 | int nf_odd = (setup->ifac[1] & 1); |
| 1334 | |
| 1335 | // temporary buffer is allocated on the stack if the scratch pointer is NULL |
| 1336 | int stack_allocate = (scratch == 0 ? Ncvec*2 : 1); |
| 1337 | VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate); |
| 1338 | if (scratch == 0) scratch = scratch_on_stack; |
| 1339 | |
| 1340 | const v4sf *vinput = (const v4sf*)finput; |
| 1341 | v4sf *voutput = (v4sf*)foutput; |
| 1342 | v4sf *buff[2] = { voutput, scratch }; |
| 1343 | int ib = (nf_odd ^ ordered ? 1 : 0); |
| 1344 | |
| 1345 | assert(VALIGNED(finput) && VALIGNED(foutput)); |
| 1346 | |
| 1347 | //assert(finput != foutput); |
| 1348 | if (direction == PFFFT_FORWARD) { |
| 1349 | ib = !ib; |
| 1350 | if (setup->transform == PFFFT_REAL) { |
| 1351 | ib = (rfftf1_ps(Ncvec*2, vinput, buff[ib], buff[!ib], |
| 1352 | setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); |
| 1353 | pffft_real_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e); |
| 1354 | } else { |
| 1355 | v4sf *tmp = buff[ib]; |
| 1356 | for (k=0; k < Ncvec; ++k) { |
| 1357 | UNINTERLEAVE2(vinput[k*2], vinput[k*2+1], tmp[k*2], tmp[k*2+1]); |
| 1358 | } |
| 1359 | ib = (cfftf1_ps(Ncvec, buff[ib], buff[!ib], buff[ib], |
| 1360 | setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1); |
| 1361 | pffft_cplx_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e); |
| 1362 | } |
| 1363 | if (ordered) { |
| 1364 | pffft_zreorder(setup, (float*)buff[!ib], (float*)buff[ib], PFFFT_FORWARD); |
| 1365 | } else ib = !ib; |
| 1366 | } else { |
| 1367 | if (vinput == buff[ib]) { |
| 1368 | ib = !ib; // may happen when finput == foutput |
| 1369 | } |
| 1370 | if (ordered) { |
| 1371 | pffft_zreorder(setup, (float*)vinput, (float*)buff[ib], PFFFT_BACKWARD); |
| 1372 | vinput = buff[ib]; ib = !ib; |
| 1373 | } |
| 1374 | if (setup->transform == PFFFT_REAL) { |
| 1375 | pffft_real_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e); |
| 1376 | ib = (rfftb1_ps(Ncvec*2, buff[ib], buff[0], buff[1], |
| 1377 | setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); |
| 1378 | } else { |
| 1379 | pffft_cplx_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e); |
| 1380 | ib = (cfftf1_ps(Ncvec, buff[ib], buff[0], buff[1], |
| 1381 | setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1); |
| 1382 | for (k=0; k < Ncvec; ++k) { |
| 1383 | INTERLEAVE2(buff[ib][k*2], buff[ib][k*2+1], buff[ib][k*2], buff[ib][k*2+1]); |
| 1384 | } |
| 1385 | } |
| 1386 | } |
| 1387 | |
| 1388 | if (buff[ib] != voutput) { |
| 1389 | /* extra copy required -- this situation should only happen when finput == foutput */ |
| 1390 | assert(finput==foutput); |
| 1391 | for (k=0; k < Ncvec; ++k) { |
| 1392 | v4sf a = buff[ib][2*k], b = buff[ib][2*k+1]; |
| 1393 | voutput[2*k] = a; voutput[2*k+1] = b; |
| 1394 | } |
| 1395 | ib = !ib; |
| 1396 | } |
| 1397 | assert(buff[ib] == voutput); |
| 1398 | } |
| 1399 | |
| 1400 | void pffft_zconvolve_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab, float scaling) { |
| 1401 | int i, Ncvec = s->Ncvec; |
| 1402 | const v4sf * RESTRICT va = (const v4sf*)a; |
| 1403 | const v4sf * RESTRICT vb = (const v4sf*)b; |
| 1404 | v4sf * RESTRICT vab = (v4sf*)ab; |
| 1405 | |
| 1406 | #ifdef __arm__ |
| 1407 | __builtin_prefetch(va); |
| 1408 | __builtin_prefetch(vb); |
| 1409 | __builtin_prefetch(vab); |
| 1410 | __builtin_prefetch(va+2); |
| 1411 | __builtin_prefetch(vb+2); |
| 1412 | __builtin_prefetch(vab+2); |
| 1413 | __builtin_prefetch(va+4); |
| 1414 | __builtin_prefetch(vb+4); |
| 1415 | __builtin_prefetch(vab+4); |
| 1416 | __builtin_prefetch(va+6); |
| 1417 | __builtin_prefetch(vb+6); |
| 1418 | __builtin_prefetch(vab+6); |
| 1419 | #endif |
| 1420 | |
| 1421 | float ar, ai, br, bi, abr, abi; |
| 1422 | v4sf vscal = LD_PS1(scaling); |
| 1423 | |
| 1424 | assert(VALIGNED(a) && VALIGNED(b) && VALIGNED(ab)); |
| 1425 | ar = ((v4sf_union*)va)[0].f[0]; |
| 1426 | ai = ((v4sf_union*)va)[1].f[0]; |
| 1427 | br = ((v4sf_union*)vb)[0].f[0]; |
| 1428 | bi = ((v4sf_union*)vb)[1].f[0]; |
| 1429 | abr = ((v4sf_union*)vab)[0].f[0]; |
| 1430 | abi = ((v4sf_union*)vab)[1].f[0]; |
| 1431 | |
| 1432 | #ifdef __arm__ |
| 1433 | # if 1 // inline asm version |
| 1434 | const float *a_ = a, *b_ = b; float *ab_ = ab; |
| 1435 | int N = Ncvec; |
| 1436 | asm volatile("mov r8, %2 \n" |
| 1437 | "vdup.f32 q15, %4 \n" |
| 1438 | "1: \n" |
| 1439 | "pld [%0,#64] \n" |
| 1440 | "pld [%1,#64] \n" |
| 1441 | "pld [%2,#64] \n" |
| 1442 | "pld [%0,#96] \n" |
| 1443 | "pld [%1,#96] \n" |
| 1444 | "pld [%2,#96] \n" |
| 1445 | "vld1.f32 {q0,q1}, [%0,:128]! \n" |
| 1446 | "vld1.f32 {q4,q5}, [%1,:128]! \n" |
| 1447 | "vld1.f32 {q2,q3}, [%0,:128]! \n" |
| 1448 | "vld1.f32 {q6,q7}, [%1,:128]! \n" |
| 1449 | "vld1.f32 {q8,q9}, [r8,:128]! \n" |
| 1450 | |
| 1451 | "vmul.f32 q10, q0, q4 \n" |
| 1452 | "vmul.f32 q11, q0, q5 \n" |
| 1453 | "vmul.f32 q12, q2, q6 \n" |
| 1454 | "vmul.f32 q13, q2, q7 \n" |
| 1455 | "vmls.f32 q10, q1, q5 \n" |
| 1456 | "vmla.f32 q11, q1, q4 \n" |
| 1457 | "vld1.f32 {q0,q1}, [r8,:128]! \n" |
| 1458 | "vmls.f32 q12, q3, q7 \n" |
| 1459 | "vmla.f32 q13, q3, q6 \n" |
| 1460 | "vmla.f32 q8, q10, q15 \n" |
| 1461 | "vmla.f32 q9, q11, q15 \n" |
| 1462 | "vmla.f32 q0, q12, q15 \n" |
| 1463 | "vmla.f32 q1, q13, q15 \n" |
| 1464 | "vst1.f32 {q8,q9},[%2,:128]! \n" |
| 1465 | "vst1.f32 {q0,q1},[%2,:128]! \n" |
| 1466 | "subs %3, #2 \n" |
| 1467 | "bne 1b \n" |
| 1468 | : "+r"(a_), "+r"(b_), "+r"(ab_), "+r"(N) : "r"(scaling) : "r8", "q0","q1","q2","q3","q4","q5","q6","q7","q8","q9", "q10","q11","q12","q13","q15","memory"); |
| 1469 | |
| 1470 | # else // neon instrinsics version, 30% slower that the asm one with gcc 4.6 |
| 1471 | v4sf a1r, a1i, b1r, b1i; |
| 1472 | v4sf a2r, a2i, b2r, b2i; |
| 1473 | v4sf ab1r, ab1i, ab2r, ab2i; |
| 1474 | for (i=0; i < Ncvec; i += 2) { |
| 1475 | __builtin_prefetch(va+8); |
| 1476 | __builtin_prefetch(va+10); |
| 1477 | |
| 1478 | a1r = *va++; a1i = *va++; |
| 1479 | a2r = *va++; a2i = *va++; |
| 1480 | b1r = *vb++; b1i = *vb++; |
| 1481 | b2r = *vb++; b2i = *vb++; |
| 1482 | ab1r = vab[0]; ab1i = vab[1]; |
| 1483 | ab2r = vab[2]; ab2i = vab[3]; |
| 1484 | |
| 1485 | v4sf z1r = VMUL(a1r, b1r); |
| 1486 | v4sf z2r = VMUL(a2r, b2r); |
| 1487 | v4sf z1i = VMUL(a1r, b1i); |
| 1488 | v4sf z2i = VMUL(a2r, b2i); |
| 1489 | |
| 1490 | __builtin_prefetch(vb+4); |
| 1491 | __builtin_prefetch(vb+6); |
| 1492 | |
| 1493 | z1r = vmlsq_f32(z1r, a1i, b1i); |
| 1494 | z2r = vmlsq_f32(z2r, a2i, b2i); |
| 1495 | z1i = vmlaq_f32(z1i, a1i, b1r); |
| 1496 | z2i = vmlaq_f32(z2i, a2i, b2r); |
| 1497 | |
| 1498 | __builtin_prefetch(vab+4); |
| 1499 | __builtin_prefetch(vab+6); |
| 1500 | |
| 1501 | ab1r = vmlaq_f32(ab1r, z1r, vscal); |
| 1502 | ab2r = vmlaq_f32(ab2r, z2r, vscal); |
| 1503 | ab1i = vmlaq_f32(ab1i, z1i, vscal); |
| 1504 | ab2i = vmlaq_f32(ab2i, z2i, vscal); |
| 1505 | |
| 1506 | *vab++ = ab1r; *vab++ = ab1i; |
| 1507 | *vab++ = ab2r; *vab++ = ab2i; |
| 1508 | } |
| 1509 | # endif |
| 1510 | |
| 1511 | #else // not ARM, no need to use a special routine |
| 1512 | for (i=0; i < Ncvec; i += 2) { |
| 1513 | v4sf ar, ai, br, bi; |
| 1514 | ar = va[2*i+0]; ai = va[2*i+1]; |
| 1515 | br = vb[2*i+0]; bi = vb[2*i+1]; |
| 1516 | VCPLXMUL(ar, ai, br, bi); |
| 1517 | vab[2*i+0] = VMADD(ar, vscal, vab[2*i+0]); |
| 1518 | vab[2*i+1] = VMADD(ai, vscal, vab[2*i+1]); |
| 1519 | ar = va[2*i+2]; ai = va[2*i+3]; |
| 1520 | br = vb[2*i+2]; bi = vb[2*i+3]; |
| 1521 | VCPLXMUL(ar, ai, br, bi); |
| 1522 | vab[2*i+2] = VMADD(ar, vscal, vab[2*i+2]); |
| 1523 | vab[2*i+3] = VMADD(ai, vscal, vab[2*i+3]); |
| 1524 | } |
| 1525 | #endif |
| 1526 | if (s->transform == PFFFT_REAL) { |
| 1527 | ((v4sf_union*)vab)[0].f[0] = abr + ar*br*scaling; |
| 1528 | ((v4sf_union*)vab)[1].f[0] = abi + ai*bi*scaling; |
| 1529 | } |
| 1530 | } |
| 1531 | |
| 1532 | |
| 1533 | #else // defined(PFFFT_SIMD_DISABLE) |
| 1534 | |
| 1535 | // standard routine using scalar floats, without SIMD stuff. |
| 1536 | |
| 1537 | #define pffft_zreorder_nosimd pffft_zreorder |
| 1538 | void pffft_zreorder_nosimd(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) { |
| 1539 | int k, N = setup->N; |
| 1540 | if (setup->transform == PFFFT_COMPLEX) { |
| 1541 | for (k=0; k < 2*N; ++k) out[k] = in[k]; |
| 1542 | return; |
| 1543 | } |
| 1544 | else if (direction == PFFFT_FORWARD) { |
| 1545 | float x_N = in[N-1]; |
| 1546 | for (k=N-1; k > 1; --k) out[k] = in[k-1]; |
| 1547 | out[0] = in[0]; |
| 1548 | out[1] = x_N; |
| 1549 | } else { |
| 1550 | float x_N = in[1]; |
| 1551 | for (k=1; k < N-1; ++k) out[k] = in[k+1]; |
| 1552 | out[0] = in[0]; |
| 1553 | out[N-1] = x_N; |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | #define pffft_transform_internal_nosimd pffft_transform_internal |
| 1558 | void pffft_transform_internal_nosimd(PFFFT_Setup *setup, const float *input, float *output, float *scratch, |
| 1559 | pffft_direction_t direction, int ordered) { |
| 1560 | int Ncvec = setup->Ncvec; |
| 1561 | int nf_odd = (setup->ifac[1] & 1); |
| 1562 | |
| 1563 | // temporary buffer is allocated on the stack if the scratch pointer is NULL |
| 1564 | int stack_allocate = (scratch == 0 ? Ncvec*2 : 1); |
| 1565 | VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate); |
| 1566 | if (scratch == 0) scratch = scratch_on_stack; |
| 1567 | |
| 1568 | float *buff[2] = { output, scratch }; |
| 1569 | int ib; |
| 1570 | if (setup->transform == PFFFT_COMPLEX) ordered = 0; // it is always ordered. |
| 1571 | ib = (nf_odd ^ ordered ? 1 : 0); |
| 1572 | |
| 1573 | if (direction == PFFFT_FORWARD) { |
| 1574 | if (setup->transform == PFFFT_REAL) { |
| 1575 | ib = (rfftf1_ps(Ncvec*2, input, buff[ib], buff[!ib], |
| 1576 | setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); |
| 1577 | } else { |
| 1578 | ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], |
| 1579 | setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1); |
| 1580 | } |
| 1581 | if (ordered) { |
| 1582 | pffft_zreorder(setup, buff[ib], buff[!ib], PFFFT_FORWARD); ib = !ib; |
| 1583 | } |
| 1584 | } else { |
| 1585 | if (input == buff[ib]) { |
| 1586 | ib = !ib; // may happen when finput == foutput |
| 1587 | } |
| 1588 | if (ordered) { |
| 1589 | pffft_zreorder(setup, input, buff[!ib], PFFFT_BACKWARD); |
| 1590 | input = buff[!ib]; |
| 1591 | } |
| 1592 | if (setup->transform == PFFFT_REAL) { |
| 1593 | ib = (rfftb1_ps(Ncvec*2, input, buff[ib], buff[!ib], |
| 1594 | setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); |
| 1595 | } else { |
| 1596 | ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], |
| 1597 | setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1); |
| 1598 | } |
| 1599 | } |
| 1600 | if (buff[ib] != output) { |
| 1601 | int k; |
| 1602 | // extra copy required -- this situation should happens only when finput == foutput |
| 1603 | assert(input==output); |
| 1604 | for (k=0; k < Ncvec; ++k) { |
| 1605 | float a = buff[ib][2*k], b = buff[ib][2*k+1]; |
| 1606 | output[2*k] = a; output[2*k+1] = b; |
| 1607 | } |
| 1608 | ib = !ib; |
| 1609 | } |
| 1610 | assert(buff[ib] == output); |
| 1611 | } |
| 1612 | |
| 1613 | #define pffft_zconvolve_accumulate_nosimd pffft_zconvolve_accumulate |
| 1614 | void pffft_zconvolve_accumulate_nosimd(PFFFT_Setup *s, const float *a, const float *b, |
| 1615 | float *ab, float scaling) { |
| 1616 | int i, Ncvec = s->Ncvec; |
| 1617 | |
| 1618 | if (s->transform == PFFFT_REAL) { |
| 1619 | // take care of the fftpack ordering |
| 1620 | ab[0] += a[0]*b[0]*scaling; |
| 1621 | ab[2*Ncvec-1] += a[2*Ncvec-1]*b[2*Ncvec-1]*scaling; |
| 1622 | ++ab; ++a; ++b; --Ncvec; |
| 1623 | } |
| 1624 | for (i=0; i < Ncvec; ++i) { |
| 1625 | float ar, ai, br, bi; |
| 1626 | ar = a[2*i+0]; ai = a[2*i+1]; |
| 1627 | br = b[2*i+0]; bi = b[2*i+1]; |
| 1628 | VCPLXMUL(ar, ai, br, bi); |
| 1629 | ab[2*i+0] += ar*scaling; |
| 1630 | ab[2*i+1] += ai*scaling; |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | #endif // defined(PFFFT_SIMD_DISABLE) |
| 1635 | |
| 1636 | void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) { |
| 1637 | pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 0); |
| 1638 | } |
| 1639 | |
| 1640 | void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) { |
| 1641 | pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 1); |
| 1642 | } |