| /* Parser generator */ | 
 |  | 
 | /* For a description, see the comments at end of this file */ | 
 |  | 
 | #include "Python.h" | 
 | #include "pgenheaders.h" | 
 | #include "token.h" | 
 | #include "node.h" | 
 | #include "grammar.h" | 
 | #include "metagrammar.h" | 
 | #include "pgen.h" | 
 |  | 
 | extern int Py_DebugFlag; | 
 | extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */ | 
 |  | 
 |  | 
 | /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */ | 
 |  | 
 | typedef struct _nfaarc { | 
 |     int         ar_label; | 
 |     int         ar_arrow; | 
 | } nfaarc; | 
 |  | 
 | typedef struct _nfastate { | 
 |     int         st_narcs; | 
 |     nfaarc      *st_arc; | 
 | } nfastate; | 
 |  | 
 | typedef struct _nfa { | 
 |     int                 nf_type; | 
 |     char                *nf_name; | 
 |     int                 nf_nstates; | 
 |     nfastate            *nf_state; | 
 |     int                 nf_start, nf_finish; | 
 | } nfa; | 
 |  | 
 | /* Forward */ | 
 | static void compile_rhs(labellist *ll, | 
 |                         nfa *nf, node *n, int *pa, int *pb); | 
 | static void compile_alt(labellist *ll, | 
 |                         nfa *nf, node *n, int *pa, int *pb); | 
 | static void compile_item(labellist *ll, | 
 |                          nfa *nf, node *n, int *pa, int *pb); | 
 | static void compile_atom(labellist *ll, | 
 |                          nfa *nf, node *n, int *pa, int *pb); | 
 |  | 
 | static int | 
 | addnfastate(nfa *nf) | 
 | { | 
 |     nfastate *st; | 
 |  | 
 |     nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state, | 
 |                                 sizeof(nfastate) * (nf->nf_nstates + 1)); | 
 |     if (nf->nf_state == NULL) | 
 |         Py_FatalError("out of mem"); | 
 |     st = &nf->nf_state[nf->nf_nstates++]; | 
 |     st->st_narcs = 0; | 
 |     st->st_arc = NULL; | 
 |     return st - nf->nf_state; | 
 | } | 
 |  | 
 | static void | 
 | addnfaarc(nfa *nf, int from, int to, int lbl) | 
 | { | 
 |     nfastate *st; | 
 |     nfaarc *ar; | 
 |  | 
 |     st = &nf->nf_state[from]; | 
 |     st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc, | 
 |                                   sizeof(nfaarc) * (st->st_narcs + 1)); | 
 |     if (st->st_arc == NULL) | 
 |         Py_FatalError("out of mem"); | 
 |     ar = &st->st_arc[st->st_narcs++]; | 
 |     ar->ar_label = lbl; | 
 |     ar->ar_arrow = to; | 
 | } | 
 |  | 
 | static nfa * | 
 | newnfa(char *name) | 
 | { | 
 |     nfa *nf; | 
 |     static int type = NT_OFFSET; /* All types will be disjunct */ | 
 |  | 
 |     nf = (nfa *)PyObject_MALLOC(sizeof(nfa)); | 
 |     if (nf == NULL) | 
 |         Py_FatalError("no mem for new nfa"); | 
 |     nf->nf_type = type++; | 
 |     nf->nf_name = name; /* XXX strdup(name) ??? */ | 
 |     nf->nf_nstates = 0; | 
 |     nf->nf_state = NULL; | 
 |     nf->nf_start = nf->nf_finish = -1; | 
 |     return nf; | 
 | } | 
 |  | 
 | typedef struct _nfagrammar { | 
 |     int                 gr_nnfas; | 
 |     nfa                 **gr_nfa; | 
 |     labellist           gr_ll; | 
 | } nfagrammar; | 
 |  | 
 | /* Forward */ | 
 | static void compile_rule(nfagrammar *gr, node *n); | 
 |  | 
 | static nfagrammar * | 
 | newnfagrammar(void) | 
 | { | 
 |     nfagrammar *gr; | 
 |  | 
 |     gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar)); | 
 |     if (gr == NULL) | 
 |         Py_FatalError("no mem for new nfa grammar"); | 
 |     gr->gr_nnfas = 0; | 
 |     gr->gr_nfa = NULL; | 
 |     gr->gr_ll.ll_nlabels = 0; | 
 |     gr->gr_ll.ll_label = NULL; | 
 |     addlabel(&gr->gr_ll, ENDMARKER, "EMPTY"); | 
 |     return gr; | 
 | } | 
 |  | 
 | static nfa * | 
 | addnfa(nfagrammar *gr, char *name) | 
 | { | 
 |     nfa *nf; | 
 |  | 
 |     nf = newnfa(name); | 
 |     gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa, | 
 |                                   sizeof(nfa*) * (gr->gr_nnfas + 1)); | 
 |     if (gr->gr_nfa == NULL) | 
 |         Py_FatalError("out of mem"); | 
 |     gr->gr_nfa[gr->gr_nnfas++] = nf; | 
 |     addlabel(&gr->gr_ll, NAME, nf->nf_name); | 
 |     return nf; | 
 | } | 
 |  | 
 | #ifdef Py_DEBUG | 
 |  | 
 | static char REQNFMT[] = "metacompile: less than %d children\n"; | 
 |  | 
 | #define REQN(i, count) \ | 
 |     if (i < count) { \ | 
 |         fprintf(stderr, REQNFMT, count); \ | 
 |         Py_FatalError("REQN"); \ | 
 |     } else | 
 |  | 
 | #else | 
 | #define REQN(i, count)  /* empty */ | 
 | #endif | 
 |  | 
 | static nfagrammar * | 
 | metacompile(node *n) | 
 | { | 
 |     nfagrammar *gr; | 
 |     int i; | 
 |  | 
 |     if (Py_DebugFlag) | 
 |         printf("Compiling (meta-) parse tree into NFA grammar\n"); | 
 |     gr = newnfagrammar(); | 
 |     REQ(n, MSTART); | 
 |     i = n->n_nchildren - 1; /* Last child is ENDMARKER */ | 
 |     n = n->n_child; | 
 |     for (; --i >= 0; n++) { | 
 |         if (n->n_type != NEWLINE) | 
 |             compile_rule(gr, n); | 
 |     } | 
 |     return gr; | 
 | } | 
 |  | 
 | static void | 
 | compile_rule(nfagrammar *gr, node *n) | 
 | { | 
 |     nfa *nf; | 
 |  | 
 |     REQ(n, RULE); | 
 |     REQN(n->n_nchildren, 4); | 
 |     n = n->n_child; | 
 |     REQ(n, NAME); | 
 |     nf = addnfa(gr, n->n_str); | 
 |     n++; | 
 |     REQ(n, COLON); | 
 |     n++; | 
 |     REQ(n, RHS); | 
 |     compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish); | 
 |     n++; | 
 |     REQ(n, NEWLINE); | 
 | } | 
 |  | 
 | static void | 
 | compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb) | 
 | { | 
 |     int i; | 
 |     int a, b; | 
 |  | 
 |     REQ(n, RHS); | 
 |     i = n->n_nchildren; | 
 |     REQN(i, 1); | 
 |     n = n->n_child; | 
 |     REQ(n, ALT); | 
 |     compile_alt(ll, nf, n, pa, pb); | 
 |     if (--i <= 0) | 
 |         return; | 
 |     n++; | 
 |     a = *pa; | 
 |     b = *pb; | 
 |     *pa = addnfastate(nf); | 
 |     *pb = addnfastate(nf); | 
 |     addnfaarc(nf, *pa, a, EMPTY); | 
 |     addnfaarc(nf, b, *pb, EMPTY); | 
 |     for (; --i >= 0; n++) { | 
 |         REQ(n, VBAR); | 
 |         REQN(i, 1); | 
 |         --i; | 
 |         n++; | 
 |         REQ(n, ALT); | 
 |         compile_alt(ll, nf, n, &a, &b); | 
 |         addnfaarc(nf, *pa, a, EMPTY); | 
 |         addnfaarc(nf, b, *pb, EMPTY); | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb) | 
 | { | 
 |     int i; | 
 |     int a, b; | 
 |  | 
 |     REQ(n, ALT); | 
 |     i = n->n_nchildren; | 
 |     REQN(i, 1); | 
 |     n = n->n_child; | 
 |     REQ(n, ITEM); | 
 |     compile_item(ll, nf, n, pa, pb); | 
 |     --i; | 
 |     n++; | 
 |     for (; --i >= 0; n++) { | 
 |         REQ(n, ITEM); | 
 |         compile_item(ll, nf, n, &a, &b); | 
 |         addnfaarc(nf, *pb, a, EMPTY); | 
 |         *pb = b; | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb) | 
 | { | 
 |     int i; | 
 |     int a, b; | 
 |  | 
 |     REQ(n, ITEM); | 
 |     i = n->n_nchildren; | 
 |     REQN(i, 1); | 
 |     n = n->n_child; | 
 |     if (n->n_type == LSQB) { | 
 |         REQN(i, 3); | 
 |         n++; | 
 |         REQ(n, RHS); | 
 |         *pa = addnfastate(nf); | 
 |         *pb = addnfastate(nf); | 
 |         addnfaarc(nf, *pa, *pb, EMPTY); | 
 |         compile_rhs(ll, nf, n, &a, &b); | 
 |         addnfaarc(nf, *pa, a, EMPTY); | 
 |         addnfaarc(nf, b, *pb, EMPTY); | 
 |         REQN(i, 1); | 
 |         n++; | 
 |         REQ(n, RSQB); | 
 |     } | 
 |     else { | 
 |         compile_atom(ll, nf, n, pa, pb); | 
 |         if (--i <= 0) | 
 |             return; | 
 |         n++; | 
 |         addnfaarc(nf, *pb, *pa, EMPTY); | 
 |         if (n->n_type == STAR) | 
 |             *pb = *pa; | 
 |         else | 
 |             REQ(n, PLUS); | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb) | 
 | { | 
 |     int i; | 
 |  | 
 |     REQ(n, ATOM); | 
 |     i = n->n_nchildren; | 
 |     REQN(i, 1); | 
 |     n = n->n_child; | 
 |     if (n->n_type == LPAR) { | 
 |         REQN(i, 3); | 
 |         n++; | 
 |         REQ(n, RHS); | 
 |         compile_rhs(ll, nf, n, pa, pb); | 
 |         n++; | 
 |         REQ(n, RPAR); | 
 |     } | 
 |     else if (n->n_type == NAME || n->n_type == STRING) { | 
 |         *pa = addnfastate(nf); | 
 |         *pb = addnfastate(nf); | 
 |         addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str)); | 
 |     } | 
 |     else | 
 |         REQ(n, NAME); | 
 | } | 
 |  | 
 | static void | 
 | dumpstate(labellist *ll, nfa *nf, int istate) | 
 | { | 
 |     nfastate *st; | 
 |     int i; | 
 |     nfaarc *ar; | 
 |  | 
 |     printf("%c%2d%c", | 
 |         istate == nf->nf_start ? '*' : ' ', | 
 |         istate, | 
 |         istate == nf->nf_finish ? '.' : ' '); | 
 |     st = &nf->nf_state[istate]; | 
 |     ar = st->st_arc; | 
 |     for (i = 0; i < st->st_narcs; i++) { | 
 |         if (i > 0) | 
 |             printf("\n    "); | 
 |         printf("-> %2d  %s", ar->ar_arrow, | 
 |             PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label])); | 
 |         ar++; | 
 |     } | 
 |     printf("\n"); | 
 | } | 
 |  | 
 | static void | 
 | dumpnfa(labellist *ll, nfa *nf) | 
 | { | 
 |     int i; | 
 |  | 
 |     printf("NFA '%s' has %d states; start %d, finish %d\n", | 
 |         nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish); | 
 |     for (i = 0; i < nf->nf_nstates; i++) | 
 |         dumpstate(ll, nf, i); | 
 | } | 
 |  | 
 |  | 
 | /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */ | 
 |  | 
 | static void | 
 | addclosure(bitset ss, nfa *nf, int istate) | 
 | { | 
 |     if (addbit(ss, istate)) { | 
 |         nfastate *st = &nf->nf_state[istate]; | 
 |         nfaarc *ar = st->st_arc; | 
 |         int i; | 
 |  | 
 |         for (i = st->st_narcs; --i >= 0; ) { | 
 |             if (ar->ar_label == EMPTY) | 
 |                 addclosure(ss, nf, ar->ar_arrow); | 
 |             ar++; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | typedef struct _ss_arc { | 
 |     bitset      sa_bitset; | 
 |     int         sa_arrow; | 
 |     int         sa_label; | 
 | } ss_arc; | 
 |  | 
 | typedef struct _ss_state { | 
 |     bitset      ss_ss; | 
 |     int         ss_narcs; | 
 |     struct _ss_arc      *ss_arc; | 
 |     int         ss_deleted; | 
 |     int         ss_finish; | 
 |     int         ss_rename; | 
 | } ss_state; | 
 |  | 
 | typedef struct _ss_dfa { | 
 |     int         sd_nstates; | 
 |     ss_state *sd_state; | 
 | } ss_dfa; | 
 |  | 
 | /* Forward */ | 
 | static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits, | 
 |                        labellist *ll, char *msg); | 
 | static void simplify(int xx_nstates, ss_state *xx_state); | 
 | static void convert(dfa *d, int xx_nstates, ss_state *xx_state); | 
 |  | 
 | static void | 
 | makedfa(nfagrammar *gr, nfa *nf, dfa *d) | 
 | { | 
 |     int nbits = nf->nf_nstates; | 
 |     bitset ss; | 
 |     int xx_nstates; | 
 |     ss_state *xx_state, *yy; | 
 |     ss_arc *zz; | 
 |     int istate, jstate, iarc, jarc, ibit; | 
 |     nfastate *st; | 
 |     nfaarc *ar; | 
 |  | 
 |     ss = newbitset(nbits); | 
 |     addclosure(ss, nf, nf->nf_start); | 
 |     xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state)); | 
 |     if (xx_state == NULL) | 
 |         Py_FatalError("no mem for xx_state in makedfa"); | 
 |     xx_nstates = 1; | 
 |     yy = &xx_state[0]; | 
 |     yy->ss_ss = ss; | 
 |     yy->ss_narcs = 0; | 
 |     yy->ss_arc = NULL; | 
 |     yy->ss_deleted = 0; | 
 |     yy->ss_finish = testbit(ss, nf->nf_finish); | 
 |     if (yy->ss_finish) | 
 |         printf("Error: nonterminal '%s' may produce empty.\n", | 
 |             nf->nf_name); | 
 |  | 
 |     /* This algorithm is from a book written before | 
 |        the invention of structured programming... */ | 
 |  | 
 |     /* For each unmarked state... */ | 
 |     for (istate = 0; istate < xx_nstates; ++istate) { | 
 |         size_t size; | 
 |         yy = &xx_state[istate]; | 
 |         ss = yy->ss_ss; | 
 |         /* For all its states... */ | 
 |         for (ibit = 0; ibit < nf->nf_nstates; ++ibit) { | 
 |             if (!testbit(ss, ibit)) | 
 |                 continue; | 
 |             st = &nf->nf_state[ibit]; | 
 |             /* For all non-empty arcs from this state... */ | 
 |             for (iarc = 0; iarc < st->st_narcs; iarc++) { | 
 |                 ar = &st->st_arc[iarc]; | 
 |                 if (ar->ar_label == EMPTY) | 
 |                     continue; | 
 |                 /* Look up in list of arcs from this state */ | 
 |                 for (jarc = 0; jarc < yy->ss_narcs; ++jarc) { | 
 |                     zz = &yy->ss_arc[jarc]; | 
 |                     if (ar->ar_label == zz->sa_label) | 
 |                         goto found; | 
 |                 } | 
 |                 /* Add new arc for this state */ | 
 |                 size = sizeof(ss_arc) * (yy->ss_narcs + 1); | 
 |                 yy->ss_arc = (ss_arc *)PyObject_REALLOC( | 
 |                                             yy->ss_arc, size); | 
 |                 if (yy->ss_arc == NULL) | 
 |                     Py_FatalError("out of mem"); | 
 |                 zz = &yy->ss_arc[yy->ss_narcs++]; | 
 |                 zz->sa_label = ar->ar_label; | 
 |                 zz->sa_bitset = newbitset(nbits); | 
 |                 zz->sa_arrow = -1; | 
 |              found:             ; | 
 |                 /* Add destination */ | 
 |                 addclosure(zz->sa_bitset, nf, ar->ar_arrow); | 
 |             } | 
 |         } | 
 |         /* Now look up all the arrow states */ | 
 |         for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) { | 
 |             zz = &xx_state[istate].ss_arc[jarc]; | 
 |             for (jstate = 0; jstate < xx_nstates; jstate++) { | 
 |                 if (samebitset(zz->sa_bitset, | 
 |                     xx_state[jstate].ss_ss, nbits)) { | 
 |                     zz->sa_arrow = jstate; | 
 |                     goto done; | 
 |                 } | 
 |             } | 
 |             size = sizeof(ss_state) * (xx_nstates + 1); | 
 |             xx_state = (ss_state *)PyObject_REALLOC(xx_state, | 
 |                                                         size); | 
 |             if (xx_state == NULL) | 
 |                 Py_FatalError("out of mem"); | 
 |             zz->sa_arrow = xx_nstates; | 
 |             yy = &xx_state[xx_nstates++]; | 
 |             yy->ss_ss = zz->sa_bitset; | 
 |             yy->ss_narcs = 0; | 
 |             yy->ss_arc = NULL; | 
 |             yy->ss_deleted = 0; | 
 |             yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish); | 
 |          done:          ; | 
 |         } | 
 |     } | 
 |  | 
 |     if (Py_DebugFlag) | 
 |         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, | 
 |                                         "before minimizing"); | 
 |  | 
 |     simplify(xx_nstates, xx_state); | 
 |  | 
 |     if (Py_DebugFlag) | 
 |         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, | 
 |                                         "after minimizing"); | 
 |  | 
 |     convert(d, xx_nstates, xx_state); | 
 |  | 
 |     /* XXX cleanup */ | 
 |     PyObject_FREE(xx_state); | 
 | } | 
 |  | 
 | static void | 
 | printssdfa(int xx_nstates, ss_state *xx_state, int nbits, | 
 |            labellist *ll, char *msg) | 
 | { | 
 |     int i, ibit, iarc; | 
 |     ss_state *yy; | 
 |     ss_arc *zz; | 
 |  | 
 |     printf("Subset DFA %s\n", msg); | 
 |     for (i = 0; i < xx_nstates; i++) { | 
 |         yy = &xx_state[i]; | 
 |         if (yy->ss_deleted) | 
 |             continue; | 
 |         printf(" Subset %d", i); | 
 |         if (yy->ss_finish) | 
 |             printf(" (finish)"); | 
 |         printf(" { "); | 
 |         for (ibit = 0; ibit < nbits; ibit++) { | 
 |             if (testbit(yy->ss_ss, ibit)) | 
 |                 printf("%d ", ibit); | 
 |         } | 
 |         printf("}\n"); | 
 |         for (iarc = 0; iarc < yy->ss_narcs; iarc++) { | 
 |             zz = &yy->ss_arc[iarc]; | 
 |             printf("  Arc to state %d, label %s\n", | 
 |                 zz->sa_arrow, | 
 |                 PyGrammar_LabelRepr( | 
 |                     &ll->ll_label[zz->sa_label])); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /* PART THREE -- SIMPLIFY DFA */ | 
 |  | 
 | /* Simplify the DFA by repeatedly eliminating states that are | 
 |    equivalent to another oner.  This is NOT Algorithm 3.3 from | 
 |    [Aho&Ullman 77].  It does not always finds the minimal DFA, | 
 |    but it does usually make a much smaller one...  (For an example | 
 |    of sub-optimal behavior, try S: x a b+ | y a b+.) | 
 | */ | 
 |  | 
 | static int | 
 | samestate(ss_state *s1, ss_state *s2) | 
 | { | 
 |     int i; | 
 |  | 
 |     if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish) | 
 |         return 0; | 
 |     for (i = 0; i < s1->ss_narcs; i++) { | 
 |         if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow || | 
 |             s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label) | 
 |             return 0; | 
 |     } | 
 |     return 1; | 
 | } | 
 |  | 
 | static void | 
 | renamestates(int xx_nstates, ss_state *xx_state, int from, int to) | 
 | { | 
 |     int i, j; | 
 |  | 
 |     if (Py_DebugFlag) | 
 |         printf("Rename state %d to %d.\n", from, to); | 
 |     for (i = 0; i < xx_nstates; i++) { | 
 |         if (xx_state[i].ss_deleted) | 
 |             continue; | 
 |         for (j = 0; j < xx_state[i].ss_narcs; j++) { | 
 |             if (xx_state[i].ss_arc[j].sa_arrow == from) | 
 |                 xx_state[i].ss_arc[j].sa_arrow = to; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | simplify(int xx_nstates, ss_state *xx_state) | 
 | { | 
 |     int changes; | 
 |     int i, j; | 
 |  | 
 |     do { | 
 |         changes = 0; | 
 |         for (i = 1; i < xx_nstates; i++) { | 
 |             if (xx_state[i].ss_deleted) | 
 |                 continue; | 
 |             for (j = 0; j < i; j++) { | 
 |                 if (xx_state[j].ss_deleted) | 
 |                     continue; | 
 |                 if (samestate(&xx_state[i], &xx_state[j])) { | 
 |                     xx_state[i].ss_deleted++; | 
 |                     renamestates(xx_nstates, xx_state, | 
 |                                  i, j); | 
 |                     changes++; | 
 |                     break; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } while (changes); | 
 | } | 
 |  | 
 |  | 
 | /* PART FOUR -- GENERATE PARSING TABLES */ | 
 |  | 
 | /* Convert the DFA into a grammar that can be used by our parser */ | 
 |  | 
 | static void | 
 | convert(dfa *d, int xx_nstates, ss_state *xx_state) | 
 | { | 
 |     int i, j; | 
 |     ss_state *yy; | 
 |     ss_arc *zz; | 
 |  | 
 |     for (i = 0; i < xx_nstates; i++) { | 
 |         yy = &xx_state[i]; | 
 |         if (yy->ss_deleted) | 
 |             continue; | 
 |         yy->ss_rename = addstate(d); | 
 |     } | 
 |  | 
 |     for (i = 0; i < xx_nstates; i++) { | 
 |         yy = &xx_state[i]; | 
 |         if (yy->ss_deleted) | 
 |             continue; | 
 |         for (j = 0; j < yy->ss_narcs; j++) { | 
 |             zz = &yy->ss_arc[j]; | 
 |             addarc(d, yy->ss_rename, | 
 |                 xx_state[zz->sa_arrow].ss_rename, | 
 |                 zz->sa_label); | 
 |         } | 
 |         if (yy->ss_finish) | 
 |             addarc(d, yy->ss_rename, yy->ss_rename, 0); | 
 |     } | 
 |  | 
 |     d->d_initial = 0; | 
 | } | 
 |  | 
 |  | 
 | /* PART FIVE -- GLUE IT ALL TOGETHER */ | 
 |  | 
 | static grammar * | 
 | maketables(nfagrammar *gr) | 
 | { | 
 |     int i; | 
 |     nfa *nf; | 
 |     dfa *d; | 
 |     grammar *g; | 
 |  | 
 |     if (gr->gr_nnfas == 0) | 
 |         return NULL; | 
 |     g = newgrammar(gr->gr_nfa[0]->nf_type); | 
 |                     /* XXX first rule must be start rule */ | 
 |     g->g_ll = gr->gr_ll; | 
 |  | 
 |     for (i = 0; i < gr->gr_nnfas; i++) { | 
 |         nf = gr->gr_nfa[i]; | 
 |         if (Py_DebugFlag) { | 
 |             printf("Dump of NFA for '%s' ...\n", nf->nf_name); | 
 |             dumpnfa(&gr->gr_ll, nf); | 
 |             printf("Making DFA for '%s' ...\n", nf->nf_name); | 
 |         } | 
 |         d = adddfa(g, nf->nf_type, nf->nf_name); | 
 |         makedfa(gr, gr->gr_nfa[i], d); | 
 |     } | 
 |  | 
 |     return g; | 
 | } | 
 |  | 
 | grammar * | 
 | pgen(node *n) | 
 | { | 
 |     nfagrammar *gr; | 
 |     grammar *g; | 
 |  | 
 |     gr = metacompile(n); | 
 |     g = maketables(gr); | 
 |     translatelabels(g); | 
 |     addfirstsets(g); | 
 |     PyObject_FREE(gr); | 
 |     return g; | 
 | } | 
 |  | 
 | grammar * | 
 | Py_pgen(node *n) | 
 | { | 
 |   return pgen(n); | 
 | } | 
 |  | 
 | /* | 
 |  | 
 | Description | 
 | ----------- | 
 |  | 
 | Input is a grammar in extended BNF (using * for repetition, + for | 
 | at-least-once repetition, [] for optional parts, | for alternatives and | 
 | () for grouping).  This has already been parsed and turned into a parse | 
 | tree. | 
 |  | 
 | Each rule is considered as a regular expression in its own right. | 
 | It is turned into a Non-deterministic Finite Automaton (NFA), which | 
 | is then turned into a Deterministic Finite Automaton (DFA), which is then | 
 | optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3, | 
 | or similar compiler books (this technique is more often used for lexical | 
 | analyzers). | 
 |  | 
 | The DFA's are used by the parser as parsing tables in a special way | 
 | that's probably unique.  Before they are usable, the FIRST sets of all | 
 | non-terminals are computed. | 
 |  | 
 | Reference | 
 | --------- | 
 |  | 
 | [Aho&Ullman 77] | 
 |     Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977 | 
 |     (first edition) | 
 |  | 
 | */ |