blob: 579d6abe1ae5a789cf576836e0988645a341e42e [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.
// http://code.google.com/p/protobuf/
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.
#ifndef GOOGLE_PROTOBUF_GENERATED_MESSAGE_REFLECTION_H__
#define GOOGLE_PROTOBUF_GENERATED_MESSAGE_REFLECTION_H__
#include <string>
#include <vector>
#include <google/protobuf/message.h>
#include <google/protobuf/unknown_field_set.h>
// Generated code needs this to have been forward-declared. Easier to do it
// here than to print it inside every .pb.h file.
namespace google {
namespace protobuf { class EnumDescriptor; }
namespace protobuf {
namespace internal {
// Defined in this file.
class GeneratedMessageReflection;
// Defined in other files.
class ExtensionSet; // extension_set.h
// THIS CLASS IS NOT INTENDED FOR DIRECT USE. It is intended for use
// by generated code. This class is just a big hack that reduces code
// size.
//
// A GeneratedMessageReflection is an implementation of Message::Reflection
// which expects all fields to be backed by simple variables located in
// memory. The locations are given using a base pointer and a set of
// offsets.
//
// It is required that the user represents fields of each type in a standard
// way, so that GeneratedMessageReflection can cast the void* pointer to
// the appropriate type. For primitive fields and string fields, each field
// should be represented using the obvious C++ primitive type. Enums and
// Messages are different:
// - Singular Message fields are stored as a pointer to a Message. These
// should start out NULL, except for in the default instance where they
// should start out pointing to other default instances.
// - Enum fields are stored as an int. This int must always contain
// a valid value, such that EnumDescriptor::FindValueByNumber() would
// not return NULL.
// - Repeated fields are stored as RepeatedFields or RepeatedPtrFields
// of whatever type the individual field would be. Strings and
// Messages use RepeatedPtrFields while everything else uses
// RepeatedFields.
class LIBPROTOBUF_EXPORT GeneratedMessageReflection : public Message::Reflection {
public:
// Constructs a GeneratedMessageReflection.
// Parameters:
// descriptor: The descriptor for the message type being implemented.
// base: Pointer to the location where the message object is
// stored.
// default_base: Pointer to the location where the message's default
// instance is stored. This is only used to obtain
// pointers to default instances of embedded messages,
// which GetMessage() will return if the particular sub-
// message has not been initialized yet. (Thus, all
// embedded message fields *must* have non-NULL pointers
// in the default instance.)
// offsets: An array of bits giving the byte offsets, relative to
// "base" and "default_base", of each field. These can
// be computed at compile time using the
// GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET() macro, defined
// below.
// has_bits: An array of uint32s of size descriptor->field_count()/32,
// rounded up. This is a bitfield where each bit indicates
// whether or not the corresponding field of the message
// has been initialized. The bit for field index i is
// obtained by the expression:
// has_bits[i / 32] & (1 << (i % 32))
// extensions: The ExtensionSet for this message, or NULL if the
// message type has no extension ranges.
GeneratedMessageReflection(const Descriptor* descriptor,
void* base, const void* default_base,
const int offsets[], uint32 has_bits[],
ExtensionSet* extensions);
~GeneratedMessageReflection();
inline const UnknownFieldSet& unknown_fields() const {
return unknown_fields_;
}
inline UnknownFieldSet* mutable_unknown_fields() {
return &unknown_fields_;
}
// implements Message::Reflection ----------------------------------
const UnknownFieldSet& GetUnknownFields() const;
UnknownFieldSet* MutableUnknownFields();
bool HasField(const FieldDescriptor* field) const;
int FieldSize(const FieldDescriptor* field) const;
void ClearField(const FieldDescriptor* field);
void ListFields(vector<const FieldDescriptor*>* output) const;
int32 GetInt32 (const FieldDescriptor* field) const;
int64 GetInt64 (const FieldDescriptor* field) const;
uint32 GetUInt32(const FieldDescriptor* field) const;
uint64 GetUInt64(const FieldDescriptor* field) const;
float GetFloat (const FieldDescriptor* field) const;
double GetDouble(const FieldDescriptor* field) const;
bool GetBool (const FieldDescriptor* field) const;
string GetString(const FieldDescriptor* field) const;
const string& GetStringReference(const FieldDescriptor* field,
string* scratch) const;
const EnumValueDescriptor* GetEnum(const FieldDescriptor* field) const;
const Message& GetMessage(const FieldDescriptor* field) const;
void SetInt32 (const FieldDescriptor* field, int32 value);
void SetInt64 (const FieldDescriptor* field, int64 value);
void SetUInt32(const FieldDescriptor* field, uint32 value);
void SetUInt64(const FieldDescriptor* field, uint64 value);
void SetFloat (const FieldDescriptor* field, float value);
void SetDouble(const FieldDescriptor* field, double value);
void SetBool (const FieldDescriptor* field, bool value);
void SetString(const FieldDescriptor* field,
const string& value);
void SetEnum (const FieldDescriptor* field,
const EnumValueDescriptor* value);
Message* MutableMessage(const FieldDescriptor* field);
int32 GetRepeatedInt32 (const FieldDescriptor* field, int index) const;
int64 GetRepeatedInt64 (const FieldDescriptor* field, int index) const;
uint32 GetRepeatedUInt32(const FieldDescriptor* field, int index) const;
uint64 GetRepeatedUInt64(const FieldDescriptor* field, int index) const;
float GetRepeatedFloat (const FieldDescriptor* field, int index) const;
double GetRepeatedDouble(const FieldDescriptor* field, int index) const;
bool GetRepeatedBool (const FieldDescriptor* field, int index) const;
string GetRepeatedString(const FieldDescriptor* field, int index) const;
const string& GetRepeatedStringReference(const FieldDescriptor* field,
int index, string* scratch) const;
const EnumValueDescriptor* GetRepeatedEnum(const FieldDescriptor* field,
int index) const;
const Message& GetRepeatedMessage(const FieldDescriptor* field,
int index) const;
// Set the value of a field.
void SetRepeatedInt32 (const FieldDescriptor* field, int index, int32 value);
void SetRepeatedInt64 (const FieldDescriptor* field, int index, int64 value);
void SetRepeatedUInt32(const FieldDescriptor* field, int index, uint32 value);
void SetRepeatedUInt64(const FieldDescriptor* field, int index, uint64 value);
void SetRepeatedFloat (const FieldDescriptor* field, int index, float value);
void SetRepeatedDouble(const FieldDescriptor* field, int index, double value);
void SetRepeatedBool (const FieldDescriptor* field, int index, bool value);
void SetRepeatedString(const FieldDescriptor* field, int index,
const string& value);
void SetRepeatedEnum (const FieldDescriptor* field, int index,
const EnumValueDescriptor* value);
// Get a mutable pointer to a field with a message type.
Message* MutableRepeatedMessage(const FieldDescriptor* field, int index);
void AddInt32 (const FieldDescriptor* field, int32 value);
void AddInt64 (const FieldDescriptor* field, int64 value);
void AddUInt32(const FieldDescriptor* field, uint32 value);
void AddUInt64(const FieldDescriptor* field, uint64 value);
void AddFloat (const FieldDescriptor* field, float value);
void AddDouble(const FieldDescriptor* field, double value);
void AddBool (const FieldDescriptor* field, bool value);
void AddString(const FieldDescriptor* field, const string& value);
void AddEnum(const FieldDescriptor* field, const EnumValueDescriptor* value);
Message* AddMessage(const FieldDescriptor* field);
const FieldDescriptor* FindKnownExtensionByName(const string& name) const;
const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
private:
friend class GeneratedMessage;
const Descriptor* descriptor_;
void* base_;
const void* default_base_;
const int* offsets_;
// TODO(kenton): These two pointers just point back into the message object.
// We could save space by removing them and using offsets instead.
uint32* has_bits_;
ExtensionSet* extensions_;
// We put this directly in the GeneratedMessageReflection because every
// message class needs it, and if we don't find any unknown fields, it
// takes up only one pointer of space.
UnknownFieldSet unknown_fields_;
template <typename Type>
inline const Type& GetRaw(const FieldDescriptor* field) const;
template <typename Type>
inline Type* MutableRaw(const FieldDescriptor* field);
template <typename Type>
inline const Type& DefaultRaw(const FieldDescriptor* field) const;
inline const Message* GetMessagePrototype(const FieldDescriptor* field) const;
inline bool HasBit(const FieldDescriptor* field) const;
inline void SetBit(const FieldDescriptor* field);
inline void ClearBit(const FieldDescriptor* field);
template <typename Type>
inline const Type& GetField(const FieldDescriptor* field) const;
template <typename Type>
inline void SetField(const FieldDescriptor* field, const Type& value);
template <typename Type>
inline Type* MutableField(const FieldDescriptor* field);
template <typename Type>
inline const Type& GetRepeatedField(const FieldDescriptor* field,
int index) const;
template <typename Type>
inline void SetRepeatedField(const FieldDescriptor* field, int index,
const Type& value);
template <typename Type>
inline Type* MutableRepeatedField(const FieldDescriptor* field, int index);
template <typename Type>
inline void AddField(const FieldDescriptor* field, const Type& value);
template <typename Type>
inline Type* AddField(const FieldDescriptor* field);
int GetExtensionNumberOrDie(const Descriptor* type) const;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(GeneratedMessageReflection);
};
// Returns the offset of the given field within the given aggregate type.
// This is equivalent to the ANSI C offsetof() macro. However, according
// to the C++ standard, offsetof() only works on POD types, and GCC
// enforces this requirement with a warning. In practice, this rule is
// unnecessarily strict; there is probably no compiler or platform on
// which the offsets of the direct fields of a class are non-constant.
// Fields inherited from superclasses *can* have non-constant offsets,
// but that's not what this macro will be used for.
//
// Note that we calculate relative to the pointer value 16 here since if we
// just use zero, GCC complains about dereferencing a NULL pointer. We
// choose 16 rather than some other number just in case the compiler would
// be confused by an unaligned pointer.
#define GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(TYPE, FIELD) \
(reinterpret_cast<const char*>( \
&reinterpret_cast<const TYPE*>(16)->FIELD) - \
reinterpret_cast<const char*>(16))
// There are some places in proto2 where dynamic_cast would be useful as an
// optimization. For example, take Message::MergeFrom(const Message& other).
// For a given generated message FooMessage, we generate these two methods:
// void MergeFrom(const FooMessage& other);
// void MergeFrom(const Message& other);
// The former method can be implemented directly in terms of FooMessage's
// inline accessors, but the latter method must work with the reflection
// interface. However, if the parameter to the latter method is actually of
// type FooMessage, then we'd like to be able to just call the other method
// as an optimization. So, we use dynamic_cast to check this.
//
// That said, dynamic_cast requires RTTI, which many people like to disable
// for performance and code size reasons. When RTTI is not available, we
// still need to produce correct results. So, in this case we have to fall
// back to using reflection, which is what we would have done anyway if the
// objects were not of the exact same class.
//
// dynamic_cast_if_available() implements this logic. If RTTI is
// enabled, it does a dynamic_cast. If RTTI is disabled, it just returns
// NULL.
//
// If you need to compile without RTTI, simply #define GOOGLE_PROTOBUF_NO_RTTI.
// On MSVC, this should be detected automatically.
template<typename To, typename From>
inline To dynamic_cast_if_available(From from) {
#if defined(GOOGLE_PROTOBUF_NO_RTTI) || (defined(_MSC_VER)&&!defined(_CPPRTTI))
return NULL;
#else
return dynamic_cast<To>(from);
#endif
}
} // namespace internal
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_GENERATED_MESSAGE_REFLECTION_H__