blob: 0b3421566f0f6a269e3d0ab03e0056aa0a83539d [file] [log] [blame]
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/protobuf/timestamp.proto
#import "GPBProtocolBuffers.h"
#if GOOGLE_PROTOBUF_OBJC_GEN_VERSION != 30000
#error This file was generated by a different version of protoc-gen-objc which is incompatible with your Protocol Buffer sources.
#endif
// @@protoc_insertion_point(imports)
CF_EXTERN_C_BEGIN
NS_ASSUME_NONNULL_BEGIN
#pragma mark - GPBTimestampRoot
@interface GPBTimestampRoot : GPBRootObject
// The base class provides:
// + (GPBExtensionRegistry *)extensionRegistry;
// which is an GPBExtensionRegistry that includes all the extensions defined by
// this file and all files that it depends on.
@end
#pragma mark - GPBTimestamp
typedef GPB_ENUM(GPBTimestamp_FieldNumber) {
GPBTimestamp_FieldNumber_Seconds = 1,
GPBTimestamp_FieldNumber_Nanos = 2,
};
// A Timestamp represents a point in time independent of any time zone
// or calendar, represented as seconds and fractions of seconds at
// nanosecond resolution in UTC Epoch time. It is encoded using the
// Proleptic Gregorian Calendar which extends the Gregorian calendar
// backwards to year one. It is encoded assuming all minutes are 60
// seconds long, i.e. leap seconds are "smeared" so that no leap second
// table is needed for interpretation. Range is from
// 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z.
// By restricting to that range, we ensure that we can convert to
// and from RFC 3339 date strings.
// See [https://www.ietf.org/rfc/rfc3339.txt](https://www.ietf.org/rfc/rfc3339.txt).
//
// Example 1: Compute Timestamp from POSIX `time()`.
//
// Timestamp timestamp;
// timestamp.set_seconds(time(NULL));
// timestamp.set_nanos(0);
//
// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
//
// struct timeval tv;
// gettimeofday(&tv, NULL);
//
// Timestamp timestamp;
// timestamp.set_seconds(tv.tv_sec);
// timestamp.set_nanos(tv.tv_usec * 1000);
//
// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
//
// FILETIME ft;
// GetSystemTimeAsFileTime(&ft);
// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
//
// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
// Timestamp timestamp;
// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
//
// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
//
// long millis = System.currentTimeMillis();
//
// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
// .setNanos((int) ((millis % 1000) * 1000000)).build();
//
// Example 5: Compute Timestamp from Python `datetime.datetime`.
//
// now = datetime.datetime.utcnow()
// seconds = int(time.mktime(now.timetuple()))
// nanos = now.microsecond * 1000
// timestamp = Timestamp(seconds=seconds, nanos=nanos)
@interface GPBTimestamp : GPBMessage
// Represents seconds of UTC time since Unix epoch
// 1970-01-01T00:00:00Z. Must be from from 0001-01-01T00:00:00Z to
// 9999-12-31T23:59:59Z inclusive.
@property(nonatomic, readwrite) int64_t seconds;
// Non-negative fractions of a second at nanosecond resolution. Negative
// second values with fractions must still have non-negative nanos values
// that count forward in time. Must be from 0 to 999,999,999
// inclusive.
@property(nonatomic, readwrite) int32_t nanos;
@end
NS_ASSUME_NONNULL_END
CF_EXTERN_C_END
// @@protoc_insertion_point(global_scope)