blob: 3368e8b7bc01b9982a4ca976779d6521624212e6 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.
// http://code.google.com/p/protobuf/
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// Typically, clients should not need to access RepeatedField objects directly,
// but should instead use the accessor functions generated automatically by the
// protocol compiler.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#include <string>
#include <iterator>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/message.h>
namespace google {
namespace protobuf {
namespace internal {
// DO NOT USE GenericRepeatedField; it should be considered a private detail
// of RepeatedField/RepeatedPtrField that may be removed in the future.
// GeneratedMessageReflection needs to manipulate repeated fields in a
// generic way, so we have them implement this interface. This should ONLY
// be used by GeneratedMessageReflection. This would normally be very bad
// design but GeneratedMessageReflection is a big efficiency hack anyway.
//
// TODO(kenton): Implement something like Jeff's ProtoVoidPtrArray change.
// Then, get rid of GenericRepeatedField.
class LIBPROTOBUF_EXPORT GenericRepeatedField {
public:
inline GenericRepeatedField() {}
virtual ~GenericRepeatedField();
private:
// We only want GeneratedMessageReflection to see and use these, so we
// make them private. Yes, it is valid C++ for a subclass to implement
// a virtual method which is private in the superclass. Crazy, huh?
friend class GeneratedMessageReflection;
virtual const void* GenericGet(int index) const = 0;
virtual void* GenericMutable(int index) = 0;
virtual void* GenericAdd() = 0;
virtual void GenericClear() = 0;
virtual int GenericSize() const = 0;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(GenericRepeatedField);
};
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField : public internal::GenericRepeatedField {
public:
RepeatedField();
~RepeatedField();
int size() const;
Element Get(int index) const;
Element* Mutable(int index);
void Set(int index, Element value);
void Add(Element value);
// Remove the last element in the array.
// We don't provide a way to remove any element other than the last
// because it invites inefficient use, such as O(n^2) filtering loops
// that should have been O(n). If you want to remove an element other
// than the last, the best way to do it is to re-arrange the elements
// so that the one you want removed is at the end, then call RemoveLast().
void RemoveLast();
void Clear();
void MergeFrom(const RepeatedField& other);
// Reserve space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element* mutable_data();
const Element* data() const;
// Swap entire contents with "other".
void Swap(RepeatedField* other);
// STL-like iterator support
typedef Element* iterator;
typedef const Element* const_iterator;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
private: // See GenericRepeatedField for why this is private.
// implements GenericRepeatedField ---------------------------------
const void* GenericGet(int index) const;
void* GenericMutable(int index);
void* GenericAdd();
void GenericClear();
int GenericSize() const;
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedField);
static const int kInitialSize = 4;
Element* elements_;
int current_size_;
int total_size_;
Element initial_space_[kInitialSize];
};
namespace internal {
template <typename It> class RepeatedPtrIterator;
} // namespace internal
// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField : public internal::GenericRepeatedField {
public:
RepeatedPtrField();
// This constructor is only defined for RepeatedPtrField<Message>.
// When a RepeatedPtrField is created using this constructor,
// prototype->New() will be called to allocate new elements, rather than
// just using the "new" operator. This is useful for the implementation
// of DynamicMessage, but is not used by normal generated messages.
explicit RepeatedPtrField(const Message* prototype);
~RepeatedPtrField();
// Returns the prototype if one was passed to the constructor.
const Message* prototype() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
Element* Add();
void RemoveLast(); // Remove the last element in the array.
void Clear();
void MergeFrom(const RepeatedPtrField& other);
// Reserve space to expand the field to at least the given size. This only
// resizes the pointer array; it doesn't allocate any objects. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element** mutable_data();
const Element* const* data() const;
// Swap entire contents with "other".
void Swap(RepeatedPtrField* other);
// STL-like iterator support
typedef internal::RepeatedPtrIterator<Element**> iterator;
typedef internal::RepeatedPtrIterator<const Element* const*> const_iterator;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
// Advanced memory management --------------------------------------
// When hardcore memory management becomes necessary -- as it often
// does here at Google -- the following methods may be useful.
// Add an already-allocated object, passing ownership to the
// RepeatedPtrField.
void AddAllocated(Element* value);
// Remove the last element and return it, passing ownership to the
// caller.
// Requires: size() > 0
Element* ReleaseLast();
// When elements are removed by calls to RemoveLast() or Clear(), they
// are not actually freed. Instead, they are cleared and kept so that
// they can be reused later. This can save lots of CPU time when
// repeatedly reusing a protocol message for similar purposes.
//
// Really, extremely hardcore programs may actually want to manipulate
// these objects to better-optimize memory management. These methods
// allow that.
// Get the number of cleared objects that are currently being kept
// around for reuse.
int ClearedCount();
// Add an element to the pool of cleared objects, passing ownership to
// the RepeatedPtrField. The element must be cleared prior to calling
// this method.
void AddCleared(Element* value);
// Remove a single element from the cleared pool and return it, passing
// ownership to the caller. The element is guaranteed to be cleared.
// Requires: ClearedCount() > 0
Element* ReleaseCleared();
private: // See GenericRepeatedField for why this is private.
// implements GenericRepeatedField ---------------------------------
const void* GenericGet(int index) const;
void* GenericMutable(int index);
void* GenericAdd();
void GenericClear();
int GenericSize() const;
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrField);
static const int kInitialSize = 4;
// prototype_ is used for RepeatedPtrField<Message> only (see constructor).
const Message* prototype_;
Element** elements_;
int current_size_;
int allocated_size_;
int total_size_;
Element* initial_space_[kInitialSize];
Element* NewElement();
};
// implementation ====================================================
template <typename Element>
inline RepeatedField<Element>::RepeatedField()
: elements_(initial_space_),
current_size_(0),
total_size_(kInitialSize) {
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
if (elements_ != initial_space_) {
delete [] elements_;
}
}
template <typename Element>
inline int RepeatedField<Element>::size() const {
return current_size_;
}
template <typename Element>
inline Element RepeatedField<Element>::Get(int index) const {
GOOGLE_DCHECK_LT(index, size());
return elements_[index];
}
template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
GOOGLE_DCHECK_LT(index, size());
return elements_ + index;
}
template <typename Element>
inline void RepeatedField<Element>::Set(int index, Element value) {
GOOGLE_DCHECK_LT(index, size());
elements_[index] = value;
}
template <typename Element>
inline void RepeatedField<Element>::Add(Element value) {
if (current_size_ == total_size_) Reserve(total_size_ + 1);
elements_[current_size_++] = value;
}
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
--current_size_;
}
template <typename Element>
inline void RepeatedField<Element>::Clear() {
current_size_ = 0;
}
template <typename Element>
void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
Reserve(current_size_ + other.current_size_);
memcpy(elements_ + current_size_, other.elements_,
sizeof(Element) * other.current_size_);
current_size_ += other.current_size_;
}
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
return elements_;
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
return elements_;
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
Element* swap_elements = elements_;
int swap_current_size = current_size_;
int swap_total_size = total_size_;
// We may not be using initial_space_ but it's not worth checking. Just
// copy it anyway.
Element swap_initial_space[kInitialSize];
memcpy(swap_initial_space, initial_space_, sizeof(initial_space_));
elements_ = other->elements_;
current_size_ = other->current_size_;
total_size_ = other->total_size_;
memcpy(initial_space_, other->initial_space_, sizeof(initial_space_));
other->elements_ = swap_elements;
other->current_size_ = swap_current_size;
other->total_size_ = swap_total_size;
memcpy(other->initial_space_, swap_initial_space, sizeof(swap_initial_space));
if (elements_ == other->initial_space_) {
elements_ = initial_space_;
}
if (other->elements_ == initial_space_) {
other->elements_ = other->initial_space_;
}
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
return elements_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
return elements_;
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::end() {
return elements_ + current_size_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
return elements_ + current_size_;
}
template <typename Element>
const void* RepeatedField<Element>::GenericGet(int index) const {
GOOGLE_DCHECK_LT(index, size());
return elements_ + index;
}
template <typename Element>
void* RepeatedField<Element>::GenericMutable(int index) {
return Mutable(index);
}
template <typename Element>
void* RepeatedField<Element>::GenericAdd() {
Add(Element());
return Mutable(current_size_ - 1);
}
template <typename Element>
void RepeatedField<Element>::GenericClear() {
Clear();
}
template <typename Element>
int RepeatedField<Element>::GenericSize() const {
return size();
}
template <typename Element>
inline void RepeatedField<Element>::Reserve(int new_size) {
if (total_size_ >= new_size) return;
Element* old_elements = elements_;
total_size_ = max(total_size_ * 2, new_size);
elements_ = new Element[total_size_];
memcpy(elements_, old_elements, current_size_ * sizeof(elements_[0]));
if (old_elements != initial_space_) {
delete [] old_elements;
}
}
// -------------------------------------------------------------------
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField()
: prototype_(NULL),
elements_(initial_space_),
current_size_(0),
allocated_size_(0),
total_size_(kInitialSize) {
}
template <>
inline RepeatedPtrField<Message>::RepeatedPtrField(const Message* prototype)
: prototype_(prototype),
elements_(initial_space_),
current_size_(0),
allocated_size_(0),
total_size_(kInitialSize) {
}
template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
for (int i = 0; i < allocated_size_; i++) {
delete elements_[i];
}
if (elements_ != initial_space_) {
delete [] elements_;
}
}
template <>
inline const Message* RepeatedPtrField<Message>::prototype() const {
return prototype_;
}
template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
return current_size_;
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
GOOGLE_DCHECK_LT(index, size());
return *elements_[index];
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
GOOGLE_DCHECK_LT(index, size());
return elements_[index];
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
if (current_size_ < allocated_size_) return elements_[current_size_++];
if (allocated_size_ == total_size_) Reserve(total_size_ + 1);
++allocated_size_;
return elements_[current_size_++] = NewElement();
}
template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
elements_[--current_size_]->Clear();
}
template <>
inline void RepeatedPtrField<string>::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
elements_[--current_size_]->clear();
}
template <typename Element>
void RepeatedPtrField<Element>::Clear() {
for (int i = 0; i < current_size_; i++) {
elements_[i]->Clear();
}
current_size_ = 0;
}
// Specialization defined in repeated_field.cc.
template <>
void LIBPROTOBUF_EXPORT RepeatedPtrField<string>::Clear();
template <typename Element>
void RepeatedPtrField<Element>::MergeFrom(const RepeatedPtrField& other) {
Reserve(current_size_ + other.current_size_);
for (int i = 0; i < other.current_size_; i++) {
Add()->MergeFrom(other.Get(i));
}
}
template <>
inline void RepeatedPtrField<string>::MergeFrom(const RepeatedPtrField& other) {
Reserve(current_size_ + other.current_size_);
for (int i = 0; i < other.current_size_; i++) {
Add()->assign(other.Get(i));
}
}
template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
return elements_;
}
template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
return elements_;
}
template <typename Element>
void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
Element** swap_elements = elements_;
int swap_current_size = current_size_;
int swap_allocated_size = allocated_size_;
int swap_total_size = total_size_;
// We may not be using initial_space_ but it's not worth checking. Just
// copy it anyway.
Element* swap_initial_space[kInitialSize];
memcpy(swap_initial_space, initial_space_, sizeof(initial_space_));
elements_ = other->elements_;
current_size_ = other->current_size_;
allocated_size_ = other->allocated_size_;
total_size_ = other->total_size_;
memcpy(initial_space_, other->initial_space_, sizeof(initial_space_));
other->elements_ = swap_elements;
other->current_size_ = swap_current_size;
other->allocated_size_ = swap_allocated_size;
other->total_size_ = swap_total_size;
memcpy(other->initial_space_, swap_initial_space, sizeof(swap_initial_space));
if (elements_ == other->initial_space_) {
elements_ = initial_space_;
}
if (other->elements_ == initial_space_) {
other->elements_ = other->initial_space_;
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
if (allocated_size_ == total_size_) Reserve(total_size_ + 1);
// We don't care about the order of cleared elements, so if there's one
// in the way, just move it to the back of the array.
if (current_size_ < allocated_size_) {
elements_[allocated_size_] = elements_[current_size_];
}
++allocated_size_;
elements_[current_size_++] = value;
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
Element* result = elements_[--current_size_];
--allocated_size_;
if (current_size_ < allocated_size_) {
// There are cleared elements on the end; replace the removed element
// with the last allocated element.
elements_[current_size_] = elements_[allocated_size_];
}
return result;
}
template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() {
return allocated_size_ - current_size_;
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
if (allocated_size_ == total_size_) Reserve(total_size_ + 1);
elements_[allocated_size_++] = value;
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
GOOGLE_DCHECK_GT(allocated_size_, current_size_);
return elements_[--allocated_size_];
}
template <typename Element>
const void* RepeatedPtrField<Element>::GenericGet(int index) const {
return &Get(index);
}
template <typename Element>
void* RepeatedPtrField<Element>::GenericMutable(int index) {
return Mutable(index);
}
template <typename Element>
void* RepeatedPtrField<Element>::GenericAdd() {
return Add();
}
template <typename Element>
void RepeatedPtrField<Element>::GenericClear() {
Clear();
}
template <typename Element>
int RepeatedPtrField<Element>::GenericSize() const {
return size();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
if (total_size_ >= new_size) return;
Element** old_elements = elements_;
total_size_ = max(total_size_ * 2, new_size);
elements_ = new Element*[total_size_];
memcpy(elements_, old_elements, allocated_size_ * sizeof(elements_[0]));
if (old_elements != initial_space_) {
delete [] old_elements;
}
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::NewElement() {
return new Element;
}
// RepeatedPtrField<Message> is alowed but requires a prototype since Message
// is abstract.
template <>
inline Message* RepeatedPtrField<Message>::NewElement() {
return prototype_->New();
}
// -------------------------------------------------------------------
namespace internal {
// STL-like iterator implementation for RepeatedPtrField. You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T**>, is
// very similar to iterator_ptr<> in util/gtl/iterator_adaptors-inl.h,
// but adds random-access operators and is slightly more specialized
// for using T** as its base type. I didn't re-use the other class to
// avoid an extra dependency.
//
// This code stolen from net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template<typename It>
class RepeatedPtrIterator
: public std::iterator<
std::random_access_iterator_tag,
typename internal::remove_pointer<
typename internal::remove_pointer<It>::type>::type> {
public:
typedef RepeatedPtrIterator<It> iterator;
typedef typename iterator::reference reference;
typedef typename iterator::pointer pointer;
typedef typename iterator::difference_type difference_type;
RepeatedPtrIterator() : it_(NULL) {}
explicit RepeatedPtrIterator(const It& it) : it_(it) {}
// Allow "upcasting" from RepeatedPtrIterator<T**> to
// RepeatedPtrIterator<const T*const*>.
template<typename OtherIt>
RepeatedPtrIterator(const RepeatedPtrIterator<OtherIt>& other)
: it_(other.base()) {}
// Provide access to the wrapped iterator.
const It& base() const { return it_; }
// dereferenceable
reference operator*() const { return **it_; }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() { ++it_; return *this; }
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() { --it_; return *this; }
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
bool operator==(const iterator& x) const { return it_ == x.it_; }
bool operator!=(const iterator& x) const { return it_ != x.it_; }
// less_than_comparable
bool operator<(const iterator& x) const { return it_ < x.it_; }
bool operator<=(const iterator& x) const { return it_ <= x.it_; }
bool operator>(const iterator& x) const { return it_ > x.it_; }
bool operator>=(const iterator& x) const { return it_ >= x.it_; }
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
difference_type operator-(const iterator& x) const { return it_ - x.it_; }
private:
// The internal iterator.
It it_;
};
} // namespace internal
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
return iterator(elements_);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
return iterator(elements_);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
return iterator(elements_ + current_size_);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
return iterator(elements_ + current_size_);
}
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__