| #region Copyright notice and license |
| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // http://github.com/jskeet/dotnet-protobufs/ |
| // Original C++/Java/Python code: |
| // http://code.google.com/p/protobuf/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| #endregion |
| |
| using System; |
| using System.Collections.Generic; |
| using System.IO; |
| using System.Text; |
| using Google.ProtocolBuffers.Descriptors; |
| |
| namespace Google.ProtocolBuffers { |
| |
| /// <summary> |
| /// Readings and decodes protocol message fields. |
| /// </summary> |
| /// <remarks> |
| /// This class contains two kinds of methods: methods that read specific |
| /// protocol message constructs and field types (e.g. ReadTag and |
| /// ReadInt32) and methods that read low-level values (e.g. |
| /// ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol |
| /// messages, you should use the former methods, but if you are reading some |
| /// other format of your own design, use the latter. The names of the former |
| /// methods are taken from the protocol buffer type names, not .NET types. |
| /// (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.) |
| /// |
| /// TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly, |
| /// set at construction time. |
| /// </remarks> |
| public sealed class CodedInputStream { |
| private readonly byte[] buffer; |
| private int bufferSize; |
| private int bufferSizeAfterLimit = 0; |
| private int bufferPos = 0; |
| private readonly Stream input; |
| private uint lastTag = 0; |
| |
| internal const int DefaultRecursionLimit = 64; |
| internal const int DefaultSizeLimit = 64 << 20; // 64MB |
| internal const int BufferSize = 4096; |
| |
| /// <summary> |
| /// The total number of bytes read before the current buffer. The |
| /// total bytes read up to the current position can be computed as |
| /// totalBytesRetired + bufferPos. |
| /// </summary> |
| private int totalBytesRetired = 0; |
| |
| /// <summary> |
| /// The absolute position of the end of the current message. |
| /// </summary> |
| private int currentLimit = int.MaxValue; |
| |
| /// <summary> |
| /// <see cref="SetRecursionLimit"/> |
| /// </summary> |
| private int recursionDepth = 0; |
| private int recursionLimit = DefaultRecursionLimit; |
| |
| /// <summary> |
| /// <see cref="SetSizeLimit"/> |
| /// </summary> |
| private int sizeLimit = DefaultSizeLimit; |
| |
| #region Construction |
| /// <summary> |
| /// Creates a new CodedInputStream reading data from the given |
| /// stream. |
| /// </summary> |
| public static CodedInputStream CreateInstance(Stream input) { |
| return new CodedInputStream(input); |
| } |
| |
| /// <summary> |
| /// Creates a new CodedInputStream reading data from the given |
| /// byte array. |
| /// </summary> |
| public static CodedInputStream CreateInstance(byte[] buf) { |
| return new CodedInputStream(buf, 0, buf.Length); |
| } |
| |
| /// <summary> |
| /// Creates a new CodedInputStream that reads from the given |
| /// byte array slice. |
| /// </summary> |
| public static CodedInputStream CreateInstance(byte[] buf, int offset, int length) { |
| return new CodedInputStream(buf, offset, length); |
| } |
| |
| private CodedInputStream(byte[] buffer, int offset, int length) { |
| this.buffer = buffer; |
| this.bufferPos = offset; |
| this.bufferSize = offset + length; |
| this.input = null; |
| } |
| |
| private CodedInputStream(Stream input) { |
| this.buffer = new byte[BufferSize]; |
| this.bufferSize = 0; |
| this.input = input; |
| } |
| #endregion |
| |
| #region Validation |
| /// <summary> |
| /// Verifies that the last call to ReadTag() returned the given tag value. |
| /// This is used to verify that a nested group ended with the correct |
| /// end tag. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException">The last |
| /// tag read was not the one specified</exception> |
| [CLSCompliant(false)] |
| public void CheckLastTagWas(uint value) { |
| if (lastTag != value) { |
| throw InvalidProtocolBufferException.InvalidEndTag(); |
| } |
| } |
| #endregion |
| |
| #region Reading of tags etc |
| /// <summary> |
| /// Attempt to read a field tag, returning 0 if we have reached the end |
| /// of the input data. Protocol message parsers use this to read tags, |
| /// since a protocol message may legally end wherever a tag occurs, and |
| /// zero is not a valid tag number. |
| /// </summary> |
| [CLSCompliant(false)] |
| public uint ReadTag() { |
| if (IsAtEnd) { |
| lastTag = 0; |
| return 0; |
| } |
| |
| lastTag = ReadRawVarint32(); |
| if (lastTag == 0) { |
| // If we actually read zero, that's not a valid tag. |
| throw InvalidProtocolBufferException.InvalidTag(); |
| } |
| return lastTag; |
| } |
| |
| /// <summary> |
| /// Read a double field from the stream. |
| /// </summary> |
| public double ReadDouble() { |
| #if SILVERLIGHT2 || COMPACT_FRAMEWORK_35 |
| byte[] bytes = ReadRawBytes(8); |
| return BitConverter.ToDouble(bytes, 0); |
| #else |
| return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64()); |
| #endif |
| } |
| |
| /// <summary> |
| /// Read a float field from the stream. |
| /// </summary> |
| public float ReadFloat() { |
| // TODO(jonskeet): Test this on different endiannesses |
| uint raw = ReadRawLittleEndian32(); |
| byte[] rawBytes = BitConverter.GetBytes(raw); |
| return BitConverter.ToSingle(rawBytes, 0); |
| } |
| |
| /// <summary> |
| /// Read a uint64 field from the stream. |
| /// </summary> |
| [CLSCompliant(false)] |
| public ulong ReadUInt64() { |
| return ReadRawVarint64(); |
| } |
| |
| /// <summary> |
| /// Read an int64 field from the stream. |
| /// </summary> |
| public long ReadInt64() { |
| return (long) ReadRawVarint64(); |
| } |
| |
| /// <summary> |
| /// Read an int32 field from the stream. |
| /// </summary> |
| public int ReadInt32() { |
| return (int) ReadRawVarint32(); |
| } |
| |
| /// <summary> |
| /// Read a fixed64 field from the stream. |
| /// </summary> |
| [CLSCompliant(false)] |
| public ulong ReadFixed64() { |
| return ReadRawLittleEndian64(); |
| } |
| |
| /// <summary> |
| /// Read a fixed32 field from the stream. |
| /// </summary> |
| [CLSCompliant(false)] |
| public uint ReadFixed32() { |
| return ReadRawLittleEndian32(); |
| } |
| |
| /// <summary> |
| /// Read a bool field from the stream. |
| /// </summary> |
| public bool ReadBool() { |
| return ReadRawVarint32() != 0; |
| } |
| |
| /// <summary> |
| /// Reads a string field from the stream. |
| /// </summary> |
| public String ReadString() { |
| int size = (int) ReadRawVarint32(); |
| // No need to read any data for an empty string. |
| if (size == 0) { |
| return ""; |
| } |
| if (size <= bufferSize - bufferPos) { |
| // Fast path: We already have the bytes in a contiguous buffer, so |
| // just copy directly from it. |
| String result = Encoding.UTF8.GetString(buffer, bufferPos, size); |
| bufferPos += size; |
| return result; |
| } |
| // Slow path: Build a byte array first then copy it. |
| return Encoding.UTF8.GetString(ReadRawBytes(size), 0, size); |
| } |
| |
| /// <summary> |
| /// Reads a group field value from the stream. |
| /// </summary> |
| public void ReadGroup(int fieldNumber, IBuilder builder, |
| ExtensionRegistry extensionRegistry) { |
| if (recursionDepth >= recursionLimit) { |
| throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
| } |
| ++recursionDepth; |
| builder.WeakMergeFrom(this, extensionRegistry); |
| CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); |
| --recursionDepth; |
| } |
| |
| /// <summary> |
| /// Reads a group field value from the stream and merges it into the given |
| /// UnknownFieldSet. |
| /// </summary> |
| public void ReadUnknownGroup(int fieldNumber, UnknownFieldSet.Builder builder) { |
| if (recursionDepth >= recursionLimit) { |
| throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
| } |
| ++recursionDepth; |
| builder.MergeFrom(this); |
| CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); |
| --recursionDepth; |
| } |
| |
| /// <summary> |
| /// Reads an embedded message field value from the stream. |
| /// </summary> |
| public void ReadMessage(IBuilder builder, ExtensionRegistry extensionRegistry) { |
| int length = (int) ReadRawVarint32(); |
| if (recursionDepth >= recursionLimit) { |
| throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
| } |
| int oldLimit = PushLimit(length); |
| ++recursionDepth; |
| builder.WeakMergeFrom(this, extensionRegistry); |
| CheckLastTagWas(0); |
| --recursionDepth; |
| PopLimit(oldLimit); |
| } |
| |
| /// <summary> |
| /// Reads a bytes field value from the stream. |
| /// </summary> |
| public ByteString ReadBytes() { |
| int size = (int) ReadRawVarint32(); |
| if (size < bufferSize - bufferPos && size > 0) { |
| // Fast path: We already have the bytes in a contiguous buffer, so |
| // just copy directly from it. |
| ByteString result = ByteString.CopyFrom(buffer, bufferPos, size); |
| bufferPos += size; |
| return result; |
| } else { |
| // Slow path: Build a byte array first then copy it. |
| return ByteString.CopyFrom(ReadRawBytes(size)); |
| } |
| } |
| |
| /// <summary> |
| /// Reads a uint32 field value from the stream. |
| /// </summary> |
| [CLSCompliant(false)] |
| public uint ReadUInt32() { |
| return ReadRawVarint32(); |
| } |
| |
| /// <summary> |
| /// Reads an enum field value from the stream. The caller is responsible |
| /// for converting the numeric value to an actual enum. |
| /// </summary> |
| public int ReadEnum() { |
| return (int) ReadRawVarint32(); |
| } |
| |
| /// <summary> |
| /// Reads an sfixed32 field value from the stream. |
| /// </summary> |
| public int ReadSFixed32() { |
| return (int) ReadRawLittleEndian32(); |
| } |
| |
| /// <summary> |
| /// Reads an sfixed64 field value from the stream. |
| /// </summary> |
| public long ReadSFixed64() { |
| return (long) ReadRawLittleEndian64(); |
| } |
| |
| /// <summary> |
| /// Reads an sint32 field value from the stream. |
| /// </summary> |
| public int ReadSInt32() { |
| return DecodeZigZag32(ReadRawVarint32()); |
| } |
| |
| /// <summary> |
| /// Reads an sint64 field value from the stream. |
| /// </summary> |
| public long ReadSInt64() { |
| return DecodeZigZag64(ReadRawVarint64()); |
| } |
| |
| /// <summary> |
| /// Reads a field of any primitive type. Enums, groups and embedded |
| /// messages are not handled by this method. |
| /// </summary> |
| public object ReadPrimitiveField(FieldType fieldType) { |
| switch (fieldType) { |
| case FieldType.Double: return ReadDouble(); |
| case FieldType.Float: return ReadFloat(); |
| case FieldType.Int64: return ReadInt64(); |
| case FieldType.UInt64: return ReadUInt64(); |
| case FieldType.Int32: return ReadInt32(); |
| case FieldType.Fixed64: return ReadFixed64(); |
| case FieldType.Fixed32: return ReadFixed32(); |
| case FieldType.Bool: return ReadBool(); |
| case FieldType.String: return ReadString(); |
| case FieldType.Bytes: return ReadBytes(); |
| case FieldType.UInt32: return ReadUInt32(); |
| case FieldType.SFixed32: return ReadSFixed32(); |
| case FieldType.SFixed64: return ReadSFixed64(); |
| case FieldType.SInt32: return ReadSInt32(); |
| case FieldType.SInt64: return ReadSInt64(); |
| case FieldType.Group: |
| throw new ArgumentException("ReadPrimitiveField() cannot handle nested groups."); |
| case FieldType.Message: |
| throw new ArgumentException("ReadPrimitiveField() cannot handle embedded messages."); |
| // We don't handle enums because we don't know what to do if the |
| // value is not recognized. |
| case FieldType.Enum: |
| throw new ArgumentException("ReadPrimitiveField() cannot handle enums."); |
| default: |
| throw new ArgumentOutOfRangeException("Invalid field type " + fieldType); |
| } |
| } |
| |
| #endregion |
| |
| #region Underlying reading primitives |
| |
| /// <summary> |
| /// Same code as ReadRawVarint32, but read each byte individually, checking for |
| /// buffer overflow. |
| /// </summary> |
| private uint SlowReadRawVarint32() { |
| int tmp = ReadRawByte(); |
| if (tmp < 128) { |
| return (uint)tmp; |
| } |
| int result = tmp & 0x7f; |
| if ((tmp = ReadRawByte()) < 128) { |
| result |= tmp << 7; |
| } else { |
| result |= (tmp & 0x7f) << 7; |
| if ((tmp = ReadRawByte()) < 128) { |
| result |= tmp << 14; |
| } else { |
| result |= (tmp & 0x7f) << 14; |
| if ((tmp = ReadRawByte()) < 128) { |
| result |= tmp << 21; |
| } else { |
| result |= (tmp & 0x7f) << 21; |
| result |= (tmp = ReadRawByte()) << 28; |
| if (tmp >= 128) { |
| // Discard upper 32 bits. |
| for (int i = 0; i < 5; i++) { |
| if (ReadRawByte() < 128) return (uint)result; |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| } |
| } |
| } |
| return (uint)result; |
| } |
| |
| /// <summary> |
| /// Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits. |
| /// This method is optimised for the case where we've got lots of data in the buffer. |
| /// That means we can check the size just once, then just read directly from the buffer |
| /// without constant rechecking of the buffer length. |
| /// </summary> |
| [CLSCompliant(false)] |
| public uint ReadRawVarint32() { |
| if (bufferPos + 5 > bufferSize) { |
| return SlowReadRawVarint32(); |
| } |
| |
| int tmp = buffer[bufferPos++]; |
| if (tmp < 128) { |
| return (uint)tmp; |
| } |
| int result = tmp & 0x7f; |
| if ((tmp = buffer[bufferPos++]) < 128) { |
| result |= tmp << 7; |
| } else { |
| result |= (tmp & 0x7f) << 7; |
| if ((tmp = buffer[bufferPos++]) < 128) { |
| result |= tmp << 14; |
| } else { |
| result |= (tmp & 0x7f) << 14; |
| if ((tmp = buffer[bufferPos++]) < 128) { |
| result |= tmp << 21; |
| } else { |
| result |= (tmp & 0x7f) << 21; |
| result |= (tmp = buffer[bufferPos++]) << 28; |
| if (tmp >= 128) { |
| // Discard upper 32 bits. |
| // Note that this has to use ReadRawByte() as we only ensure we've |
| // got at least 5 bytes at the start of the method. This lets us |
| // use the fast path in more cases, and we rarely hit this section of code. |
| for (int i = 0; i < 5; i++) { |
| if (ReadRawByte() < 128) return (uint)result; |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| } |
| } |
| } |
| return (uint)result; |
| } |
| |
| /// <summary> |
| /// Reads a varint from the input one byte at a time, so that it does not |
| /// read any bytes after the end of the varint. If you simply wrapped the |
| /// stream in a CodedInputStream and used ReadRawVarint32(Stream)} |
| /// then you would probably end up reading past the end of the varint since |
| /// CodedInputStream buffers its input. |
| /// </summary> |
| /// <param name="input"></param> |
| /// <returns></returns> |
| internal static uint ReadRawVarint32(Stream input) { |
| int result = 0; |
| int offset = 0; |
| for (; offset < 32; offset += 7) { |
| int b = input.ReadByte(); |
| if (b == -1) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| result |= (b & 0x7f) << offset; |
| if ((b & 0x80) == 0) { |
| return (uint) result; |
| } |
| } |
| // Keep reading up to 64 bits. |
| for (; offset < 64; offset += 7) { |
| int b = input.ReadByte(); |
| if (b == -1) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| if ((b & 0x80) == 0) { |
| return (uint) result; |
| } |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| |
| /// <summary> |
| /// Read a raw varint from the stream. |
| /// </summary> |
| [CLSCompliant(false)] |
| public ulong ReadRawVarint64() { |
| int shift = 0; |
| ulong result = 0; |
| while (shift < 64) { |
| byte b = ReadRawByte(); |
| result |= (ulong)(b & 0x7F) << shift; |
| if ((b & 0x80) == 0) { |
| return result; |
| } |
| shift += 7; |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| |
| /// <summary> |
| /// Read a 32-bit little-endian integer from the stream. |
| /// </summary> |
| [CLSCompliant(false)] |
| public uint ReadRawLittleEndian32() { |
| uint b1 = ReadRawByte(); |
| uint b2 = ReadRawByte(); |
| uint b3 = ReadRawByte(); |
| uint b4 = ReadRawByte(); |
| return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); |
| } |
| |
| /// <summary> |
| /// Read a 64-bit little-endian integer from the stream. |
| /// </summary> |
| [CLSCompliant(false)] |
| public ulong ReadRawLittleEndian64() { |
| ulong b1 = ReadRawByte(); |
| ulong b2 = ReadRawByte(); |
| ulong b3 = ReadRawByte(); |
| ulong b4 = ReadRawByte(); |
| ulong b5 = ReadRawByte(); |
| ulong b6 = ReadRawByte(); |
| ulong b7 = ReadRawByte(); |
| ulong b8 = ReadRawByte(); |
| return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) |
| | (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); |
| } |
| #endregion |
| |
| /// <summary> |
| /// Decode a 32-bit value with ZigZag encoding. |
| /// </summary> |
| /// <remarks> |
| /// ZigZag encodes signed integers into values that can be efficiently |
| /// encoded with varint. (Otherwise, negative values must be |
| /// sign-extended to 64 bits to be varint encoded, thus always taking |
| /// 10 bytes on the wire.) |
| /// </remarks> |
| [CLSCompliant(false)] |
| public static int DecodeZigZag32(uint n) { |
| return (int)(n >> 1) ^ -(int)(n & 1); |
| } |
| |
| /// <summary> |
| /// Decode a 32-bit value with ZigZag encoding. |
| /// </summary> |
| /// <remarks> |
| /// ZigZag encodes signed integers into values that can be efficiently |
| /// encoded with varint. (Otherwise, negative values must be |
| /// sign-extended to 64 bits to be varint encoded, thus always taking |
| /// 10 bytes on the wire.) |
| /// </remarks> |
| [CLSCompliant(false)] |
| public static long DecodeZigZag64(ulong n) { |
| return (long)(n >> 1) ^ -(long)(n & 1); |
| } |
| |
| /// <summary> |
| /// Set the maximum message recursion depth. |
| /// </summary> |
| /// <remarks> |
| /// In order to prevent malicious |
| /// messages from causing stack overflows, CodedInputStream limits |
| /// how deeply messages may be nested. The default limit is 64. |
| /// </remarks> |
| public int SetRecursionLimit(int limit) { |
| if (limit < 0) { |
| throw new ArgumentOutOfRangeException("Recursion limit cannot be negative: " + limit); |
| } |
| int oldLimit = recursionLimit; |
| recursionLimit = limit; |
| return oldLimit; |
| } |
| |
| /// <summary> |
| /// Set the maximum message size. |
| /// </summary> |
| /// <remarks> |
| /// In order to prevent malicious messages from exhausting memory or |
| /// causing integer overflows, CodedInputStream limits how large a message may be. |
| /// The default limit is 64MB. You should set this limit as small |
| /// as you can without harming your app's functionality. Note that |
| /// size limits only apply when reading from an InputStream, not |
| /// when constructed around a raw byte array (nor with ByteString.NewCodedInput). |
| /// If you want to read several messages from a single CodedInputStream, you |
| /// can call ResetSizeCounter() after each message to avoid hitting the |
| /// size limit. |
| /// </remarks> |
| public int SetSizeLimit(int limit) { |
| if (limit < 0) { |
| throw new ArgumentOutOfRangeException("Size limit cannot be negative: " + limit); |
| } |
| int oldLimit = sizeLimit; |
| sizeLimit = limit; |
| return oldLimit; |
| } |
| |
| #region Internal reading and buffer management |
| /// <summary> |
| /// Resets the current size counter to zero (see SetSizeLimit). |
| /// </summary> |
| public void ResetSizeCounter() { |
| totalBytesRetired = 0; |
| } |
| |
| /// <summary> |
| /// Sets currentLimit to (current position) + byteLimit. This is called |
| /// when descending into a length-delimited embedded message. The previous |
| /// limit is returned. |
| /// </summary> |
| /// <returns>The old limit.</returns> |
| public int PushLimit(int byteLimit) { |
| if (byteLimit < 0) { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| byteLimit += totalBytesRetired + bufferPos; |
| int oldLimit = currentLimit; |
| if (byteLimit > oldLimit) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| currentLimit = byteLimit; |
| |
| RecomputeBufferSizeAfterLimit(); |
| |
| return oldLimit; |
| } |
| |
| private void RecomputeBufferSizeAfterLimit() { |
| bufferSize += bufferSizeAfterLimit; |
| int bufferEnd = totalBytesRetired + bufferSize; |
| if (bufferEnd > currentLimit) { |
| // Limit is in current buffer. |
| bufferSizeAfterLimit = bufferEnd - currentLimit; |
| bufferSize -= bufferSizeAfterLimit; |
| } else { |
| bufferSizeAfterLimit = 0; |
| } |
| } |
| |
| /// <summary> |
| /// Discards the current limit, returning the previous limit. |
| /// </summary> |
| public void PopLimit(int oldLimit) { |
| currentLimit = oldLimit; |
| RecomputeBufferSizeAfterLimit(); |
| } |
| |
| /// <summary> |
| /// Returns whether or not all the data before the limit has been read. |
| /// </summary> |
| /// <returns></returns> |
| public bool ReachedLimit { |
| get { |
| if (currentLimit == int.MaxValue) { |
| return false; |
| } |
| int currentAbsolutePosition = totalBytesRetired + bufferPos; |
| return currentAbsolutePosition >= currentLimit; |
| } |
| } |
| |
| /// <summary> |
| /// Returns true if the stream has reached the end of the input. This is the |
| /// case if either the end of the underlying input source has been reached or |
| /// the stream has reached a limit created using PushLimit. |
| /// </summary> |
| public bool IsAtEnd { |
| get { |
| return bufferPos == bufferSize && !RefillBuffer(false); |
| } |
| } |
| |
| /// <summary> |
| /// Called when buffer is empty to read more bytes from the |
| /// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that |
| /// either there will be at least one byte in the buffer when it returns |
| /// or it will throw an exception. If <paramref name="mustSucceed"/> is false, |
| /// RefillBuffer() returns false if no more bytes were available. |
| /// </summary> |
| /// <param name="mustSucceed"></param> |
| /// <returns></returns> |
| private bool RefillBuffer(bool mustSucceed) { |
| if (bufferPos < bufferSize) { |
| throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); |
| } |
| |
| if (totalBytesRetired + bufferSize == currentLimit) { |
| // Oops, we hit a limit. |
| if (mustSucceed) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } else { |
| return false; |
| } |
| } |
| |
| totalBytesRetired += bufferSize; |
| |
| bufferPos = 0; |
| bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); |
| if (bufferSize < 0) { |
| throw new InvalidOperationException("Stream.Read returned a negative count"); |
| } |
| if (bufferSize == 0) { |
| if (mustSucceed) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } else { |
| return false; |
| } |
| } else { |
| RecomputeBufferSizeAfterLimit(); |
| int totalBytesRead = |
| totalBytesRetired + bufferSize + bufferSizeAfterLimit; |
| if (totalBytesRead > sizeLimit || totalBytesRead < 0) { |
| throw InvalidProtocolBufferException.SizeLimitExceeded(); |
| } |
| return true; |
| } |
| } |
| |
| /// <summary> |
| /// Read one byte from the input. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException"> |
| /// the end of the stream or the current limit was reached |
| /// </exception> |
| public byte ReadRawByte() { |
| if (bufferPos == bufferSize) { |
| RefillBuffer(true); |
| } |
| return buffer[bufferPos++]; |
| } |
| |
| /// <summary> |
| /// Read a fixed size of bytes from the input. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException"> |
| /// the end of the stream or the current limit was reached |
| /// </exception> |
| public byte[] ReadRawBytes(int size) { |
| if (size < 0) { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| |
| if (totalBytesRetired + bufferPos + size > currentLimit) { |
| // Read to the end of the stream anyway. |
| SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
| // Then fail. |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| |
| if (size <= bufferSize - bufferPos) { |
| // We have all the bytes we need already. |
| byte[] bytes = new byte[size]; |
| Array.Copy(buffer, bufferPos, bytes, 0, size); |
| bufferPos += size; |
| return bytes; |
| } else if (size < BufferSize) { |
| // Reading more bytes than are in the buffer, but not an excessive number |
| // of bytes. We can safely allocate the resulting array ahead of time. |
| |
| // First copy what we have. |
| byte[] bytes = new byte[size]; |
| int pos = bufferSize - bufferPos; |
| Array.Copy(buffer, bufferPos, bytes, 0, pos); |
| bufferPos = bufferSize; |
| |
| // We want to use RefillBuffer() and then copy from the buffer into our |
| // byte array rather than reading directly into our byte array because |
| // the input may be unbuffered. |
| RefillBuffer(true); |
| |
| while (size - pos > bufferSize) { |
| Array.Copy(buffer, 0, bytes, pos, bufferSize); |
| pos += bufferSize; |
| bufferPos = bufferSize; |
| RefillBuffer(true); |
| } |
| |
| Array.Copy(buffer, 0, bytes, pos, size - pos); |
| bufferPos = size - pos; |
| |
| return bytes; |
| } else { |
| // The size is very large. For security reasons, we can't allocate the |
| // entire byte array yet. The size comes directly from the input, so a |
| // maliciously-crafted message could provide a bogus very large size in |
| // order to trick the app into allocating a lot of memory. We avoid this |
| // by allocating and reading only a small chunk at a time, so that the |
| // malicious message must actually *be* extremely large to cause |
| // problems. Meanwhile, we limit the allowed size of a message elsewhere. |
| |
| // Remember the buffer markers since we'll have to copy the bytes out of |
| // it later. |
| int originalBufferPos = bufferPos; |
| int originalBufferSize = bufferSize; |
| |
| // Mark the current buffer consumed. |
| totalBytesRetired += bufferSize; |
| bufferPos = 0; |
| bufferSize = 0; |
| |
| // Read all the rest of the bytes we need. |
| int sizeLeft = size - (originalBufferSize - originalBufferPos); |
| List<byte[]> chunks = new List<byte[]>(); |
| |
| while (sizeLeft > 0) { |
| byte[] chunk = new byte[Math.Min(sizeLeft, BufferSize)]; |
| int pos = 0; |
| while (pos < chunk.Length) { |
| int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); |
| if (n <= 0) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| totalBytesRetired += n; |
| pos += n; |
| } |
| sizeLeft -= chunk.Length; |
| chunks.Add(chunk); |
| } |
| |
| // OK, got everything. Now concatenate it all into one buffer. |
| byte[] bytes = new byte[size]; |
| |
| // Start by copying the leftover bytes from this.buffer. |
| int newPos = originalBufferSize - originalBufferPos; |
| Array.Copy(buffer, originalBufferPos, bytes, 0, newPos); |
| |
| // And now all the chunks. |
| foreach (byte[] chunk in chunks) { |
| Array.Copy(chunk, 0, bytes, newPos, chunk.Length); |
| newPos += chunk.Length; |
| } |
| |
| // Done. |
| return bytes; |
| } |
| } |
| |
| /// <summary> |
| /// Reads and discards a single field, given its tag value. |
| /// </summary> |
| /// <returns>false if the tag is an end-group tag, in which case |
| /// nothing is skipped. Otherwise, returns true.</returns> |
| [CLSCompliant(false)] |
| public bool SkipField(uint tag) { |
| switch (WireFormat.GetTagWireType(tag)) { |
| case WireFormat.WireType.Varint: |
| ReadInt32(); |
| return true; |
| case WireFormat.WireType.Fixed64: |
| ReadRawLittleEndian64(); |
| return true; |
| case WireFormat.WireType.LengthDelimited: |
| SkipRawBytes((int) ReadRawVarint32()); |
| return true; |
| case WireFormat.WireType.StartGroup: |
| SkipMessage(); |
| CheckLastTagWas( |
| WireFormat.MakeTag(WireFormat.GetTagFieldNumber(tag), |
| WireFormat.WireType.EndGroup)); |
| return true; |
| case WireFormat.WireType.EndGroup: |
| return false; |
| case WireFormat.WireType.Fixed32: |
| ReadRawLittleEndian32(); |
| return true; |
| default: |
| throw InvalidProtocolBufferException.InvalidWireType(); |
| } |
| } |
| |
| /// <summary> |
| /// Reads and discards an entire message. This will read either until EOF |
| /// or until an endgroup tag, whichever comes first. |
| /// </summary> |
| public void SkipMessage() { |
| while (true) { |
| uint tag = ReadTag(); |
| if (tag == 0 || !SkipField(tag)) { |
| return; |
| } |
| } |
| } |
| |
| /// <summary> |
| /// Reads and discards <paramref name="size"/> bytes. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException">the end of the stream |
| /// or the current limit was reached</exception> |
| public void SkipRawBytes(int size) { |
| if (size < 0) { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| |
| if (totalBytesRetired + bufferPos + size > currentLimit) { |
| // Read to the end of the stream anyway. |
| SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
| // Then fail. |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| |
| if (size <= bufferSize - bufferPos) { |
| // We have all the bytes we need already. |
| bufferPos += size; |
| } else { |
| // Skipping more bytes than are in the buffer. First skip what we have. |
| int pos = bufferSize - bufferPos; |
| totalBytesRetired += pos; |
| bufferPos = 0; |
| bufferSize = 0; |
| |
| // Then skip directly from the InputStream for the rest. |
| if (pos < size) { |
| if (input == null) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| SkipImpl(size - pos); |
| totalBytesRetired += size - pos; |
| } |
| } |
| } |
| |
| /// <summary> |
| /// Abstraction of skipping to cope with streams which can't really skip. |
| /// </summary> |
| private void SkipImpl(int amountToSkip) { |
| if (input.CanSeek) { |
| long previousPosition = input.Position; |
| input.Position += amountToSkip; |
| if (input.Position != previousPosition + amountToSkip) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| } else { |
| byte[] skipBuffer = new byte[1024]; |
| while (amountToSkip > 0) { |
| int bytesRead = input.Read(skipBuffer, 0, skipBuffer.Length); |
| if (bytesRead <= 0) { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| amountToSkip -= bytesRead; |
| } |
| } |
| } |
| #endregion |
| } |
| } |