blob: 050a4884ab099d191516027f5316a6e732bb40fc [file] [log] [blame]
dario mambrocb971842020-03-28 00:22:33 +01001/*
2 Copyright (c) 2013 Julien Pommier.
3
4 Small test & bench for PFFFT, comparing its performance with the scalar
5 FFTPACK, FFTW, and Apple vDSP
6
7 How to build:
8
9 on linux, with fftw3:
10 gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c
11 test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm
12
13 on macos, without fftw3:
14 clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c
15 -L/usr/local/lib -I/usr/local/include/ -framework Accelerate
16
17 on macos, with fftw3:
18 clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c
19 test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f
20 -framework Accelerate
21
22 as alternative: replace clang by gcc.
23
24 on windows, with visual c++:
25 cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c
26
27 build without SIMD instructions:
28 gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c
29 fftpack.c -lm
30
31 */
32
33#include "pffft.hpp"
34
35#include <assert.h>
36#include <math.h>
37#include <stdio.h>
38#include <stdlib.h>
39#include <string.h>
40#include <time.h>
41
42/* maximum allowed phase error in degree */
43#define DEG_ERR_LIMIT 1E-4
44
45/* maximum allowed magnitude error in amplitude (of 1.0 or 1.1) */
46#define MAG_ERR_LIMIT 1E-6
47
48#define PRINT_SPEC 0
49
50#define PWR2LOG(PWR) ((PWR) < 1E-30 ? 10.0 * log10(1E-30) : 10.0 * log10(PWR))
51
52template<typename T>
53bool
54Ttest(int N, bool useOrdered)
55{
56 using Fft = typename pffft::Fft<T>;
57 using Scalar = typename Fft::Scalar;
58
59 bool cplx = std::is_same<T, std::complex<float>>::value ||
60 std::is_same<T, std::complex<double>>::value;
61
62 double EXPECTED_DYN_RANGE =
63 std::is_same<double, Scalar>::value ? 215.0 : 140.0;
64
65 int Nsca = (cplx ? N * 2 : N);
66 int Ncplx = (cplx ? N : N / 2);
67 T* X = Fft::alignedAlloc<T>(Nsca);
68 T* Z = Fft::alignedAlloc<T>(Nsca);
69 Scalar* R = Fft::alignedAllocScalar(Nsca);
70 std::complex<Scalar>* Y = Fft::alignedAllocComplex(Nsca);
71 int k, j, m, iter, kmaxOther;
72 bool retError = false;
73 double freq, dPhi, phi, phi0;
74 double pwr, pwrCar, pwrOther, err, errSum, mag, expextedMag;
75 double amp = 1.0;
76
77 assert(pffft::isPowerOfTwo(N));
78
79 Fft fft = Fft(N);
80
81 Scalar* Xs = reinterpret_cast<Scalar*>(X);
82 Scalar* Ys = reinterpret_cast<Scalar*>(Y);
83 Scalar* Zs = reinterpret_cast<Scalar*>(Z);
84
85 for (k = m = 0; k < (cplx ? N : (1 + N / 2)); k += N / 16, ++m) {
86 amp = ((m % 3) == 0) ? 1.0F : 1.1F;
87 freq = (k < N / 2) ? ((double)k / N) : ((double)(k - N) / N);
88 dPhi = 2.0 * M_PI * freq;
89 if (dPhi < 0.0)
90 dPhi += 2.0 * M_PI;
91
92 iter = -1;
93 while (1) {
94 ++iter;
95
96 if (iter)
97 printf("bin %d: dphi = %f for freq %f\n", k, dPhi, freq);
98
99 /* generate cosine carrier as time signal - start at defined phase phi0 */
100 phi = phi0 =
101 (m % 4) * 0.125 * M_PI; /* have phi0 < 90 deg to be normalized */
102 for (j = 0; j < N; ++j) {
103 if (cplx) {
104 Xs[2 * j] = amp * cos(phi); /* real part */
105 Xs[2 * j + 1] = amp * sin(phi); /* imag part */
106 } else
107 Xs[j] = amp * cos(phi); /* only real part */
108
109 /* phase increment .. stay normalized - cos()/sin() might degrade! */
110 phi += dPhi;
111 if (phi >= M_PI)
112 phi -= 2.0 * M_PI;
113 }
114
115 /* forward transform from X --> Y .. using work buffer W */
116 if (useOrdered)
117 fft.forward(X, Y);
118 else {
119 fft.forwardInternalLayout(X, R); /* temporarily use R for reordering */
120 fft.reorderSpectrum(R, Y, PFFFT_FORWARD);
121 }
122
123 pwrOther = -1.0;
124 pwrCar = 0;
125
126 /* for positive frequencies: 0 to 0.5 * samplerate */
127 /* and also for negative frequencies: -0.5 * samplerate to 0 */
128 for (j = 0; j < (cplx ? N : (1 + N / 2)); ++j) {
129 if (!cplx && !j) /* special treatment for DC for real input */
130 pwr = Ys[j] * Ys[j];
131 else if (!cplx && j == N / 2) /* treat 0.5 * samplerate */
132 pwr = Ys[1] *
133 Ys[1]; /* despite j (for freq calculation) we have index 1 */
134 else
135 pwr = Ys[2 * j] * Ys[2 * j] + Ys[2 * j + 1] * Ys[2 * j + 1];
136 if (iter || PRINT_SPEC)
137 printf("%s fft %d: pwr[j = %d] = %g == %f dB\n",
138 (cplx ? "cplx" : "real"),
139 N,
140 j,
141 pwr,
142 PWR2LOG(pwr));
143 if (k == j)
144 pwrCar = pwr;
145 else if (pwr > pwrOther) {
146 pwrOther = pwr;
147 kmaxOther = j;
148 }
149 }
150
151 if (PWR2LOG(pwrCar) - PWR2LOG(pwrOther) < EXPECTED_DYN_RANGE) {
152 printf("%s fft %d amp %f iter %d:\n",
153 (cplx ? "cplx" : "real"),
154 N,
155 amp,
156 iter);
157 printf(" carrier power at bin %d: %g == %f dB\n",
158 k,
159 pwrCar,
160 PWR2LOG(pwrCar));
161 printf(" carrier mag || at bin %d: %g\n", k, sqrt(pwrCar));
162 printf(" max other pwr at bin %d: %g == %f dB\n",
163 kmaxOther,
164 pwrOther,
165 PWR2LOG(pwrOther));
166 printf(" dynamic range: %f dB\n\n",
167 PWR2LOG(pwrCar) - PWR2LOG(pwrOther));
168 retError = true;
169 if (iter == 0)
170 continue;
171 }
172
173 if (k > 0 && k != N / 2) {
174 phi = atan2(Ys[2 * k + 1], Ys[2 * k]);
175 if (fabs(phi - phi0) > DEG_ERR_LIMIT * M_PI / 180.0) {
176 retError = true;
177 printf("%s fft %d bin %d amp %f : phase mismatch! phase = %f deg "
178 "expected = %f deg\n",
179 (cplx ? "cplx" : "real"),
180 N,
181 k,
182 amp,
183 phi * 180.0 / M_PI,
184 phi0 * 180.0 / M_PI);
185 }
186 }
187
188 expextedMag = cplx ? amp : ((k == 0 || k == N / 2) ? amp : (amp / 2));
189 mag = sqrt(pwrCar) / N;
190 if (fabs(mag - expextedMag) > MAG_ERR_LIMIT) {
191 retError = true;
192 printf("%s fft %d bin %d amp %f : mag = %g expected = %g\n",
193 (cplx ? "cplx" : "real"),
194 N,
195 k,
196 amp,
197 mag,
198 expextedMag);
199 }
200
201 /* now convert spectrum back */
202 fft.inverse(Y, Z);
203
204 errSum = 0.0;
205 for (j = 0; j < (cplx ? (2 * N) : N); ++j) {
206 /* scale back */
207 Z[j] /= N;
208 /* square sum errors over real (and imag parts) */
209 err = (Xs[j] - Zs[j]) * (Xs[j] - Zs[j]);
210 errSum += err;
211 }
212
213 if (errSum > N * 1E-7) {
214 retError = true;
215 printf("%s fft %d bin %d : inverse FFT doesn't match original signal! "
216 "errSum = %g ; mean err = %g\n",
217 (cplx ? "cplx" : "real"),
218 N,
219 k,
220 errSum,
221 errSum / N);
222 }
223
224 break;
225 }
226 }
227 pffft::alignedFree(X);
228 pffft::alignedFree(Y);
229 pffft::alignedFree(Z);
230
231 return retError;
232}
233
234bool
235test(int N, bool useComplex, bool useOrdered)
236{
237 if (useComplex) {
238 return Ttest<std::complex<float>>(N, useOrdered) &&
239 Ttest<std::complex<double>>(N, useOrdered);
240 } else {
241 return Ttest<float>(N, useOrdered) && Ttest<double>(N, useOrdered);
242 }
243}
244
245int
246main(int argc, char** argv)
247{
248 int N, result, resN, resAll, k, resNextPw2, resIsPw2, resFFT;
249
250 int inp_power_of_two[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 511, 512, 513 };
251 int ref_power_of_two[] = { 1, 2, 4, 4, 8, 8, 8, 8, 16, 512, 512, 1024 };
252
253 resNextPw2 = 0;
254 resIsPw2 = 0;
255 for (k = 0; k < (sizeof(inp_power_of_two) / sizeof(inp_power_of_two[0]));
256 ++k) {
257 N = pffft::nextPowerOfTwo(inp_power_of_two[k]);
258 if (N != ref_power_of_two[k]) {
259 resNextPw2 = 1;
260 printf("pffft_next_power_of_two(%d) does deliver %d, which is not "
261 "reference result %d!\n",
262 inp_power_of_two[k],
263 N,
264 ref_power_of_two[k]);
265 }
266
267 result = pffft::isPowerOfTwo(inp_power_of_two[k]);
268 if (inp_power_of_two[k] == ref_power_of_two[k]) {
269 if (!result) {
270 resIsPw2 = 1;
271 printf("pffft_is_power_of_two(%d) delivers false; expected true!\n",
272 inp_power_of_two[k]);
273 }
274 } else {
275 if (result) {
276 resIsPw2 = 1;
277 printf("pffft_is_power_of_two(%d) delivers true; expected false!\n",
278 inp_power_of_two[k]);
279 }
280 }
281 }
282 if (!resNextPw2)
283 printf("tests for pffft_next_power_of_two() succeeded successfully.\n");
284 if (!resIsPw2)
285 printf("tests for pffft_is_power_of_two() succeeded successfully.\n");
286
287 resFFT = 0;
288 for (N = 32; N <= 65536; N *= 2) {
289 result = test(N, 1 /* cplx fft */, 1 /* useOrdered */);
290 resN = result;
291 resFFT |= result;
292
293 result = test(N, 0 /* cplx fft */, 1 /* useOrdered */);
294 resN |= result;
295 resFFT |= result;
296
297 result = test(N, 1 /* cplx fft */, 0 /* useOrdered */);
298 resN |= result;
299 resFFT |= result;
300
301 result = test(N, 0 /* cplx fft */, 0 /* useOrdered */);
302 resN |= result;
303 resFFT |= result;
304
305 if (!resN)
306 printf("tests for size %d succeeded successfully.\n", N);
307 }
308
309 if (!resFFT)
310 printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX) "
311 "succeeded successfully.\n");
312
313 resAll = resNextPw2 | resIsPw2 | resFFT;
314 if (!resAll)
315 printf("all tests succeeded successfully.\n");
316 else
317 printf("there are failed tests!\n");
318
319 return resAll;
320}