| /* Long (arbitrary precision) integer object implementation */ | 
 |  | 
 | /* XXX The functional organization of this file is terrible */ | 
 |  | 
 | #include "Python.h" | 
 | #include "longintrepr.h" | 
 | #include "structseq.h" | 
 |  | 
 | #include <float.h> | 
 | #include <ctype.h> | 
 | #include <stddef.h> | 
 |  | 
 | /* For long multiplication, use the O(N**2) school algorithm unless | 
 |  * both operands contain more than KARATSUBA_CUTOFF digits (this | 
 |  * being an internal Python long digit, in base PyLong_BASE). | 
 |  */ | 
 | #define KARATSUBA_CUTOFF 70 | 
 | #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF) | 
 |  | 
 | /* For exponentiation, use the binary left-to-right algorithm | 
 |  * unless the exponent contains more than FIVEARY_CUTOFF digits. | 
 |  * In that case, do 5 bits at a time.  The potential drawback is that | 
 |  * a table of 2**5 intermediate results is computed. | 
 |  */ | 
 | #define FIVEARY_CUTOFF 8 | 
 |  | 
 | #define ABS(x) ((x) < 0 ? -(x) : (x)) | 
 |  | 
 | #undef MIN | 
 | #undef MAX | 
 | #define MAX(x, y) ((x) < (y) ? (y) : (x)) | 
 | #define MIN(x, y) ((x) > (y) ? (y) : (x)) | 
 |  | 
 | #define SIGCHECK(PyTryBlock)                            \ | 
 |     do {                                                \ | 
 |         if (--_Py_Ticker < 0) {                         \ | 
 |             _Py_Ticker = _Py_CheckInterval;             \ | 
 |             if (PyErr_CheckSignals()) PyTryBlock        \ | 
 |                                           }             \ | 
 |     } while(0) | 
 |  | 
 | /* Normalize (remove leading zeros from) a long int object. | 
 |    Doesn't attempt to free the storage--in most cases, due to the nature | 
 |    of the algorithms used, this could save at most be one word anyway. */ | 
 |  | 
 | static PyLongObject * | 
 | long_normalize(register PyLongObject *v) | 
 | { | 
 |     Py_ssize_t j = ABS(Py_SIZE(v)); | 
 |     Py_ssize_t i = j; | 
 |  | 
 |     while (i > 0 && v->ob_digit[i-1] == 0) | 
 |         --i; | 
 |     if (i != j) | 
 |         Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; | 
 |     return v; | 
 | } | 
 |  | 
 | /* Allocate a new long int object with size digits. | 
 |    Return NULL and set exception if we run out of memory. */ | 
 |  | 
 | #define MAX_LONG_DIGITS \ | 
 |     ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit)) | 
 |  | 
 | PyLongObject * | 
 | _PyLong_New(Py_ssize_t size) | 
 | { | 
 |     if (size > (Py_ssize_t)MAX_LONG_DIGITS) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "too many digits in integer"); | 
 |         return NULL; | 
 |     } | 
 |     /* coverity[ampersand_in_size] */ | 
 |     /* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect | 
 |        overflow */ | 
 |     return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size); | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyLong_Copy(PyLongObject *src) | 
 | { | 
 |     PyLongObject *result; | 
 |     Py_ssize_t i; | 
 |  | 
 |     assert(src != NULL); | 
 |     i = src->ob_size; | 
 |     if (i < 0) | 
 |         i = -(i); | 
 |     result = _PyLong_New(i); | 
 |     if (result != NULL) { | 
 |         result->ob_size = src->ob_size; | 
 |         while (--i >= 0) | 
 |             result->ob_digit[i] = src->ob_digit[i]; | 
 |     } | 
 |     return (PyObject *)result; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C long int */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromLong(long ival) | 
 | { | 
 |     PyLongObject *v; | 
 |     unsigned long abs_ival; | 
 |     unsigned long t;  /* unsigned so >> doesn't propagate sign bit */ | 
 |     int ndigits = 0; | 
 |     int negative = 0; | 
 |  | 
 |     if (ival < 0) { | 
 |         /* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then | 
 |            ANSI C says that the result of -ival is undefined when ival | 
 |            == LONG_MIN.  Hence the following workaround. */ | 
 |         abs_ival = (unsigned long)(-1-ival) + 1; | 
 |         negative = 1; | 
 |     } | 
 |     else { | 
 |         abs_ival = (unsigned long)ival; | 
 |     } | 
 |  | 
 |     /* Count the number of Python digits. | 
 |        We used to pick 5 ("big enough for anything"), but that's a | 
 |        waste of time and space given that 5*15 = 75 bits are rarely | 
 |        needed. */ | 
 |     t = abs_ival; | 
 |     while (t) { | 
 |         ++ndigits; | 
 |         t >>= PyLong_SHIFT; | 
 |     } | 
 |     v = _PyLong_New(ndigits); | 
 |     if (v != NULL) { | 
 |         digit *p = v->ob_digit; | 
 |         v->ob_size = negative ? -ndigits : ndigits; | 
 |         t = abs_ival; | 
 |         while (t) { | 
 |             *p++ = (digit)(t & PyLong_MASK); | 
 |             t >>= PyLong_SHIFT; | 
 |         } | 
 |     } | 
 |     return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C unsigned long int */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromUnsignedLong(unsigned long ival) | 
 | { | 
 |     PyLongObject *v; | 
 |     unsigned long t; | 
 |     int ndigits = 0; | 
 |  | 
 |     /* Count the number of Python digits. */ | 
 |     t = (unsigned long)ival; | 
 |     while (t) { | 
 |         ++ndigits; | 
 |         t >>= PyLong_SHIFT; | 
 |     } | 
 |     v = _PyLong_New(ndigits); | 
 |     if (v != NULL) { | 
 |         digit *p = v->ob_digit; | 
 |         Py_SIZE(v) = ndigits; | 
 |         while (ival) { | 
 |             *p++ = (digit)(ival & PyLong_MASK); | 
 |             ival >>= PyLong_SHIFT; | 
 |         } | 
 |     } | 
 |     return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C double */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromDouble(double dval) | 
 | { | 
 |     PyLongObject *v; | 
 |     double frac; | 
 |     int i, ndig, expo, neg; | 
 |     neg = 0; | 
 |     if (Py_IS_INFINITY(dval)) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "cannot convert float infinity to integer"); | 
 |         return NULL; | 
 |     } | 
 |     if (Py_IS_NAN(dval)) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "cannot convert float NaN to integer"); | 
 |         return NULL; | 
 |     } | 
 |     if (dval < 0.0) { | 
 |         neg = 1; | 
 |         dval = -dval; | 
 |     } | 
 |     frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ | 
 |     if (expo <= 0) | 
 |         return PyLong_FromLong(0L); | 
 |     ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ | 
 |     v = _PyLong_New(ndig); | 
 |     if (v == NULL) | 
 |         return NULL; | 
 |     frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); | 
 |     for (i = ndig; --i >= 0; ) { | 
 |         digit bits = (digit)frac; | 
 |         v->ob_digit[i] = bits; | 
 |         frac = frac - (double)bits; | 
 |         frac = ldexp(frac, PyLong_SHIFT); | 
 |     } | 
 |     if (neg) | 
 |         Py_SIZE(v) = -(Py_SIZE(v)); | 
 |     return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define | 
 |  * anything about what happens when a signed integer operation overflows, | 
 |  * and some compilers think they're doing you a favor by being "clever" | 
 |  * then.  The bit pattern for the largest postive signed long is | 
 |  * (unsigned long)LONG_MAX, and for the smallest negative signed long | 
 |  * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN. | 
 |  * However, some other compilers warn about applying unary minus to an | 
 |  * unsigned operand.  Hence the weird "0-". | 
 |  */ | 
 | #define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN) | 
 | #define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN) | 
 |  | 
 | /* Get a C long int from a Python long or Python int object. | 
 |    On overflow, returns -1 and sets *overflow to 1 or -1 depending | 
 |    on the sign of the result.  Otherwise *overflow is 0. | 
 |  | 
 |    For other errors (e.g., type error), returns -1 and sets an error | 
 |    condition. | 
 | */ | 
 |  | 
 | long | 
 | PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) | 
 | { | 
 |     /* This version by Tim Peters */ | 
 |     register PyLongObject *v; | 
 |     unsigned long x, prev; | 
 |     long res; | 
 |     Py_ssize_t i; | 
 |     int sign; | 
 |     int do_decref = 0; /* if nb_int was called */ | 
 |  | 
 |     *overflow = 0; | 
 |     if (vv == NULL) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if(PyInt_Check(vv)) | 
 |         return PyInt_AsLong(vv); | 
 |  | 
 |     if (!PyLong_Check(vv)) { | 
 |         PyNumberMethods *nb; | 
 |         nb = vv->ob_type->tp_as_number; | 
 |         if (nb == NULL || nb->nb_int == NULL) { | 
 |             PyErr_SetString(PyExc_TypeError, | 
 |                             "an integer is required"); | 
 |             return -1; | 
 |         } | 
 |         vv = (*nb->nb_int) (vv); | 
 |         if (vv == NULL) | 
 |             return -1; | 
 |         do_decref = 1; | 
 |         if(PyInt_Check(vv)) { | 
 |             res = PyInt_AsLong(vv); | 
 |             goto exit; | 
 |         } | 
 |         if (!PyLong_Check(vv)) { | 
 |             Py_DECREF(vv); | 
 |             PyErr_SetString(PyExc_TypeError, | 
 |                             "nb_int should return int object"); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |  | 
 |     res = -1; | 
 |     v = (PyLongObject *)vv; | 
 |     i = Py_SIZE(v); | 
 |  | 
 |     switch (i) { | 
 |     case -1: | 
 |         res = -(sdigit)v->ob_digit[0]; | 
 |         break; | 
 |     case 0: | 
 |         res = 0; | 
 |         break; | 
 |     case 1: | 
 |         res = v->ob_digit[0]; | 
 |         break; | 
 |     default: | 
 |         sign = 1; | 
 |         x = 0; | 
 |         if (i < 0) { | 
 |             sign = -1; | 
 |             i = -(i); | 
 |         } | 
 |         while (--i >= 0) { | 
 |             prev = x; | 
 |             x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 |             if ((x >> PyLong_SHIFT) != prev) { | 
 |                 *overflow = sign; | 
 |                 goto exit; | 
 |             } | 
 |         } | 
 |         /* Haven't lost any bits, but casting to long requires extra | 
 |          * care (see comment above). | 
 |          */ | 
 |         if (x <= (unsigned long)LONG_MAX) { | 
 |             res = (long)x * sign; | 
 |         } | 
 |         else if (sign < 0 && x == PY_ABS_LONG_MIN) { | 
 |             res = LONG_MIN; | 
 |         } | 
 |         else { | 
 |             *overflow = sign; | 
 |             /* res is already set to -1 */ | 
 |         } | 
 |     } | 
 |   exit: | 
 |     if (do_decref) { | 
 |         Py_DECREF(vv); | 
 |     } | 
 |     return res; | 
 | } | 
 |  | 
 | /* Get a C long int from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | long | 
 | PyLong_AsLong(PyObject *obj) | 
 | { | 
 |     int overflow; | 
 |     long result = PyLong_AsLongAndOverflow(obj, &overflow); | 
 |     if (overflow) { | 
 |         /* XXX: could be cute and give a different | 
 |            message for overflow == -1 */ | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "Python int too large to convert to C long"); | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | /* Get a C int from a long int object or any object that has an __int__ | 
 |    method.  Return -1 and set an error if overflow occurs. */ | 
 |  | 
 | int | 
 | _PyLong_AsInt(PyObject *obj) | 
 | { | 
 |     int overflow; | 
 |     long result = PyLong_AsLongAndOverflow(obj, &overflow); | 
 |     if (overflow || result > INT_MAX || result < INT_MIN) { | 
 |         /* XXX: could be cute and give a different | 
 |            message for overflow == -1 */ | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "Python int too large to convert to C int"); | 
 |         return -1; | 
 |     } | 
 |     return (int)result; | 
 | } | 
 |  | 
 | /* Get a Py_ssize_t from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | Py_ssize_t | 
 | PyLong_AsSsize_t(PyObject *vv) { | 
 |     register PyLongObject *v; | 
 |     size_t x, prev; | 
 |     Py_ssize_t i; | 
 |     int sign; | 
 |  | 
 |     if (vv == NULL || !PyLong_Check(vv)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     v = (PyLongObject *)vv; | 
 |     i = v->ob_size; | 
 |     sign = 1; | 
 |     x = 0; | 
 |     if (i < 0) { | 
 |         sign = -1; | 
 |         i = -(i); | 
 |     } | 
 |     while (--i >= 0) { | 
 |         prev = x; | 
 |         x = (x << PyLong_SHIFT) | v->ob_digit[i]; | 
 |         if ((x >> PyLong_SHIFT) != prev) | 
 |             goto overflow; | 
 |     } | 
 |     /* Haven't lost any bits, but casting to a signed type requires | 
 |      * extra care (see comment above). | 
 |      */ | 
 |     if (x <= (size_t)PY_SSIZE_T_MAX) { | 
 |         return (Py_ssize_t)x * sign; | 
 |     } | 
 |     else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { | 
 |         return PY_SSIZE_T_MIN; | 
 |     } | 
 |     /* else overflow */ | 
 |  | 
 |   overflow: | 
 |     PyErr_SetString(PyExc_OverflowError, | 
 |                     "long int too large to convert to int"); | 
 |     return -1; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | unsigned long | 
 | PyLong_AsUnsignedLong(PyObject *vv) | 
 | { | 
 |     register PyLongObject *v; | 
 |     unsigned long x, prev; | 
 |     Py_ssize_t i; | 
 |  | 
 |     if (vv == NULL || !PyLong_Check(vv)) { | 
 |         if (vv != NULL && PyInt_Check(vv)) { | 
 |             long val = PyInt_AsLong(vv); | 
 |             if (val < 0) { | 
 |                 PyErr_SetString(PyExc_OverflowError, | 
 |                                 "can't convert negative value " | 
 |                                 "to unsigned long"); | 
 |                 return (unsigned long) -1; | 
 |             } | 
 |             return val; | 
 |         } | 
 |         PyErr_BadInternalCall(); | 
 |         return (unsigned long) -1; | 
 |     } | 
 |     v = (PyLongObject *)vv; | 
 |     i = Py_SIZE(v); | 
 |     x = 0; | 
 |     if (i < 0) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "can't convert negative value to unsigned long"); | 
 |         return (unsigned long) -1; | 
 |     } | 
 |     while (--i >= 0) { | 
 |         prev = x; | 
 |         x = (x << PyLong_SHIFT) | v->ob_digit[i]; | 
 |         if ((x >> PyLong_SHIFT) != prev) { | 
 |             PyErr_SetString(PyExc_OverflowError, | 
 |                             "long int too large to convert"); | 
 |             return (unsigned long) -1; | 
 |         } | 
 |     } | 
 |     return x; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object, ignoring the high bits. | 
 |    Returns -1 and sets an error condition if an error occurs. */ | 
 |  | 
 | unsigned long | 
 | PyLong_AsUnsignedLongMask(PyObject *vv) | 
 | { | 
 |     register PyLongObject *v; | 
 |     unsigned long x; | 
 |     Py_ssize_t i; | 
 |     int sign; | 
 |  | 
 |     if (vv == NULL || !PyLong_Check(vv)) { | 
 |         if (vv != NULL && PyInt_Check(vv)) | 
 |             return PyInt_AsUnsignedLongMask(vv); | 
 |         PyErr_BadInternalCall(); | 
 |         return (unsigned long) -1; | 
 |     } | 
 |     v = (PyLongObject *)vv; | 
 |     i = v->ob_size; | 
 |     sign = 1; | 
 |     x = 0; | 
 |     if (i < 0) { | 
 |         sign = -1; | 
 |         i = -i; | 
 |     } | 
 |     while (--i >= 0) { | 
 |         x = (x << PyLong_SHIFT) | v->ob_digit[i]; | 
 |     } | 
 |     return x * sign; | 
 | } | 
 |  | 
 | int | 
 | _PyLong_Sign(PyObject *vv) | 
 | { | 
 |     PyLongObject *v = (PyLongObject *)vv; | 
 |  | 
 |     assert(v != NULL); | 
 |     assert(PyLong_Check(v)); | 
 |  | 
 |     return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); | 
 | } | 
 |  | 
 | size_t | 
 | _PyLong_NumBits(PyObject *vv) | 
 | { | 
 |     PyLongObject *v = (PyLongObject *)vv; | 
 |     size_t result = 0; | 
 |     Py_ssize_t ndigits; | 
 |  | 
 |     assert(v != NULL); | 
 |     assert(PyLong_Check(v)); | 
 |     ndigits = ABS(Py_SIZE(v)); | 
 |     assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | 
 |     if (ndigits > 0) { | 
 |         digit msd = v->ob_digit[ndigits - 1]; | 
 |  | 
 |         result = (ndigits - 1) * PyLong_SHIFT; | 
 |         if (result / PyLong_SHIFT != (size_t)(ndigits - 1)) | 
 |             goto Overflow; | 
 |         do { | 
 |             ++result; | 
 |             if (result == 0) | 
 |                 goto Overflow; | 
 |             msd >>= 1; | 
 |         } while (msd); | 
 |     } | 
 |     return result; | 
 |  | 
 |   Overflow: | 
 |     PyErr_SetString(PyExc_OverflowError, "long has too many bits " | 
 |                     "to express in a platform size_t"); | 
 |     return (size_t)-1; | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyLong_FromByteArray(const unsigned char* bytes, size_t n, | 
 |                       int little_endian, int is_signed) | 
 | { | 
 |     const unsigned char* pstartbyte;    /* LSB of bytes */ | 
 |     int incr;                           /* direction to move pstartbyte */ | 
 |     const unsigned char* pendbyte;      /* MSB of bytes */ | 
 |     size_t numsignificantbytes;         /* number of bytes that matter */ | 
 |     Py_ssize_t ndigits;                 /* number of Python long digits */ | 
 |     PyLongObject* v;                    /* result */ | 
 |     Py_ssize_t idigit = 0;              /* next free index in v->ob_digit */ | 
 |  | 
 |     if (n == 0) | 
 |         return PyLong_FromLong(0L); | 
 |  | 
 |     if (little_endian) { | 
 |         pstartbyte = bytes; | 
 |         pendbyte = bytes + n - 1; | 
 |         incr = 1; | 
 |     } | 
 |     else { | 
 |         pstartbyte = bytes + n - 1; | 
 |         pendbyte = bytes; | 
 |         incr = -1; | 
 |     } | 
 |  | 
 |     if (is_signed) | 
 |         is_signed = *pendbyte >= 0x80; | 
 |  | 
 |     /* Compute numsignificantbytes.  This consists of finding the most | 
 |        significant byte.  Leading 0 bytes are insignificant if the number | 
 |        is positive, and leading 0xff bytes if negative. */ | 
 |     { | 
 |         size_t i; | 
 |         const unsigned char* p = pendbyte; | 
 |         const int pincr = -incr;  /* search MSB to LSB */ | 
 |         const unsigned char insignficant = is_signed ? 0xff : 0x00; | 
 |  | 
 |         for (i = 0; i < n; ++i, p += pincr) { | 
 |             if (*p != insignficant) | 
 |                 break; | 
 |         } | 
 |         numsignificantbytes = n - i; | 
 |         /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so | 
 |            actually has 2 significant bytes.  OTOH, 0xff0001 == | 
 |            -0x00ffff, so we wouldn't *need* to bump it there; but we | 
 |            do for 0xffff = -0x0001.  To be safe without bothering to | 
 |            check every case, bump it regardless. */ | 
 |         if (is_signed && numsignificantbytes < n) | 
 |             ++numsignificantbytes; | 
 |     } | 
 |  | 
 |     /* How many Python long digits do we need?  We have | 
 |        8*numsignificantbytes bits, and each Python long digit has | 
 |        PyLong_SHIFT bits, so it's the ceiling of the quotient. */ | 
 |     /* catch overflow before it happens */ | 
 |     if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "byte array too long to convert to int"); | 
 |         return NULL; | 
 |     } | 
 |     ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; | 
 |     v = _PyLong_New(ndigits); | 
 |     if (v == NULL) | 
 |         return NULL; | 
 |  | 
 |     /* Copy the bits over.  The tricky parts are computing 2's-comp on | 
 |        the fly for signed numbers, and dealing with the mismatch between | 
 |        8-bit bytes and (probably) 15-bit Python digits.*/ | 
 |     { | 
 |         size_t i; | 
 |         twodigits carry = 1;                    /* for 2's-comp calculation */ | 
 |         twodigits accum = 0;                    /* sliding register */ | 
 |         unsigned int accumbits = 0;             /* number of bits in accum */ | 
 |         const unsigned char* p = pstartbyte; | 
 |  | 
 |         for (i = 0; i < numsignificantbytes; ++i, p += incr) { | 
 |             twodigits thisbyte = *p; | 
 |             /* Compute correction for 2's comp, if needed. */ | 
 |             if (is_signed) { | 
 |                 thisbyte = (0xff ^ thisbyte) + carry; | 
 |                 carry = thisbyte >> 8; | 
 |                 thisbyte &= 0xff; | 
 |             } | 
 |             /* Because we're going LSB to MSB, thisbyte is | 
 |                more significant than what's already in accum, | 
 |                so needs to be prepended to accum. */ | 
 |             accum |= (twodigits)thisbyte << accumbits; | 
 |             accumbits += 8; | 
 |             if (accumbits >= PyLong_SHIFT) { | 
 |                 /* There's enough to fill a Python digit. */ | 
 |                 assert(idigit < ndigits); | 
 |                 v->ob_digit[idigit] = (digit)(accum & PyLong_MASK); | 
 |                 ++idigit; | 
 |                 accum >>= PyLong_SHIFT; | 
 |                 accumbits -= PyLong_SHIFT; | 
 |                 assert(accumbits < PyLong_SHIFT); | 
 |             } | 
 |         } | 
 |         assert(accumbits < PyLong_SHIFT); | 
 |         if (accumbits) { | 
 |             assert(idigit < ndigits); | 
 |             v->ob_digit[idigit] = (digit)accum; | 
 |             ++idigit; | 
 |         } | 
 |     } | 
 |  | 
 |     Py_SIZE(v) = is_signed ? -idigit : idigit; | 
 |     return (PyObject *)long_normalize(v); | 
 | } | 
 |  | 
 | int | 
 | _PyLong_AsByteArray(PyLongObject* v, | 
 |                     unsigned char* bytes, size_t n, | 
 |                     int little_endian, int is_signed) | 
 | { | 
 |     Py_ssize_t i;               /* index into v->ob_digit */ | 
 |     Py_ssize_t ndigits;         /* |v->ob_size| */ | 
 |     twodigits accum;            /* sliding register */ | 
 |     unsigned int accumbits;     /* # bits in accum */ | 
 |     int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */ | 
 |     digit carry;                /* for computing 2's-comp */ | 
 |     size_t j;                   /* # bytes filled */ | 
 |     unsigned char* p;           /* pointer to next byte in bytes */ | 
 |     int pincr;                  /* direction to move p */ | 
 |  | 
 |     assert(v != NULL && PyLong_Check(v)); | 
 |  | 
 |     if (Py_SIZE(v) < 0) { | 
 |         ndigits = -(Py_SIZE(v)); | 
 |         if (!is_signed) { | 
 |             PyErr_SetString(PyExc_OverflowError, | 
 |                             "can't convert negative long to unsigned"); | 
 |             return -1; | 
 |         } | 
 |         do_twos_comp = 1; | 
 |     } | 
 |     else { | 
 |         ndigits = Py_SIZE(v); | 
 |         do_twos_comp = 0; | 
 |     } | 
 |  | 
 |     if (little_endian) { | 
 |         p = bytes; | 
 |         pincr = 1; | 
 |     } | 
 |     else { | 
 |         p = bytes + n - 1; | 
 |         pincr = -1; | 
 |     } | 
 |  | 
 |     /* Copy over all the Python digits. | 
 |        It's crucial that every Python digit except for the MSD contribute | 
 |        exactly PyLong_SHIFT bits to the total, so first assert that the long is | 
 |        normalized. */ | 
 |     assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | 
 |     j = 0; | 
 |     accum = 0; | 
 |     accumbits = 0; | 
 |     carry = do_twos_comp ? 1 : 0; | 
 |     for (i = 0; i < ndigits; ++i) { | 
 |         digit thisdigit = v->ob_digit[i]; | 
 |         if (do_twos_comp) { | 
 |             thisdigit = (thisdigit ^ PyLong_MASK) + carry; | 
 |             carry = thisdigit >> PyLong_SHIFT; | 
 |             thisdigit &= PyLong_MASK; | 
 |         } | 
 |         /* Because we're going LSB to MSB, thisdigit is more | 
 |            significant than what's already in accum, so needs to be | 
 |            prepended to accum. */ | 
 |         accum |= (twodigits)thisdigit << accumbits; | 
 |  | 
 |         /* The most-significant digit may be (probably is) at least | 
 |            partly empty. */ | 
 |         if (i == ndigits - 1) { | 
 |             /* Count # of sign bits -- they needn't be stored, | 
 |              * although for signed conversion we need later to | 
 |              * make sure at least one sign bit gets stored. */ | 
 |             digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit; | 
 |             while (s != 0) { | 
 |                 s >>= 1; | 
 |                 accumbits++; | 
 |             } | 
 |         } | 
 |         else | 
 |             accumbits += PyLong_SHIFT; | 
 |  | 
 |         /* Store as many bytes as possible. */ | 
 |         while (accumbits >= 8) { | 
 |             if (j >= n) | 
 |                 goto Overflow; | 
 |             ++j; | 
 |             *p = (unsigned char)(accum & 0xff); | 
 |             p += pincr; | 
 |             accumbits -= 8; | 
 |             accum >>= 8; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Store the straggler (if any). */ | 
 |     assert(accumbits < 8); | 
 |     assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */ | 
 |     if (accumbits > 0) { | 
 |         if (j >= n) | 
 |             goto Overflow; | 
 |         ++j; | 
 |         if (do_twos_comp) { | 
 |             /* Fill leading bits of the byte with sign bits | 
 |                (appropriately pretending that the long had an | 
 |                infinite supply of sign bits). */ | 
 |             accum |= (~(twodigits)0) << accumbits; | 
 |         } | 
 |         *p = (unsigned char)(accum & 0xff); | 
 |         p += pincr; | 
 |     } | 
 |     else if (j == n && n > 0 && is_signed) { | 
 |         /* The main loop filled the byte array exactly, so the code | 
 |            just above didn't get to ensure there's a sign bit, and the | 
 |            loop below wouldn't add one either.  Make sure a sign bit | 
 |            exists. */ | 
 |         unsigned char msb = *(p - pincr); | 
 |         int sign_bit_set = msb >= 0x80; | 
 |         assert(accumbits == 0); | 
 |         if (sign_bit_set == do_twos_comp) | 
 |             return 0; | 
 |         else | 
 |             goto Overflow; | 
 |     } | 
 |  | 
 |     /* Fill remaining bytes with copies of the sign bit. */ | 
 |     { | 
 |         unsigned char signbyte = do_twos_comp ? 0xffU : 0U; | 
 |         for ( ; j < n; ++j, p += pincr) | 
 |             *p = signbyte; | 
 |     } | 
 |  | 
 |     return 0; | 
 |  | 
 |   Overflow: | 
 |     PyErr_SetString(PyExc_OverflowError, "long too big to convert"); | 
 |     return -1; | 
 |  | 
 | } | 
 |  | 
 | /* Create a new long (or int) object from a C pointer */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromVoidPtr(void *p) | 
 | { | 
 | #if SIZEOF_VOID_P <= SIZEOF_LONG | 
 |     if ((long)p < 0) | 
 |         return PyLong_FromUnsignedLong((unsigned long)p); | 
 |     return PyInt_FromLong((long)p); | 
 | #else | 
 |  | 
 | #ifndef HAVE_LONG_LONG | 
 | #   error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long" | 
 | #endif | 
 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P | 
 | #   error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" | 
 | #endif | 
 |     /* optimize null pointers */ | 
 |     if (p == NULL) | 
 |         return PyInt_FromLong(0); | 
 |     return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p); | 
 |  | 
 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ | 
 | } | 
 |  | 
 | /* Get a C pointer from a long object (or an int object in some cases) */ | 
 |  | 
 | void * | 
 | PyLong_AsVoidPtr(PyObject *vv) | 
 | { | 
 |     /* This function will allow int or long objects. If vv is neither, | 
 |        then the PyLong_AsLong*() functions will raise the exception: | 
 |        PyExc_SystemError, "bad argument to internal function" | 
 |     */ | 
 | #if SIZEOF_VOID_P <= SIZEOF_LONG | 
 |     long x; | 
 |  | 
 |     if (PyInt_Check(vv)) | 
 |         x = PyInt_AS_LONG(vv); | 
 |     else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) | 
 |         x = PyLong_AsLong(vv); | 
 |     else | 
 |         x = PyLong_AsUnsignedLong(vv); | 
 | #else | 
 |  | 
 | #ifndef HAVE_LONG_LONG | 
 | #   error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long" | 
 | #endif | 
 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P | 
 | #   error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" | 
 | #endif | 
 |     PY_LONG_LONG x; | 
 |  | 
 |     if (PyInt_Check(vv)) | 
 |         x = PyInt_AS_LONG(vv); | 
 |     else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) | 
 |         x = PyLong_AsLongLong(vv); | 
 |     else | 
 |         x = PyLong_AsUnsignedLongLong(vv); | 
 |  | 
 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ | 
 |  | 
 |     if (x == -1 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return (void *)x; | 
 | } | 
 |  | 
 | #ifdef HAVE_LONG_LONG | 
 |  | 
 | /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later | 
 |  * rewritten to use the newer PyLong_{As,From}ByteArray API. | 
 |  */ | 
 |  | 
 | #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one | 
 | #define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN) | 
 |  | 
 | /* Create a new long int object from a C PY_LONG_LONG int. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromLongLong(PY_LONG_LONG ival) | 
 | { | 
 |     PyLongObject *v; | 
 |     unsigned PY_LONG_LONG abs_ival; | 
 |     unsigned PY_LONG_LONG t;  /* unsigned so >> doesn't propagate sign bit */ | 
 |     int ndigits = 0; | 
 |     int negative = 0; | 
 |  | 
 |     if (ival < 0) { | 
 |         /* avoid signed overflow on negation;  see comments | 
 |            in PyLong_FromLong above. */ | 
 |         abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1; | 
 |         negative = 1; | 
 |     } | 
 |     else { | 
 |         abs_ival = (unsigned PY_LONG_LONG)ival; | 
 |     } | 
 |  | 
 |     /* Count the number of Python digits. | 
 |        We used to pick 5 ("big enough for anything"), but that's a | 
 |        waste of time and space given that 5*15 = 75 bits are rarely | 
 |        needed. */ | 
 |     t = abs_ival; | 
 |     while (t) { | 
 |         ++ndigits; | 
 |         t >>= PyLong_SHIFT; | 
 |     } | 
 |     v = _PyLong_New(ndigits); | 
 |     if (v != NULL) { | 
 |         digit *p = v->ob_digit; | 
 |         Py_SIZE(v) = negative ? -ndigits : ndigits; | 
 |         t = abs_ival; | 
 |         while (t) { | 
 |             *p++ = (digit)(t & PyLong_MASK); | 
 |             t >>= PyLong_SHIFT; | 
 |         } | 
 |     } | 
 |     return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C unsigned PY_LONG_LONG int. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) | 
 | { | 
 |     PyLongObject *v; | 
 |     unsigned PY_LONG_LONG t; | 
 |     int ndigits = 0; | 
 |  | 
 |     /* Count the number of Python digits. */ | 
 |     t = (unsigned PY_LONG_LONG)ival; | 
 |     while (t) { | 
 |         ++ndigits; | 
 |         t >>= PyLong_SHIFT; | 
 |     } | 
 |     v = _PyLong_New(ndigits); | 
 |     if (v != NULL) { | 
 |         digit *p = v->ob_digit; | 
 |         Py_SIZE(v) = ndigits; | 
 |         while (ival) { | 
 |             *p++ = (digit)(ival & PyLong_MASK); | 
 |             ival >>= PyLong_SHIFT; | 
 |         } | 
 |     } | 
 |     return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C Py_ssize_t. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromSsize_t(Py_ssize_t ival) | 
 | { | 
 |     Py_ssize_t bytes = ival; | 
 |     int one = 1; | 
 |     return _PyLong_FromByteArray((unsigned char *)&bytes, | 
 |                                  SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1); | 
 | } | 
 |  | 
 | /* Create a new long int object from a C size_t. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromSize_t(size_t ival) | 
 | { | 
 |     size_t bytes = ival; | 
 |     int one = 1; | 
 |     return _PyLong_FromByteArray((unsigned char *)&bytes, | 
 |                                  SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0); | 
 | } | 
 |  | 
 | /* Get a C PY_LONG_LONG int from a long int object. | 
 |    Return -1 and set an error if overflow occurs. */ | 
 |  | 
 | PY_LONG_LONG | 
 | PyLong_AsLongLong(PyObject *vv) | 
 | { | 
 |     PY_LONG_LONG bytes; | 
 |     int one = 1; | 
 |     int res; | 
 |  | 
 |     if (vv == NULL) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     if (!PyLong_Check(vv)) { | 
 |         PyNumberMethods *nb; | 
 |         PyObject *io; | 
 |         if (PyInt_Check(vv)) | 
 |             return (PY_LONG_LONG)PyInt_AsLong(vv); | 
 |         if ((nb = vv->ob_type->tp_as_number) == NULL || | 
 |             nb->nb_int == NULL) { | 
 |             PyErr_SetString(PyExc_TypeError, "an integer is required"); | 
 |             return -1; | 
 |         } | 
 |         io = (*nb->nb_int) (vv); | 
 |         if (io == NULL) | 
 |             return -1; | 
 |         if (PyInt_Check(io)) { | 
 |             bytes = PyInt_AsLong(io); | 
 |             Py_DECREF(io); | 
 |             return bytes; | 
 |         } | 
 |         if (PyLong_Check(io)) { | 
 |             bytes = PyLong_AsLongLong(io); | 
 |             Py_DECREF(io); | 
 |             return bytes; | 
 |         } | 
 |         Py_DECREF(io); | 
 |         PyErr_SetString(PyExc_TypeError, "integer conversion failed"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, | 
 |                               SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); | 
 |  | 
 |     /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ | 
 |     if (res < 0) | 
 |         return (PY_LONG_LONG)-1; | 
 |     else | 
 |         return bytes; | 
 | } | 
 |  | 
 | /* Get a C unsigned PY_LONG_LONG int from a long int object. | 
 |    Return -1 and set an error if overflow occurs. */ | 
 |  | 
 | unsigned PY_LONG_LONG | 
 | PyLong_AsUnsignedLongLong(PyObject *vv) | 
 | { | 
 |     unsigned PY_LONG_LONG bytes; | 
 |     int one = 1; | 
 |     int res; | 
 |  | 
 |     if (vv == NULL || !PyLong_Check(vv)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return (unsigned PY_LONG_LONG)-1; | 
 |     } | 
 |  | 
 |     res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, | 
 |                               SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); | 
 |  | 
 |     /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ | 
 |     if (res < 0) | 
 |         return (unsigned PY_LONG_LONG)res; | 
 |     else | 
 |         return bytes; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object, ignoring the high bits. | 
 |    Returns -1 and sets an error condition if an error occurs. */ | 
 |  | 
 | unsigned PY_LONG_LONG | 
 | PyLong_AsUnsignedLongLongMask(PyObject *vv) | 
 | { | 
 |     register PyLongObject *v; | 
 |     unsigned PY_LONG_LONG x; | 
 |     Py_ssize_t i; | 
 |     int sign; | 
 |  | 
 |     if (vv == NULL || !PyLong_Check(vv)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return (unsigned long) -1; | 
 |     } | 
 |     v = (PyLongObject *)vv; | 
 |     i = v->ob_size; | 
 |     sign = 1; | 
 |     x = 0; | 
 |     if (i < 0) { | 
 |         sign = -1; | 
 |         i = -i; | 
 |     } | 
 |     while (--i >= 0) { | 
 |         x = (x << PyLong_SHIFT) | v->ob_digit[i]; | 
 |     } | 
 |     return x * sign; | 
 | } | 
 |  | 
 | /* Get a C long long int from a Python long or Python int object. | 
 |    On overflow, returns -1 and sets *overflow to 1 or -1 depending | 
 |    on the sign of the result.  Otherwise *overflow is 0. | 
 |  | 
 |    For other errors (e.g., type error), returns -1 and sets an error | 
 |    condition. | 
 | */ | 
 |  | 
 | PY_LONG_LONG | 
 | PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow) | 
 | { | 
 |     /* This version by Tim Peters */ | 
 |     register PyLongObject *v; | 
 |     unsigned PY_LONG_LONG x, prev; | 
 |     PY_LONG_LONG res; | 
 |     Py_ssize_t i; | 
 |     int sign; | 
 |     int do_decref = 0; /* if nb_int was called */ | 
 |  | 
 |     *overflow = 0; | 
 |     if (vv == NULL) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (PyInt_Check(vv)) | 
 |         return PyInt_AsLong(vv); | 
 |  | 
 |     if (!PyLong_Check(vv)) { | 
 |         PyNumberMethods *nb; | 
 |         nb = vv->ob_type->tp_as_number; | 
 |         if (nb == NULL || nb->nb_int == NULL) { | 
 |             PyErr_SetString(PyExc_TypeError, | 
 |                             "an integer is required"); | 
 |             return -1; | 
 |         } | 
 |         vv = (*nb->nb_int) (vv); | 
 |         if (vv == NULL) | 
 |             return -1; | 
 |         do_decref = 1; | 
 |         if(PyInt_Check(vv)) { | 
 |             res = PyInt_AsLong(vv); | 
 |             goto exit; | 
 |         } | 
 |         if (!PyLong_Check(vv)) { | 
 |             Py_DECREF(vv); | 
 |             PyErr_SetString(PyExc_TypeError, | 
 |                             "nb_int should return int object"); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |  | 
 |     res = -1; | 
 |     v = (PyLongObject *)vv; | 
 |     i = Py_SIZE(v); | 
 |  | 
 |     switch (i) { | 
 |     case -1: | 
 |         res = -(sdigit)v->ob_digit[0]; | 
 |         break; | 
 |     case 0: | 
 |         res = 0; | 
 |         break; | 
 |     case 1: | 
 |         res = v->ob_digit[0]; | 
 |         break; | 
 |     default: | 
 |         sign = 1; | 
 |         x = 0; | 
 |         if (i < 0) { | 
 |             sign = -1; | 
 |             i = -(i); | 
 |         } | 
 |         while (--i >= 0) { | 
 |             prev = x; | 
 |             x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 |             if ((x >> PyLong_SHIFT) != prev) { | 
 |                 *overflow = sign; | 
 |                 goto exit; | 
 |             } | 
 |         } | 
 |         /* Haven't lost any bits, but casting to long requires extra | 
 |          * care (see comment above). | 
 |          */ | 
 |         if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) { | 
 |             res = (PY_LONG_LONG)x * sign; | 
 |         } | 
 |         else if (sign < 0 && x == PY_ABS_LLONG_MIN) { | 
 |             res = PY_LLONG_MIN; | 
 |         } | 
 |         else { | 
 |             *overflow = sign; | 
 |             /* res is already set to -1 */ | 
 |         } | 
 |     } | 
 |   exit: | 
 |     if (do_decref) { | 
 |         Py_DECREF(vv); | 
 |     } | 
 |     return res; | 
 | } | 
 |  | 
 | #undef IS_LITTLE_ENDIAN | 
 |  | 
 | #endif /* HAVE_LONG_LONG */ | 
 |  | 
 |  | 
 | static int | 
 | convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) { | 
 |     if (PyLong_Check(v)) { | 
 |         *a = (PyLongObject *) v; | 
 |         Py_INCREF(v); | 
 |     } | 
 |     else if (PyInt_Check(v)) { | 
 |         *a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v)); | 
 |     } | 
 |     else { | 
 |         return 0; | 
 |     } | 
 |     if (PyLong_Check(w)) { | 
 |         *b = (PyLongObject *) w; | 
 |         Py_INCREF(w); | 
 |     } | 
 |     else if (PyInt_Check(w)) { | 
 |         *b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w)); | 
 |     } | 
 |     else { | 
 |         Py_DECREF(*a); | 
 |         return 0; | 
 |     } | 
 |     return 1; | 
 | } | 
 |  | 
 | #define CONVERT_BINOP(v, w, a, b)               \ | 
 |     do {                                        \ | 
 |         if (!convert_binop(v, w, a, b)) {       \ | 
 |             Py_INCREF(Py_NotImplemented);       \ | 
 |             return Py_NotImplemented;           \ | 
 |         }                                       \ | 
 |     } while(0)                                  \ | 
 |  | 
 | /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d < | 
 |    2**k if d is nonzero, else 0. */ | 
 |  | 
 | static const unsigned char BitLengthTable[32] = { | 
 |     0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, | 
 |     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 | 
 | }; | 
 |  | 
 | static int | 
 | bits_in_digit(digit d) | 
 | { | 
 |     int d_bits = 0; | 
 |     while (d >= 32) { | 
 |         d_bits += 6; | 
 |         d >>= 6; | 
 |     } | 
 |     d_bits += (int)BitLengthTable[d]; | 
 |     return d_bits; | 
 | } | 
 |  | 
 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n] | 
 |  * is modified in place, by adding y to it.  Carries are propagated as far as | 
 |  * x[m-1], and the remaining carry (0 or 1) is returned. | 
 |  */ | 
 | static digit | 
 | v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) | 
 | { | 
 |     Py_ssize_t i; | 
 |     digit carry = 0; | 
 |  | 
 |     assert(m >= n); | 
 |     for (i = 0; i < n; ++i) { | 
 |         carry += x[i] + y[i]; | 
 |         x[i] = carry & PyLong_MASK; | 
 |         carry >>= PyLong_SHIFT; | 
 |         assert((carry & 1) == carry); | 
 |     } | 
 |     for (; carry && i < m; ++i) { | 
 |         carry += x[i]; | 
 |         x[i] = carry & PyLong_MASK; | 
 |         carry >>= PyLong_SHIFT; | 
 |         assert((carry & 1) == carry); | 
 |     } | 
 |     return carry; | 
 | } | 
 |  | 
 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n] | 
 |  * is modified in place, by subtracting y from it.  Borrows are propagated as | 
 |  * far as x[m-1], and the remaining borrow (0 or 1) is returned. | 
 |  */ | 
 | static digit | 
 | v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) | 
 | { | 
 |     Py_ssize_t i; | 
 |     digit borrow = 0; | 
 |  | 
 |     assert(m >= n); | 
 |     for (i = 0; i < n; ++i) { | 
 |         borrow = x[i] - y[i] - borrow; | 
 |         x[i] = borrow & PyLong_MASK; | 
 |         borrow >>= PyLong_SHIFT; | 
 |         borrow &= 1;            /* keep only 1 sign bit */ | 
 |     } | 
 |     for (; borrow && i < m; ++i) { | 
 |         borrow = x[i] - borrow; | 
 |         x[i] = borrow & PyLong_MASK; | 
 |         borrow >>= PyLong_SHIFT; | 
 |         borrow &= 1; | 
 |     } | 
 |     return borrow; | 
 | } | 
 |  | 
 | /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put | 
 |  * result in z[0:m], and return the d bits shifted out of the top. | 
 |  */ | 
 | static digit | 
 | v_lshift(digit *z, digit *a, Py_ssize_t m, int d) | 
 | { | 
 |     Py_ssize_t i; | 
 |     digit carry = 0; | 
 |  | 
 |     assert(0 <= d && d < PyLong_SHIFT); | 
 |     for (i=0; i < m; i++) { | 
 |         twodigits acc = (twodigits)a[i] << d | carry; | 
 |         z[i] = (digit)acc & PyLong_MASK; | 
 |         carry = (digit)(acc >> PyLong_SHIFT); | 
 |     } | 
 |     return carry; | 
 | } | 
 |  | 
 | /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put | 
 |  * result in z[0:m], and return the d bits shifted out of the bottom. | 
 |  */ | 
 | static digit | 
 | v_rshift(digit *z, digit *a, Py_ssize_t m, int d) | 
 | { | 
 |     Py_ssize_t i; | 
 |     digit carry = 0; | 
 |     digit mask = ((digit)1 << d) - 1U; | 
 |  | 
 |     assert(0 <= d && d < PyLong_SHIFT); | 
 |     for (i=m; i-- > 0;) { | 
 |         twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; | 
 |         carry = (digit)acc & mask; | 
 |         z[i] = (digit)(acc >> d); | 
 |     } | 
 |     return carry; | 
 | } | 
 |  | 
 | /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient | 
 |    in pout, and returning the remainder.  pin and pout point at the LSD. | 
 |    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in | 
 |    _PyLong_Format, but that should be done with great care since longs are | 
 |    immutable. */ | 
 |  | 
 | static digit | 
 | inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) | 
 | { | 
 |     twodigits rem = 0; | 
 |  | 
 |     assert(n > 0 && n <= PyLong_MASK); | 
 |     pin += size; | 
 |     pout += size; | 
 |     while (--size >= 0) { | 
 |         digit hi; | 
 |         rem = (rem << PyLong_SHIFT) | *--pin; | 
 |         *--pout = hi = (digit)(rem / n); | 
 |         rem -= (twodigits)hi * n; | 
 |     } | 
 |     return (digit)rem; | 
 | } | 
 |  | 
 | /* Divide a long integer by a digit, returning both the quotient | 
 |    (as function result) and the remainder (through *prem). | 
 |    The sign of a is ignored; n should not be zero. */ | 
 |  | 
 | static PyLongObject * | 
 | divrem1(PyLongObject *a, digit n, digit *prem) | 
 | { | 
 |     const Py_ssize_t size = ABS(Py_SIZE(a)); | 
 |     PyLongObject *z; | 
 |  | 
 |     assert(n > 0 && n <= PyLong_MASK); | 
 |     z = _PyLong_New(size); | 
 |     if (z == NULL) | 
 |         return NULL; | 
 |     *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); | 
 |     return long_normalize(z); | 
 | } | 
 |  | 
 | /* Convert a long integer to a base 10 string.  Returns a new non-shared | 
 |    string.  (Return value is non-shared so that callers can modify the | 
 |    returned value if necessary.) */ | 
 |  | 
 | static PyObject * | 
 | long_to_decimal_string(PyObject *aa, int addL) | 
 | { | 
 |     PyLongObject *scratch, *a; | 
 |     PyObject *str; | 
 |     Py_ssize_t size, strlen, size_a, i, j; | 
 |     digit *pout, *pin, rem, tenpow; | 
 |     char *p; | 
 |     int negative; | 
 |  | 
 |     a = (PyLongObject *)aa; | 
 |     if (a == NULL || !PyLong_Check(a)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     size_a = ABS(Py_SIZE(a)); | 
 |     negative = Py_SIZE(a) < 0; | 
 |  | 
 |     /* quick and dirty upper bound for the number of digits | 
 |        required to express a in base _PyLong_DECIMAL_BASE: | 
 |  | 
 |          #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) | 
 |  | 
 |        But log2(a) < size_a * PyLong_SHIFT, and | 
 |        log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT | 
 |                                   > 3 * _PyLong_DECIMAL_SHIFT | 
 |     */ | 
 |     if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "long is too large to format"); | 
 |         return NULL; | 
 |     } | 
 |     /* the expression size_a * PyLong_SHIFT is now safe from overflow */ | 
 |     size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT); | 
 |     scratch = _PyLong_New(size); | 
 |     if (scratch == NULL) | 
 |         return NULL; | 
 |  | 
 |     /* convert array of base _PyLong_BASE digits in pin to an array of | 
 |        base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, | 
 |        Volume 2 (3rd edn), section 4.4, Method 1b). */ | 
 |     pin = a->ob_digit; | 
 |     pout = scratch->ob_digit; | 
 |     size = 0; | 
 |     for (i = size_a; --i >= 0; ) { | 
 |         digit hi = pin[i]; | 
 |         for (j = 0; j < size; j++) { | 
 |             twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; | 
 |             hi = (digit)(z / _PyLong_DECIMAL_BASE); | 
 |             pout[j] = (digit)(z - (twodigits)hi * | 
 |                               _PyLong_DECIMAL_BASE); | 
 |         } | 
 |         while (hi) { | 
 |             pout[size++] = hi % _PyLong_DECIMAL_BASE; | 
 |             hi /= _PyLong_DECIMAL_BASE; | 
 |         } | 
 |         /* check for keyboard interrupt */ | 
 |         SIGCHECK({ | 
 |                 Py_DECREF(scratch); | 
 |                 return NULL; | 
 |             }); | 
 |     } | 
 |     /* pout should have at least one digit, so that the case when a = 0 | 
 |        works correctly */ | 
 |     if (size == 0) | 
 |         pout[size++] = 0; | 
 |  | 
 |     /* calculate exact length of output string, and allocate */ | 
 |     strlen = (addL != 0) + negative + | 
 |         1 + (size - 1) * _PyLong_DECIMAL_SHIFT; | 
 |     tenpow = 10; | 
 |     rem = pout[size-1]; | 
 |     while (rem >= tenpow) { | 
 |         tenpow *= 10; | 
 |         strlen++; | 
 |     } | 
 |     str = PyString_FromStringAndSize(NULL, strlen); | 
 |     if (str == NULL) { | 
 |         Py_DECREF(scratch); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* fill the string right-to-left */ | 
 |     p = PyString_AS_STRING(str) + strlen; | 
 |     *p = '\0'; | 
 |     if (addL) | 
 |         *--p = 'L'; | 
 |     /* pout[0] through pout[size-2] contribute exactly | 
 |        _PyLong_DECIMAL_SHIFT digits each */ | 
 |     for (i=0; i < size - 1; i++) { | 
 |         rem = pout[i]; | 
 |         for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { | 
 |             *--p = '0' + rem % 10; | 
 |             rem /= 10; | 
 |         } | 
 |     } | 
 |     /* pout[size-1]: always produce at least one decimal digit */ | 
 |     rem = pout[i]; | 
 |     do { | 
 |         *--p = '0' + rem % 10; | 
 |         rem /= 10; | 
 |     } while (rem != 0); | 
 |  | 
 |     /* and sign */ | 
 |     if (negative) | 
 |         *--p = '-'; | 
 |  | 
 |     /* check we've counted correctly */ | 
 |     assert(p == PyString_AS_STRING(str)); | 
 |     Py_DECREF(scratch); | 
 |     return (PyObject *)str; | 
 | } | 
 |  | 
 | /* Convert the long to a string object with given base, | 
 |    appending a base prefix of 0[box] if base is 2, 8 or 16. | 
 |    Add a trailing "L" if addL is non-zero. | 
 |    If newstyle is zero, then use the pre-2.6 behavior of octal having | 
 |    a leading "0", instead of the prefix "0o" */ | 
 | PyAPI_FUNC(PyObject *) | 
 | _PyLong_Format(PyObject *aa, int base, int addL, int newstyle) | 
 | { | 
 |     register PyLongObject *a = (PyLongObject *)aa; | 
 |     PyStringObject *str; | 
 |     Py_ssize_t i, sz; | 
 |     Py_ssize_t size_a; | 
 |     char *p; | 
 |     int bits; | 
 |     char sign = '\0'; | 
 |  | 
 |     if (base == 10) | 
 |         return long_to_decimal_string((PyObject *)a, addL); | 
 |  | 
 |     if (a == NULL || !PyLong_Check(a)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     assert(base >= 2 && base <= 36); | 
 |     size_a = ABS(Py_SIZE(a)); | 
 |  | 
 |     /* Compute a rough upper bound for the length of the string */ | 
 |     i = base; | 
 |     bits = 0; | 
 |     while (i > 1) { | 
 |         ++bits; | 
 |         i >>= 1; | 
 |     } | 
 |     i = 5 + (addL ? 1 : 0); | 
 |     /* ensure we don't get signed overflow in sz calculation */ | 
 |     if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "long is too large to format"); | 
 |         return NULL; | 
 |     } | 
 |     sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits; | 
 |     assert(sz >= 0); | 
 |     str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz); | 
 |     if (str == NULL) | 
 |         return NULL; | 
 |     p = PyString_AS_STRING(str) + sz; | 
 |     *p = '\0'; | 
 |     if (addL) | 
 |         *--p = 'L'; | 
 |     if (a->ob_size < 0) | 
 |         sign = '-'; | 
 |  | 
 |     if (a->ob_size == 0) { | 
 |         *--p = '0'; | 
 |     } | 
 |     else if ((base & (base - 1)) == 0) { | 
 |         /* JRH: special case for power-of-2 bases */ | 
 |         twodigits accum = 0; | 
 |         int accumbits = 0;              /* # of bits in accum */ | 
 |         int basebits = 1;               /* # of bits in base-1 */ | 
 |         i = base; | 
 |         while ((i >>= 1) > 1) | 
 |             ++basebits; | 
 |  | 
 |         for (i = 0; i < size_a; ++i) { | 
 |             accum |= (twodigits)a->ob_digit[i] << accumbits; | 
 |             accumbits += PyLong_SHIFT; | 
 |             assert(accumbits >= basebits); | 
 |             do { | 
 |                 char cdigit = (char)(accum & (base - 1)); | 
 |                 cdigit += (cdigit < 10) ? '0' : 'a'-10; | 
 |                 assert(p > PyString_AS_STRING(str)); | 
 |                 *--p = cdigit; | 
 |                 accumbits -= basebits; | 
 |                 accum >>= basebits; | 
 |             } while (i < size_a-1 ? accumbits >= basebits : accum > 0); | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* Not 0, and base not a power of 2.  Divide repeatedly by | 
 |            base, but for speed use the highest power of base that | 
 |            fits in a digit. */ | 
 |         Py_ssize_t size = size_a; | 
 |         digit *pin = a->ob_digit; | 
 |         PyLongObject *scratch; | 
 |         /* powbasw <- largest power of base that fits in a digit. */ | 
 |         digit powbase = base;  /* powbase == base ** power */ | 
 |         int power = 1; | 
 |         for (;;) { | 
 |             twodigits newpow = powbase * (twodigits)base; | 
 |             if (newpow >> PyLong_SHIFT) | 
 |                 /* doesn't fit in a digit */ | 
 |                 break; | 
 |             powbase = (digit)newpow; | 
 |             ++power; | 
 |         } | 
 |  | 
 |         /* Get a scratch area for repeated division. */ | 
 |         scratch = _PyLong_New(size); | 
 |         if (scratch == NULL) { | 
 |             Py_DECREF(str); | 
 |             return NULL; | 
 |         } | 
 |  | 
 |         /* Repeatedly divide by powbase. */ | 
 |         do { | 
 |             int ntostore = power; | 
 |             digit rem = inplace_divrem1(scratch->ob_digit, | 
 |                                         pin, size, powbase); | 
 |             pin = scratch->ob_digit; /* no need to use a again */ | 
 |             if (pin[size - 1] == 0) | 
 |                 --size; | 
 |             SIGCHECK({ | 
 |                     Py_DECREF(scratch); | 
 |                     Py_DECREF(str); | 
 |                     return NULL; | 
 |                 }); | 
 |  | 
 |             /* Break rem into digits. */ | 
 |             assert(ntostore > 0); | 
 |             do { | 
 |                 digit nextrem = (digit)(rem / base); | 
 |                 char c = (char)(rem - nextrem * base); | 
 |                 assert(p > PyString_AS_STRING(str)); | 
 |                 c += (c < 10) ? '0' : 'a'-10; | 
 |                 *--p = c; | 
 |                 rem = nextrem; | 
 |                 --ntostore; | 
 |                 /* Termination is a bit delicate:  must not | 
 |                    store leading zeroes, so must get out if | 
 |                    remaining quotient and rem are both 0. */ | 
 |             } while (ntostore && (size || rem)); | 
 |         } while (size != 0); | 
 |         Py_DECREF(scratch); | 
 |     } | 
 |  | 
 |     if (base == 2) { | 
 |         *--p = 'b'; | 
 |         *--p = '0'; | 
 |     } | 
 |     else if (base == 8) { | 
 |         if (newstyle) { | 
 |             *--p = 'o'; | 
 |             *--p = '0'; | 
 |         } | 
 |         else | 
 |             if (size_a != 0) | 
 |                 *--p = '0'; | 
 |     } | 
 |     else if (base == 16) { | 
 |         *--p = 'x'; | 
 |         *--p = '0'; | 
 |     } | 
 |     else if (base != 10) { | 
 |         *--p = '#'; | 
 |         *--p = '0' + base%10; | 
 |         if (base > 10) | 
 |             *--p = '0' + base/10; | 
 |     } | 
 |     if (sign) | 
 |         *--p = sign; | 
 |     if (p != PyString_AS_STRING(str)) { | 
 |         char *q = PyString_AS_STRING(str); | 
 |         assert(p > q); | 
 |         do { | 
 |         } while ((*q++ = *p++) != '\0'); | 
 |         q--; | 
 |         _PyString_Resize((PyObject **)&str, | 
 |                          (Py_ssize_t) (q - PyString_AS_STRING(str))); | 
 |     } | 
 |     return (PyObject *)str; | 
 | } | 
 |  | 
 | /* Table of digit values for 8-bit string -> integer conversion. | 
 |  * '0' maps to 0, ..., '9' maps to 9. | 
 |  * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35. | 
 |  * All other indices map to 37. | 
 |  * Note that when converting a base B string, a char c is a legitimate | 
 |  * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B. | 
 |  */ | 
 | int _PyLong_DigitValue[256] = { | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37, | 
 |     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, | 
 |     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, | 
 |     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, | 
 |     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 |     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | }; | 
 |  | 
 | /* *str points to the first digit in a string of base `base` digits.  base | 
 |  * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first | 
 |  * non-digit (which may be *str!).  A normalized long is returned. | 
 |  * The point to this routine is that it takes time linear in the number of | 
 |  * string characters. | 
 |  */ | 
 | static PyLongObject * | 
 | long_from_binary_base(char **str, int base) | 
 | { | 
 |     char *p = *str; | 
 |     char *start = p; | 
 |     int bits_per_char; | 
 |     Py_ssize_t n; | 
 |     PyLongObject *z; | 
 |     twodigits accum; | 
 |     int bits_in_accum; | 
 |     digit *pdigit; | 
 |  | 
 |     assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); | 
 |     n = base; | 
 |     for (bits_per_char = -1; n; ++bits_per_char) | 
 |         n >>= 1; | 
 |     /* n <- total # of bits needed, while setting p to end-of-string */ | 
 |     while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base) | 
 |         ++p; | 
 |     *str = p; | 
 |     /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */ | 
 |     n = (p - start) * bits_per_char + PyLong_SHIFT - 1; | 
 |     if (n / bits_per_char < p - start) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "long string too large to convert"); | 
 |         return NULL; | 
 |     } | 
 |     n = n / PyLong_SHIFT; | 
 |     z = _PyLong_New(n); | 
 |     if (z == NULL) | 
 |         return NULL; | 
 |     /* Read string from right, and fill in long from left; i.e., | 
 |      * from least to most significant in both. | 
 |      */ | 
 |     accum = 0; | 
 |     bits_in_accum = 0; | 
 |     pdigit = z->ob_digit; | 
 |     while (--p >= start) { | 
 |         int k = _PyLong_DigitValue[Py_CHARMASK(*p)]; | 
 |         assert(k >= 0 && k < base); | 
 |         accum |= (twodigits)k << bits_in_accum; | 
 |         bits_in_accum += bits_per_char; | 
 |         if (bits_in_accum >= PyLong_SHIFT) { | 
 |             *pdigit++ = (digit)(accum & PyLong_MASK); | 
 |             assert(pdigit - z->ob_digit <= n); | 
 |             accum >>= PyLong_SHIFT; | 
 |             bits_in_accum -= PyLong_SHIFT; | 
 |             assert(bits_in_accum < PyLong_SHIFT); | 
 |         } | 
 |     } | 
 |     if (bits_in_accum) { | 
 |         assert(bits_in_accum <= PyLong_SHIFT); | 
 |         *pdigit++ = (digit)accum; | 
 |         assert(pdigit - z->ob_digit <= n); | 
 |     } | 
 |     while (pdigit - z->ob_digit < n) | 
 |         *pdigit++ = 0; | 
 |     return long_normalize(z); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyLong_FromString(char *str, char **pend, int base) | 
 | { | 
 |     int sign = 1; | 
 |     char *start, *orig_str = str; | 
 |     PyLongObject *z; | 
 |     PyObject *strobj, *strrepr; | 
 |     Py_ssize_t slen; | 
 |  | 
 |     if ((base != 0 && base < 2) || base > 36) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "long() arg 2 must be >= 2 and <= 36"); | 
 |         return NULL; | 
 |     } | 
 |     while (*str != '\0' && isspace(Py_CHARMASK(*str))) | 
 |         str++; | 
 |     if (*str == '+') | 
 |         ++str; | 
 |     else if (*str == '-') { | 
 |         ++str; | 
 |         sign = -1; | 
 |     } | 
 |     while (*str != '\0' && isspace(Py_CHARMASK(*str))) | 
 |         str++; | 
 |     if (base == 0) { | 
 |         /* No base given.  Deduce the base from the contents | 
 |            of the string */ | 
 |         if (str[0] != '0') | 
 |             base = 10; | 
 |         else if (str[1] == 'x' || str[1] == 'X') | 
 |             base = 16; | 
 |         else if (str[1] == 'o' || str[1] == 'O') | 
 |             base = 8; | 
 |         else if (str[1] == 'b' || str[1] == 'B') | 
 |             base = 2; | 
 |         else | 
 |             /* "old" (C-style) octal literal, still valid in | 
 |                2.x, although illegal in 3.x */ | 
 |             base = 8; | 
 |     } | 
 |     /* Whether or not we were deducing the base, skip leading chars | 
 |        as needed */ | 
 |     if (str[0] == '0' && | 
 |         ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || | 
 |          (base == 8  && (str[1] == 'o' || str[1] == 'O')) || | 
 |          (base == 2  && (str[1] == 'b' || str[1] == 'B')))) | 
 |         str += 2; | 
 |  | 
 |     start = str; | 
 |     if ((base & (base - 1)) == 0) | 
 |         z = long_from_binary_base(&str, base); | 
 |     else { | 
 | /*** | 
 | Binary bases can be converted in time linear in the number of digits, because | 
 | Python's representation base is binary.  Other bases (including decimal!) use | 
 | the simple quadratic-time algorithm below, complicated by some speed tricks. | 
 |  | 
 | First some math:  the largest integer that can be expressed in N base-B digits | 
 | is B**N-1.  Consequently, if we have an N-digit input in base B, the worst- | 
 | case number of Python digits needed to hold it is the smallest integer n s.t. | 
 |  | 
 |     PyLong_BASE**n-1 >= B**N-1  [or, adding 1 to both sides] | 
 |     PyLong_BASE**n >= B**N      [taking logs to base PyLong_BASE] | 
 |     n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE) | 
 |  | 
 | The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so | 
 | we can compute this quickly.  A Python long with that much space is reserved | 
 | near the start, and the result is computed into it. | 
 |  | 
 | The input string is actually treated as being in base base**i (i.e., i digits | 
 | are processed at a time), where two more static arrays hold: | 
 |  | 
 |     convwidth_base[base] = the largest integer i such that | 
 |                            base**i <= PyLong_BASE | 
 |     convmultmax_base[base] = base ** convwidth_base[base] | 
 |  | 
 | The first of these is the largest i such that i consecutive input digits | 
 | must fit in a single Python digit.  The second is effectively the input | 
 | base we're really using. | 
 |  | 
 | Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base | 
 | convmultmax_base[base], the result is "simply" | 
 |  | 
 |    (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1 | 
 |  | 
 | where B = convmultmax_base[base]. | 
 |  | 
 | Error analysis:  as above, the number of Python digits `n` needed is worst- | 
 | case | 
 |  | 
 |     n >= N * log(B)/log(PyLong_BASE) | 
 |  | 
 | where `N` is the number of input digits in base `B`.  This is computed via | 
 |  | 
 |     size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1; | 
 |  | 
 | below.  Two numeric concerns are how much space this can waste, and whether | 
 | the computed result can be too small.  To be concrete, assume PyLong_BASE = | 
 | 2**15, which is the default (and it's unlikely anyone changes that). | 
 |  | 
 | Waste isn't a problem: provided the first input digit isn't 0, the difference | 
 | between the worst-case input with N digits and the smallest input with N | 
 | digits is about a factor of B, but B is small compared to PyLong_BASE so at | 
 | most one allocated Python digit can remain unused on that count.  If | 
 | N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating | 
 | that and adding 1 returns a result 1 larger than necessary.  However, that | 
 | can't happen: whenever B is a power of 2, long_from_binary_base() is called | 
 | instead, and it's impossible for B**i to be an integer power of 2**15 when B | 
 | is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be | 
 | an exact integer when B is not a power of 2, since B**i has a prime factor | 
 | other than 2 in that case, but (2**15)**j's only prime factor is 2). | 
 |  | 
 | The computed result can be too small if the true value of | 
 | N*log(B)/log(PyLong_BASE) is a little bit larger than an exact integer, but | 
 | due to roundoff errors (in computing log(B), log(PyLong_BASE), their quotient, | 
 | and/or multiplying that by N) yields a numeric result a little less than that | 
 | integer.  Unfortunately, "how close can a transcendental function get to an | 
 | integer over some range?"  questions are generally theoretically intractable. | 
 | Computer analysis via continued fractions is practical: expand | 
 | log(B)/log(PyLong_BASE) via continued fractions, giving a sequence i/j of "the | 
 | best" rational approximations.  Then j*log(B)/log(PyLong_BASE) is | 
 | approximately equal to (the integer) i.  This shows that we can get very close | 
 | to being in trouble, but very rarely.  For example, 76573 is a denominator in | 
 | one of the continued-fraction approximations to log(10)/log(2**15), and | 
 | indeed: | 
 |  | 
 |     >>> log(10)/log(2**15)*76573 | 
 |     16958.000000654003 | 
 |  | 
 | is very close to an integer.  If we were working with IEEE single-precision, | 
 | rounding errors could kill us.  Finding worst cases in IEEE double-precision | 
 | requires better-than-double-precision log() functions, and Tim didn't bother. | 
 | Instead the code checks to see whether the allocated space is enough as each | 
 | new Python digit is added, and copies the whole thing to a larger long if not. | 
 | This should happen extremely rarely, and in fact I don't have a test case | 
 | that triggers it(!).  Instead the code was tested by artificially allocating | 
 | just 1 digit at the start, so that the copying code was exercised for every | 
 | digit beyond the first. | 
 | ***/ | 
 |         register twodigits c;           /* current input character */ | 
 |         Py_ssize_t size_z; | 
 |         int i; | 
 |         int convwidth; | 
 |         twodigits convmultmax, convmult; | 
 |         digit *pz, *pzstop; | 
 |         char* scan; | 
 |  | 
 |         static double log_base_PyLong_BASE[37] = {0.0e0,}; | 
 |         static int convwidth_base[37] = {0,}; | 
 |         static twodigits convmultmax_base[37] = {0,}; | 
 |  | 
 |         if (log_base_PyLong_BASE[base] == 0.0) { | 
 |             twodigits convmax = base; | 
 |             int i = 1; | 
 |  | 
 |             log_base_PyLong_BASE[base] = (log((double)base) / | 
 |                                           log((double)PyLong_BASE)); | 
 |             for (;;) { | 
 |                 twodigits next = convmax * base; | 
 |                 if (next > PyLong_BASE) | 
 |                     break; | 
 |                 convmax = next; | 
 |                 ++i; | 
 |             } | 
 |             convmultmax_base[base] = convmax; | 
 |             assert(i > 0); | 
 |             convwidth_base[base] = i; | 
 |         } | 
 |  | 
 |         /* Find length of the string of numeric characters. */ | 
 |         scan = str; | 
 |         while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base) | 
 |             ++scan; | 
 |  | 
 |         /* Create a long object that can contain the largest possible | 
 |          * integer with this base and length.  Note that there's no | 
 |          * need to initialize z->ob_digit -- no slot is read up before | 
 |          * being stored into. | 
 |          */ | 
 |         size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1; | 
 |         /* Uncomment next line to test exceedingly rare copy code */ | 
 |         /* size_z = 1; */ | 
 |         assert(size_z > 0); | 
 |         z = _PyLong_New(size_z); | 
 |         if (z == NULL) | 
 |             return NULL; | 
 |         Py_SIZE(z) = 0; | 
 |  | 
 |         /* `convwidth` consecutive input digits are treated as a single | 
 |          * digit in base `convmultmax`. | 
 |          */ | 
 |         convwidth = convwidth_base[base]; | 
 |         convmultmax = convmultmax_base[base]; | 
 |  | 
 |         /* Work ;-) */ | 
 |         while (str < scan) { | 
 |             /* grab up to convwidth digits from the input string */ | 
 |             c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; | 
 |             for (i = 1; i < convwidth && str != scan; ++i, ++str) { | 
 |                 c = (twodigits)(c *  base + | 
 |                                 _PyLong_DigitValue[Py_CHARMASK(*str)]); | 
 |                 assert(c < PyLong_BASE); | 
 |             } | 
 |  | 
 |             convmult = convmultmax; | 
 |             /* Calculate the shift only if we couldn't get | 
 |              * convwidth digits. | 
 |              */ | 
 |             if (i != convwidth) { | 
 |                 convmult = base; | 
 |                 for ( ; i > 1; --i) | 
 |                     convmult *= base; | 
 |             } | 
 |  | 
 |             /* Multiply z by convmult, and add c. */ | 
 |             pz = z->ob_digit; | 
 |             pzstop = pz + Py_SIZE(z); | 
 |             for (; pz < pzstop; ++pz) { | 
 |                 c += (twodigits)*pz * convmult; | 
 |                 *pz = (digit)(c & PyLong_MASK); | 
 |                 c >>= PyLong_SHIFT; | 
 |             } | 
 |             /* carry off the current end? */ | 
 |             if (c) { | 
 |                 assert(c < PyLong_BASE); | 
 |                 if (Py_SIZE(z) < size_z) { | 
 |                     *pz = (digit)c; | 
 |                     ++Py_SIZE(z); | 
 |                 } | 
 |                 else { | 
 |                     PyLongObject *tmp; | 
 |                     /* Extremely rare.  Get more space. */ | 
 |                     assert(Py_SIZE(z) == size_z); | 
 |                     tmp = _PyLong_New(size_z + 1); | 
 |                     if (tmp == NULL) { | 
 |                         Py_DECREF(z); | 
 |                         return NULL; | 
 |                     } | 
 |                     memcpy(tmp->ob_digit, | 
 |                            z->ob_digit, | 
 |                            sizeof(digit) * size_z); | 
 |                     Py_DECREF(z); | 
 |                     z = tmp; | 
 |                     z->ob_digit[size_z] = (digit)c; | 
 |                     ++size_z; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |     if (z == NULL) | 
 |         return NULL; | 
 |     if (str == start) | 
 |         goto onError; | 
 |     if (sign < 0) | 
 |         Py_SIZE(z) = -(Py_SIZE(z)); | 
 |     if (*str == 'L' || *str == 'l') | 
 |         str++; | 
 |     while (*str && isspace(Py_CHARMASK(*str))) | 
 |         str++; | 
 |     if (*str != '\0') | 
 |         goto onError; | 
 |     if (pend) | 
 |         *pend = str; | 
 |     return (PyObject *) z; | 
 |  | 
 |   onError: | 
 |     Py_XDECREF(z); | 
 |     slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; | 
 |     strobj = PyString_FromStringAndSize(orig_str, slen); | 
 |     if (strobj == NULL) | 
 |         return NULL; | 
 |     strrepr = PyObject_Repr(strobj); | 
 |     Py_DECREF(strobj); | 
 |     if (strrepr == NULL) | 
 |         return NULL; | 
 |     PyErr_Format(PyExc_ValueError, | 
 |                  "invalid literal for long() with base %d: %s", | 
 |                  base, PyString_AS_STRING(strrepr)); | 
 |     Py_DECREF(strrepr); | 
 |     return NULL; | 
 | } | 
 |  | 
 | #ifdef Py_USING_UNICODE | 
 | PyObject * | 
 | PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) | 
 | { | 
 |     PyObject *result; | 
 |     char *buffer = (char *)PyMem_MALLOC(length+1); | 
 |  | 
 |     if (buffer == NULL) | 
 |         return NULL; | 
 |  | 
 |     if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { | 
 |         PyMem_FREE(buffer); | 
 |         return NULL; | 
 |     } | 
 |     result = PyLong_FromString(buffer, NULL, base); | 
 |     PyMem_FREE(buffer); | 
 |     return result; | 
 | } | 
 | #endif | 
 |  | 
 | /* forward */ | 
 | static PyLongObject *x_divrem | 
 |     (PyLongObject *, PyLongObject *, PyLongObject **); | 
 | static PyObject *long_long(PyObject *v); | 
 |  | 
 | /* Long division with remainder, top-level routine */ | 
 |  | 
 | static int | 
 | long_divrem(PyLongObject *a, PyLongObject *b, | 
 |             PyLongObject **pdiv, PyLongObject **prem) | 
 | { | 
 |     Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | 
 |     PyLongObject *z; | 
 |  | 
 |     if (size_b == 0) { | 
 |         PyErr_SetString(PyExc_ZeroDivisionError, | 
 |                         "long division or modulo by zero"); | 
 |         return -1; | 
 |     } | 
 |     if (size_a < size_b || | 
 |         (size_a == size_b && | 
 |          a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { | 
 |         /* |a| < |b|. */ | 
 |         *pdiv = _PyLong_New(0); | 
 |         if (*pdiv == NULL) | 
 |             return -1; | 
 |         Py_INCREF(a); | 
 |         *prem = (PyLongObject *) a; | 
 |         return 0; | 
 |     } | 
 |     if (size_b == 1) { | 
 |         digit rem = 0; | 
 |         z = divrem1(a, b->ob_digit[0], &rem); | 
 |         if (z == NULL) | 
 |             return -1; | 
 |         *prem = (PyLongObject *) PyLong_FromLong((long)rem); | 
 |         if (*prem == NULL) { | 
 |             Py_DECREF(z); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |     else { | 
 |         z = x_divrem(a, b, prem); | 
 |         if (z == NULL) | 
 |             return -1; | 
 |     } | 
 |     /* Set the signs. | 
 |        The quotient z has the sign of a*b; | 
 |        the remainder r has the sign of a, | 
 |        so a = b*z + r. */ | 
 |     if ((a->ob_size < 0) != (b->ob_size < 0)) | 
 |         z->ob_size = -(z->ob_size); | 
 |     if (a->ob_size < 0 && (*prem)->ob_size != 0) | 
 |         (*prem)->ob_size = -((*prem)->ob_size); | 
 |     *pdiv = z; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Unsigned long division with remainder -- the algorithm.  The arguments v1 | 
 |    and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */ | 
 |  | 
 | static PyLongObject * | 
 | x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) | 
 | { | 
 |     PyLongObject *v, *w, *a; | 
 |     Py_ssize_t i, k, size_v, size_w; | 
 |     int d; | 
 |     digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; | 
 |     twodigits vv; | 
 |     sdigit zhi; | 
 |     stwodigits z; | 
 |  | 
 |     /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd | 
 |        edn.), section 4.3.1, Algorithm D], except that we don't explicitly | 
 |        handle the special case when the initial estimate q for a quotient | 
 |        digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and | 
 |        that won't overflow a digit. */ | 
 |  | 
 |     /* allocate space; w will also be used to hold the final remainder */ | 
 |     size_v = ABS(Py_SIZE(v1)); | 
 |     size_w = ABS(Py_SIZE(w1)); | 
 |     assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ | 
 |     v = _PyLong_New(size_v+1); | 
 |     if (v == NULL) { | 
 |         *prem = NULL; | 
 |         return NULL; | 
 |     } | 
 |     w = _PyLong_New(size_w); | 
 |     if (w == NULL) { | 
 |         Py_DECREF(v); | 
 |         *prem = NULL; | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. | 
 |        shift v1 left by the same amount.  Results go into w and v. */ | 
 |     d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]); | 
 |     carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d); | 
 |     assert(carry == 0); | 
 |     carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d); | 
 |     if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) { | 
 |         v->ob_digit[size_v] = carry; | 
 |         size_v++; | 
 |     } | 
 |  | 
 |     /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has | 
 |        at most (and usually exactly) k = size_v - size_w digits. */ | 
 |     k = size_v - size_w; | 
 |     assert(k >= 0); | 
 |     a = _PyLong_New(k); | 
 |     if (a == NULL) { | 
 |         Py_DECREF(w); | 
 |         Py_DECREF(v); | 
 |         *prem = NULL; | 
 |         return NULL; | 
 |     } | 
 |     v0 = v->ob_digit; | 
 |     w0 = w->ob_digit; | 
 |     wm1 = w0[size_w-1]; | 
 |     wm2 = w0[size_w-2]; | 
 |     for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) { | 
 |         /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving | 
 |            single-digit quotient q, remainder in vk[0:size_w]. */ | 
 |  | 
 |         SIGCHECK({ | 
 |                 Py_DECREF(a); | 
 |                 Py_DECREF(w); | 
 |                 Py_DECREF(v); | 
 |                 *prem = NULL; | 
 |                 return NULL; | 
 |             }); | 
 |  | 
 |         /* estimate quotient digit q; may overestimate by 1 (rare) */ | 
 |         vtop = vk[size_w]; | 
 |         assert(vtop <= wm1); | 
 |         vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; | 
 |         q = (digit)(vv / wm1); | 
 |         r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */ | 
 |         while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) | 
 |                                      | vk[size_w-2])) { | 
 |             --q; | 
 |             r += wm1; | 
 |             if (r >= PyLong_BASE) | 
 |                 break; | 
 |         } | 
 |         assert(q <= PyLong_BASE); | 
 |  | 
 |         /* subtract q*w0[0:size_w] from vk[0:size_w+1] */ | 
 |         zhi = 0; | 
 |         for (i = 0; i < size_w; ++i) { | 
 |             /* invariants: -PyLong_BASE <= -q <= zhi <= 0; | 
 |                -PyLong_BASE * q <= z < PyLong_BASE */ | 
 |             z = (sdigit)vk[i] + zhi - | 
 |                 (stwodigits)q * (stwodigits)w0[i]; | 
 |             vk[i] = (digit)z & PyLong_MASK; | 
 |             zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, | 
 |                                                     z, PyLong_SHIFT); | 
 |         } | 
 |  | 
 |         /* add w back if q was too large (this branch taken rarely) */ | 
 |         assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); | 
 |         if ((sdigit)vtop + zhi < 0) { | 
 |             carry = 0; | 
 |             for (i = 0; i < size_w; ++i) { | 
 |                 carry += vk[i] + w0[i]; | 
 |                 vk[i] = carry & PyLong_MASK; | 
 |                 carry >>= PyLong_SHIFT; | 
 |             } | 
 |             --q; | 
 |         } | 
 |  | 
 |         /* store quotient digit */ | 
 |         assert(q < PyLong_BASE); | 
 |         *--ak = q; | 
 |     } | 
 |  | 
 |     /* unshift remainder; we reuse w to store the result */ | 
 |     carry = v_rshift(w0, v0, size_w, d); | 
 |     assert(carry==0); | 
 |     Py_DECREF(v); | 
 |  | 
 |     *prem = long_normalize(w); | 
 |     return long_normalize(a); | 
 | } | 
 |  | 
 | /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <= | 
 |    abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is | 
 |    rounded to DBL_MANT_DIG significant bits using round-half-to-even. | 
 |    If a == 0, return 0.0 and set *e = 0.  If the resulting exponent | 
 |    e is larger than PY_SSIZE_T_MAX, raise OverflowError and return | 
 |    -1.0. */ | 
 |  | 
 | /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */ | 
 | #if DBL_MANT_DIG == 53 | 
 | #define EXP2_DBL_MANT_DIG 9007199254740992.0 | 
 | #else | 
 | #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG)) | 
 | #endif | 
 |  | 
 | double | 
 | _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e) | 
 | { | 
 |     Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size; | 
 |     /* See below for why x_digits is always large enough. */ | 
 |     digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT]; | 
 |     double dx; | 
 |     /* Correction term for round-half-to-even rounding.  For a digit x, | 
 |        "x + half_even_correction[x & 7]" gives x rounded to the nearest | 
 |        multiple of 4, rounding ties to a multiple of 8. */ | 
 |     static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; | 
 |  | 
 |     a_size = ABS(Py_SIZE(a)); | 
 |     if (a_size == 0) { | 
 |         /* Special case for 0: significand 0.0, exponent 0. */ | 
 |         *e = 0; | 
 |         return 0.0; | 
 |     } | 
 |     a_bits = bits_in_digit(a->ob_digit[a_size-1]); | 
 |     /* The following is an overflow-free version of the check | 
 |        "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */ | 
 |     if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 && | 
 |         (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 || | 
 |          a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1)) | 
 |         goto overflow; | 
 |     a_bits = (a_size - 1) * PyLong_SHIFT + a_bits; | 
 |  | 
 |     /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] | 
 |        (shifting left if a_bits <= DBL_MANT_DIG + 2). | 
 |  | 
 |        Number of digits needed for result: write // for floor division. | 
 |        Then if shifting left, we end up using | 
 |  | 
 |          1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT | 
 |  | 
 |        digits.  If shifting right, we use | 
 |  | 
 |          a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT | 
 |  | 
 |        digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with | 
 |        the inequalities | 
 |  | 
 |          m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT | 
 |          m // PyLong_SHIFT - n // PyLong_SHIFT <= | 
 |                                           1 + (m - n - 1) // PyLong_SHIFT, | 
 |  | 
 |        valid for any integers m and n, we find that x_size satisfies | 
 |  | 
 |          x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT | 
 |  | 
 |        in both cases. | 
 |     */ | 
 |     if (a_bits <= DBL_MANT_DIG + 2) { | 
 |         shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT; | 
 |         shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT; | 
 |         x_size = 0; | 
 |         while (x_size < shift_digits) | 
 |             x_digits[x_size++] = 0; | 
 |         rem = v_lshift(x_digits + x_size, a->ob_digit, a_size, | 
 |                        (int)shift_bits); | 
 |         x_size += a_size; | 
 |         x_digits[x_size++] = rem; | 
 |     } | 
 |     else { | 
 |         shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT; | 
 |         shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT; | 
 |         rem = v_rshift(x_digits, a->ob_digit + shift_digits, | 
 |                        a_size - shift_digits, (int)shift_bits); | 
 |         x_size = a_size - shift_digits; | 
 |         /* For correct rounding below, we need the least significant | 
 |            bit of x to be 'sticky' for this shift: if any of the bits | 
 |            shifted out was nonzero, we set the least significant bit | 
 |            of x. */ | 
 |         if (rem) | 
 |             x_digits[0] |= 1; | 
 |         else | 
 |             while (shift_digits > 0) | 
 |                 if (a->ob_digit[--shift_digits]) { | 
 |                     x_digits[0] |= 1; | 
 |                     break; | 
 |                 } | 
 |     } | 
 |     assert(1 <= x_size && | 
 |            x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit))); | 
 |  | 
 |     /* Round, and convert to double. */ | 
 |     x_digits[0] += half_even_correction[x_digits[0] & 7]; | 
 |     dx = x_digits[--x_size]; | 
 |     while (x_size > 0) | 
 |         dx = dx * PyLong_BASE + x_digits[--x_size]; | 
 |  | 
 |     /* Rescale;  make correction if result is 1.0. */ | 
 |     dx /= 4.0 * EXP2_DBL_MANT_DIG; | 
 |     if (dx == 1.0) { | 
 |         if (a_bits == PY_SSIZE_T_MAX) | 
 |             goto overflow; | 
 |         dx = 0.5; | 
 |         a_bits += 1; | 
 |     } | 
 |  | 
 |     *e = a_bits; | 
 |     return Py_SIZE(a) < 0 ? -dx : dx; | 
 |  | 
 |   overflow: | 
 |     /* exponent > PY_SSIZE_T_MAX */ | 
 |     PyErr_SetString(PyExc_OverflowError, | 
 |                     "huge integer: number of bits overflows a Py_ssize_t"); | 
 |     *e = 0; | 
 |     return -1.0; | 
 | } | 
 |  | 
 | /* Get a C double from a long int object.  Rounds to the nearest double, | 
 |    using the round-half-to-even rule in the case of a tie. */ | 
 |  | 
 | double | 
 | PyLong_AsDouble(PyObject *v) | 
 | { | 
 |     Py_ssize_t exponent; | 
 |     double x; | 
 |  | 
 |     if (v == NULL || !PyLong_Check(v)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1.0; | 
 |     } | 
 |     x = _PyLong_Frexp((PyLongObject *)v, &exponent); | 
 |     if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "long int too large to convert to float"); | 
 |         return -1.0; | 
 |     } | 
 |     return ldexp(x, (int)exponent); | 
 | } | 
 |  | 
 | /* Methods */ | 
 |  | 
 | static void | 
 | long_dealloc(PyObject *v) | 
 | { | 
 |     Py_TYPE(v)->tp_free(v); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_repr(PyObject *v) | 
 | { | 
 |     return _PyLong_Format(v, 10, 1, 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_str(PyObject *v) | 
 | { | 
 |     return _PyLong_Format(v, 10, 0, 0); | 
 | } | 
 |  | 
 | static int | 
 | long_compare(PyLongObject *a, PyLongObject *b) | 
 | { | 
 |     Py_ssize_t sign; | 
 |  | 
 |     if (Py_SIZE(a) != Py_SIZE(b)) { | 
 |         sign = Py_SIZE(a) - Py_SIZE(b); | 
 |     } | 
 |     else { | 
 |         Py_ssize_t i = ABS(Py_SIZE(a)); | 
 |         while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | 
 |             ; | 
 |         if (i < 0) | 
 |             sign = 0; | 
 |         else { | 
 |             sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i]; | 
 |             if (Py_SIZE(a) < 0) | 
 |                 sign = -sign; | 
 |         } | 
 |     } | 
 |     return sign < 0 ? -1 : sign > 0 ? 1 : 0; | 
 | } | 
 |  | 
 | static long | 
 | long_hash(PyLongObject *v) | 
 | { | 
 |     unsigned long x; | 
 |     Py_ssize_t i; | 
 |     int sign; | 
 |  | 
 |     /* This is designed so that Python ints and longs with the | 
 |        same value hash to the same value, otherwise comparisons | 
 |        of mapping keys will turn out weird */ | 
 |     i = v->ob_size; | 
 |     sign = 1; | 
 |     x = 0; | 
 |     if (i < 0) { | 
 |         sign = -1; | 
 |         i = -(i); | 
 |     } | 
 |     /* The following loop produces a C unsigned long x such that x is | 
 |        congruent to the absolute value of v modulo ULONG_MAX.  The | 
 |        resulting x is nonzero if and only if v is. */ | 
 |     while (--i >= 0) { | 
 |         /* Force a native long #-bits (32 or 64) circular shift */ | 
 |         x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT); | 
 |         x += v->ob_digit[i]; | 
 |         /* If the addition above overflowed we compensate by | 
 |            incrementing.  This preserves the value modulo | 
 |            ULONG_MAX. */ | 
 |         if (x < v->ob_digit[i]) | 
 |             x++; | 
 |     } | 
 |     x = x * sign; | 
 |     if (x == (unsigned long)-1) | 
 |         x = (unsigned long)-2; | 
 |     return (long)x; | 
 | } | 
 |  | 
 |  | 
 | /* Add the absolute values of two long integers. */ | 
 |  | 
 | static PyLongObject * | 
 | x_add(PyLongObject *a, PyLongObject *b) | 
 | { | 
 |     Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | 
 |     PyLongObject *z; | 
 |     Py_ssize_t i; | 
 |     digit carry = 0; | 
 |  | 
 |     /* Ensure a is the larger of the two: */ | 
 |     if (size_a < size_b) { | 
 |         { PyLongObject *temp = a; a = b; b = temp; } | 
 |         { Py_ssize_t size_temp = size_a; | 
 |             size_a = size_b; | 
 |             size_b = size_temp; } | 
 |     } | 
 |     z = _PyLong_New(size_a+1); | 
 |     if (z == NULL) | 
 |         return NULL; | 
 |     for (i = 0; i < size_b; ++i) { | 
 |         carry += a->ob_digit[i] + b->ob_digit[i]; | 
 |         z->ob_digit[i] = carry & PyLong_MASK; | 
 |         carry >>= PyLong_SHIFT; | 
 |     } | 
 |     for (; i < size_a; ++i) { | 
 |         carry += a->ob_digit[i]; | 
 |         z->ob_digit[i] = carry & PyLong_MASK; | 
 |         carry >>= PyLong_SHIFT; | 
 |     } | 
 |     z->ob_digit[i] = carry; | 
 |     return long_normalize(z); | 
 | } | 
 |  | 
 | /* Subtract the absolute values of two integers. */ | 
 |  | 
 | static PyLongObject * | 
 | x_sub(PyLongObject *a, PyLongObject *b) | 
 | { | 
 |     Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | 
 |     PyLongObject *z; | 
 |     Py_ssize_t i; | 
 |     int sign = 1; | 
 |     digit borrow = 0; | 
 |  | 
 |     /* Ensure a is the larger of the two: */ | 
 |     if (size_a < size_b) { | 
 |         sign = -1; | 
 |         { PyLongObject *temp = a; a = b; b = temp; } | 
 |         { Py_ssize_t size_temp = size_a; | 
 |             size_a = size_b; | 
 |             size_b = size_temp; } | 
 |     } | 
 |     else if (size_a == size_b) { | 
 |         /* Find highest digit where a and b differ: */ | 
 |         i = size_a; | 
 |         while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | 
 |             ; | 
 |         if (i < 0) | 
 |             return _PyLong_New(0); | 
 |         if (a->ob_digit[i] < b->ob_digit[i]) { | 
 |             sign = -1; | 
 |             { PyLongObject *temp = a; a = b; b = temp; } | 
 |         } | 
 |         size_a = size_b = i+1; | 
 |     } | 
 |     z = _PyLong_New(size_a); | 
 |     if (z == NULL) | 
 |         return NULL; | 
 |     for (i = 0; i < size_b; ++i) { | 
 |         /* The following assumes unsigned arithmetic | 
 |            works module 2**N for some N>PyLong_SHIFT. */ | 
 |         borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; | 
 |         z->ob_digit[i] = borrow & PyLong_MASK; | 
 |         borrow >>= PyLong_SHIFT; | 
 |         borrow &= 1; /* Keep only one sign bit */ | 
 |     } | 
 |     for (; i < size_a; ++i) { | 
 |         borrow = a->ob_digit[i] - borrow; | 
 |         z->ob_digit[i] = borrow & PyLong_MASK; | 
 |         borrow >>= PyLong_SHIFT; | 
 |         borrow &= 1; /* Keep only one sign bit */ | 
 |     } | 
 |     assert(borrow == 0); | 
 |     if (sign < 0) | 
 |         z->ob_size = -(z->ob_size); | 
 |     return long_normalize(z); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_add(PyLongObject *v, PyLongObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *z; | 
 |  | 
 |     CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | 
 |  | 
 |     if (a->ob_size < 0) { | 
 |         if (b->ob_size < 0) { | 
 |             z = x_add(a, b); | 
 |             if (z != NULL && z->ob_size != 0) | 
 |                 z->ob_size = -(z->ob_size); | 
 |         } | 
 |         else | 
 |             z = x_sub(b, a); | 
 |     } | 
 |     else { | 
 |         if (b->ob_size < 0) | 
 |             z = x_sub(a, b); | 
 |         else | 
 |             z = x_add(a, b); | 
 |     } | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_sub(PyLongObject *v, PyLongObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *z; | 
 |  | 
 |     CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | 
 |  | 
 |     if (a->ob_size < 0) { | 
 |         if (b->ob_size < 0) | 
 |             z = x_sub(a, b); | 
 |         else | 
 |             z = x_add(a, b); | 
 |         if (z != NULL && z->ob_size != 0) | 
 |             z->ob_size = -(z->ob_size); | 
 |     } | 
 |     else { | 
 |         if (b->ob_size < 0) | 
 |             z = x_add(a, b); | 
 |         else | 
 |             z = x_sub(a, b); | 
 |     } | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *)z; | 
 | } | 
 |  | 
 | /* Grade school multiplication, ignoring the signs. | 
 |  * Returns the absolute value of the product, or NULL if error. | 
 |  */ | 
 | static PyLongObject * | 
 | x_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 |     PyLongObject *z; | 
 |     Py_ssize_t size_a = ABS(Py_SIZE(a)); | 
 |     Py_ssize_t size_b = ABS(Py_SIZE(b)); | 
 |     Py_ssize_t i; | 
 |  | 
 |     z = _PyLong_New(size_a + size_b); | 
 |     if (z == NULL) | 
 |         return NULL; | 
 |  | 
 |     memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); | 
 |     if (a == b) { | 
 |         /* Efficient squaring per HAC, Algorithm 14.16: | 
 |          * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf | 
 |          * Gives slightly less than a 2x speedup when a == b, | 
 |          * via exploiting that each entry in the multiplication | 
 |          * pyramid appears twice (except for the size_a squares). | 
 |          */ | 
 |         for (i = 0; i < size_a; ++i) { | 
 |             twodigits carry; | 
 |             twodigits f = a->ob_digit[i]; | 
 |             digit *pz = z->ob_digit + (i << 1); | 
 |             digit *pa = a->ob_digit + i + 1; | 
 |             digit *paend = a->ob_digit + size_a; | 
 |  | 
 |             SIGCHECK({ | 
 |                     Py_DECREF(z); | 
 |                     return NULL; | 
 |                 }); | 
 |  | 
 |             carry = *pz + f * f; | 
 |             *pz++ = (digit)(carry & PyLong_MASK); | 
 |             carry >>= PyLong_SHIFT; | 
 |             assert(carry <= PyLong_MASK); | 
 |  | 
 |             /* Now f is added in twice in each column of the | 
 |              * pyramid it appears.  Same as adding f<<1 once. | 
 |              */ | 
 |             f <<= 1; | 
 |             while (pa < paend) { | 
 |                 carry += *pz + *pa++ * f; | 
 |                 *pz++ = (digit)(carry & PyLong_MASK); | 
 |                 carry >>= PyLong_SHIFT; | 
 |                 assert(carry <= (PyLong_MASK << 1)); | 
 |             } | 
 |             if (carry) { | 
 |                 carry += *pz; | 
 |                 *pz++ = (digit)(carry & PyLong_MASK); | 
 |                 carry >>= PyLong_SHIFT; | 
 |             } | 
 |             if (carry) | 
 |                 *pz += (digit)(carry & PyLong_MASK); | 
 |             assert((carry >> PyLong_SHIFT) == 0); | 
 |         } | 
 |     } | 
 |     else {      /* a is not the same as b -- gradeschool long mult */ | 
 |         for (i = 0; i < size_a; ++i) { | 
 |             twodigits carry = 0; | 
 |             twodigits f = a->ob_digit[i]; | 
 |             digit *pz = z->ob_digit + i; | 
 |             digit *pb = b->ob_digit; | 
 |             digit *pbend = b->ob_digit + size_b; | 
 |  | 
 |             SIGCHECK({ | 
 |                     Py_DECREF(z); | 
 |                     return NULL; | 
 |                 }); | 
 |  | 
 |             while (pb < pbend) { | 
 |                 carry += *pz + *pb++ * f; | 
 |                 *pz++ = (digit)(carry & PyLong_MASK); | 
 |                 carry >>= PyLong_SHIFT; | 
 |                 assert(carry <= PyLong_MASK); | 
 |             } | 
 |             if (carry) | 
 |                 *pz += (digit)(carry & PyLong_MASK); | 
 |             assert((carry >> PyLong_SHIFT) == 0); | 
 |         } | 
 |     } | 
 |     return long_normalize(z); | 
 | } | 
 |  | 
 | /* A helper for Karatsuba multiplication (k_mul). | 
 |    Takes a long "n" and an integer "size" representing the place to | 
 |    split, and sets low and high such that abs(n) == (high << size) + low, | 
 |    viewing the shift as being by digits.  The sign bit is ignored, and | 
 |    the return values are >= 0. | 
 |    Returns 0 on success, -1 on failure. | 
 | */ | 
 | static int | 
 | kmul_split(PyLongObject *n, | 
 |            Py_ssize_t size, | 
 |            PyLongObject **high, | 
 |            PyLongObject **low) | 
 | { | 
 |     PyLongObject *hi, *lo; | 
 |     Py_ssize_t size_lo, size_hi; | 
 |     const Py_ssize_t size_n = ABS(Py_SIZE(n)); | 
 |  | 
 |     size_lo = MIN(size_n, size); | 
 |     size_hi = size_n - size_lo; | 
 |  | 
 |     if ((hi = _PyLong_New(size_hi)) == NULL) | 
 |         return -1; | 
 |     if ((lo = _PyLong_New(size_lo)) == NULL) { | 
 |         Py_DECREF(hi); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); | 
 |     memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); | 
 |  | 
 |     *high = long_normalize(hi); | 
 |     *low = long_normalize(lo); | 
 |     return 0; | 
 | } | 
 |  | 
 | static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); | 
 |  | 
 | /* Karatsuba multiplication.  Ignores the input signs, and returns the | 
 |  * absolute value of the product (or NULL if error). | 
 |  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). | 
 |  */ | 
 | static PyLongObject * | 
 | k_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 |     Py_ssize_t asize = ABS(Py_SIZE(a)); | 
 |     Py_ssize_t bsize = ABS(Py_SIZE(b)); | 
 |     PyLongObject *ah = NULL; | 
 |     PyLongObject *al = NULL; | 
 |     PyLongObject *bh = NULL; | 
 |     PyLongObject *bl = NULL; | 
 |     PyLongObject *ret = NULL; | 
 |     PyLongObject *t1, *t2, *t3; | 
 |     Py_ssize_t shift;           /* the number of digits we split off */ | 
 |     Py_ssize_t i; | 
 |  | 
 |     /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl | 
 |      * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl | 
 |      * Then the original product is | 
 |      *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl | 
 |      * By picking X to be a power of 2, "*X" is just shifting, and it's | 
 |      * been reduced to 3 multiplies on numbers half the size. | 
 |      */ | 
 |  | 
 |     /* We want to split based on the larger number; fiddle so that b | 
 |      * is largest. | 
 |      */ | 
 |     if (asize > bsize) { | 
 |         t1 = a; | 
 |         a = b; | 
 |         b = t1; | 
 |  | 
 |         i = asize; | 
 |         asize = bsize; | 
 |         bsize = i; | 
 |     } | 
 |  | 
 |     /* Use gradeschool math when either number is too small. */ | 
 |     i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; | 
 |     if (asize <= i) { | 
 |         if (asize == 0) | 
 |             return _PyLong_New(0); | 
 |         else | 
 |             return x_mul(a, b); | 
 |     } | 
 |  | 
 |     /* If a is small compared to b, splitting on b gives a degenerate | 
 |      * case with ah==0, and Karatsuba may be (even much) less efficient | 
 |      * than "grade school" then.  However, we can still win, by viewing | 
 |      * b as a string of "big digits", each of width a->ob_size.  That | 
 |      * leads to a sequence of balanced calls to k_mul. | 
 |      */ | 
 |     if (2 * asize <= bsize) | 
 |         return k_lopsided_mul(a, b); | 
 |  | 
 |     /* Split a & b into hi & lo pieces. */ | 
 |     shift = bsize >> 1; | 
 |     if (kmul_split(a, shift, &ah, &al) < 0) goto fail; | 
 |     assert(Py_SIZE(ah) > 0);            /* the split isn't degenerate */ | 
 |  | 
 |     if (a == b) { | 
 |         bh = ah; | 
 |         bl = al; | 
 |         Py_INCREF(bh); | 
 |         Py_INCREF(bl); | 
 |     } | 
 |     else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; | 
 |  | 
 |     /* The plan: | 
 |      * 1. Allocate result space (asize + bsize digits:  that's always | 
 |      *    enough). | 
 |      * 2. Compute ah*bh, and copy into result at 2*shift. | 
 |      * 3. Compute al*bl, and copy into result at 0.  Note that this | 
 |      *    can't overlap with #2. | 
 |      * 4. Subtract al*bl from the result, starting at shift.  This may | 
 |      *    underflow (borrow out of the high digit), but we don't care: | 
 |      *    we're effectively doing unsigned arithmetic mod | 
 |      *    PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits, | 
 |      *    borrows and carries out of the high digit can be ignored. | 
 |      * 5. Subtract ah*bh from the result, starting at shift. | 
 |      * 6. Compute (ah+al)*(bh+bl), and add it into the result starting | 
 |      *    at shift. | 
 |      */ | 
 |  | 
 |     /* 1. Allocate result space. */ | 
 |     ret = _PyLong_New(asize + bsize); | 
 |     if (ret == NULL) goto fail; | 
 | #ifdef Py_DEBUG | 
 |     /* Fill with trash, to catch reference to uninitialized digits. */ | 
 |     memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); | 
 | #endif | 
 |  | 
 |     /* 2. t1 <- ah*bh, and copy into high digits of result. */ | 
 |     if ((t1 = k_mul(ah, bh)) == NULL) goto fail; | 
 |     assert(Py_SIZE(t1) >= 0); | 
 |     assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); | 
 |     memcpy(ret->ob_digit + 2*shift, t1->ob_digit, | 
 |            Py_SIZE(t1) * sizeof(digit)); | 
 |  | 
 |     /* Zero-out the digits higher than the ah*bh copy. */ | 
 |     i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); | 
 |     if (i) | 
 |         memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, | 
 |                i * sizeof(digit)); | 
 |  | 
 |     /* 3. t2 <- al*bl, and copy into the low digits. */ | 
 |     if ((t2 = k_mul(al, bl)) == NULL) { | 
 |         Py_DECREF(t1); | 
 |         goto fail; | 
 |     } | 
 |     assert(Py_SIZE(t2) >= 0); | 
 |     assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ | 
 |     memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); | 
 |  | 
 |     /* Zero out remaining digits. */ | 
 |     i = 2*shift - Py_SIZE(t2);          /* number of uninitialized digits */ | 
 |     if (i) | 
 |         memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); | 
 |  | 
 |     /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first | 
 |      * because it's fresher in cache. | 
 |      */ | 
 |     i = Py_SIZE(ret) - shift;  /* # digits after shift */ | 
 |     (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); | 
 |     Py_DECREF(t2); | 
 |  | 
 |     (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); | 
 |     Py_DECREF(t1); | 
 |  | 
 |     /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ | 
 |     if ((t1 = x_add(ah, al)) == NULL) goto fail; | 
 |     Py_DECREF(ah); | 
 |     Py_DECREF(al); | 
 |     ah = al = NULL; | 
 |  | 
 |     if (a == b) { | 
 |         t2 = t1; | 
 |         Py_INCREF(t2); | 
 |     } | 
 |     else if ((t2 = x_add(bh, bl)) == NULL) { | 
 |         Py_DECREF(t1); | 
 |         goto fail; | 
 |     } | 
 |     Py_DECREF(bh); | 
 |     Py_DECREF(bl); | 
 |     bh = bl = NULL; | 
 |  | 
 |     t3 = k_mul(t1, t2); | 
 |     Py_DECREF(t1); | 
 |     Py_DECREF(t2); | 
 |     if (t3 == NULL) goto fail; | 
 |     assert(Py_SIZE(t3) >= 0); | 
 |  | 
 |     /* Add t3.  It's not obvious why we can't run out of room here. | 
 |      * See the (*) comment after this function. | 
 |      */ | 
 |     (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); | 
 |     Py_DECREF(t3); | 
 |  | 
 |     return long_normalize(ret); | 
 |  | 
 |   fail: | 
 |     Py_XDECREF(ret); | 
 |     Py_XDECREF(ah); | 
 |     Py_XDECREF(al); | 
 |     Py_XDECREF(bh); | 
 |     Py_XDECREF(bl); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* (*) Why adding t3 can't "run out of room" above. | 
 |  | 
 | Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts | 
 | to start with: | 
 |  | 
 | 1. For any integer i, i = c(i/2) + f(i/2).  In particular, | 
 |    bsize = c(bsize/2) + f(bsize/2). | 
 | 2. shift = f(bsize/2) | 
 | 3. asize <= bsize | 
 | 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this | 
 |    routine, so asize > bsize/2 >= f(bsize/2) in this routine. | 
 |  | 
 | We allocated asize + bsize result digits, and add t3 into them at an offset | 
 | of shift.  This leaves asize+bsize-shift allocated digit positions for t3 | 
 | to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = | 
 | asize + c(bsize/2) available digit positions. | 
 |  | 
 | bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has | 
 | at most c(bsize/2) digits + 1 bit. | 
 |  | 
 | If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) | 
 | digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at | 
 | most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. | 
 |  | 
 | The product (ah+al)*(bh+bl) therefore has at most | 
 |  | 
 |     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits | 
 |  | 
 | and we have asize + c(bsize/2) available digit positions.  We need to show | 
 | this is always enough.  An instance of c(bsize/2) cancels out in both, so | 
 | the question reduces to whether asize digits is enough to hold | 
 | (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize, | 
 | then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4, | 
 | asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 | 
 | digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If | 
 | asize == bsize, then we're asking whether bsize digits is enough to hold | 
 | c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits | 
 | is enough to hold 2 bits.  This is so if bsize >= 2, which holds because | 
 | bsize >= KARATSUBA_CUTOFF >= 2. | 
 |  | 
 | Note that since there's always enough room for (ah+al)*(bh+bl), and that's | 
 | clearly >= each of ah*bh and al*bl, there's always enough room to subtract | 
 | ah*bh and al*bl too. | 
 | */ | 
 |  | 
 | /* b has at least twice the digits of a, and a is big enough that Karatsuba | 
 |  * would pay off *if* the inputs had balanced sizes.  View b as a sequence | 
 |  * of slices, each with a->ob_size digits, and multiply the slices by a, | 
 |  * one at a time.  This gives k_mul balanced inputs to work with, and is | 
 |  * also cache-friendly (we compute one double-width slice of the result | 
 |  * at a time, then move on, never backtracking except for the helpful | 
 |  * single-width slice overlap between successive partial sums). | 
 |  */ | 
 | static PyLongObject * | 
 | k_lopsided_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 |     const Py_ssize_t asize = ABS(Py_SIZE(a)); | 
 |     Py_ssize_t bsize = ABS(Py_SIZE(b)); | 
 |     Py_ssize_t nbdone;          /* # of b digits already multiplied */ | 
 |     PyLongObject *ret; | 
 |     PyLongObject *bslice = NULL; | 
 |  | 
 |     assert(asize > KARATSUBA_CUTOFF); | 
 |     assert(2 * asize <= bsize); | 
 |  | 
 |     /* Allocate result space, and zero it out. */ | 
 |     ret = _PyLong_New(asize + bsize); | 
 |     if (ret == NULL) | 
 |         return NULL; | 
 |     memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); | 
 |  | 
 |     /* Successive slices of b are copied into bslice. */ | 
 |     bslice = _PyLong_New(asize); | 
 |     if (bslice == NULL) | 
 |         goto fail; | 
 |  | 
 |     nbdone = 0; | 
 |     while (bsize > 0) { | 
 |         PyLongObject *product; | 
 |         const Py_ssize_t nbtouse = MIN(bsize, asize); | 
 |  | 
 |         /* Multiply the next slice of b by a. */ | 
 |         memcpy(bslice->ob_digit, b->ob_digit + nbdone, | 
 |                nbtouse * sizeof(digit)); | 
 |         Py_SIZE(bslice) = nbtouse; | 
 |         product = k_mul(a, bslice); | 
 |         if (product == NULL) | 
 |             goto fail; | 
 |  | 
 |         /* Add into result. */ | 
 |         (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, | 
 |                      product->ob_digit, Py_SIZE(product)); | 
 |         Py_DECREF(product); | 
 |  | 
 |         bsize -= nbtouse; | 
 |         nbdone += nbtouse; | 
 |     } | 
 |  | 
 |     Py_DECREF(bslice); | 
 |     return long_normalize(ret); | 
 |  | 
 |   fail: | 
 |     Py_DECREF(ret); | 
 |     Py_XDECREF(bslice); | 
 |     return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_mul(PyLongObject *v, PyLongObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *z; | 
 |  | 
 |     if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) { | 
 |         Py_INCREF(Py_NotImplemented); | 
 |         return Py_NotImplemented; | 
 |     } | 
 |  | 
 |     z = k_mul(a, b); | 
 |     /* Negate if exactly one of the inputs is negative. */ | 
 |     if (((a->ob_size ^ b->ob_size) < 0) && z) | 
 |         z->ob_size = -(z->ob_size); | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *)z; | 
 | } | 
 |  | 
 | /* The / and % operators are now defined in terms of divmod(). | 
 |    The expression a mod b has the value a - b*floor(a/b). | 
 |    The long_divrem function gives the remainder after division of | 
 |    |a| by |b|, with the sign of a.  This is also expressed | 
 |    as a - b*trunc(a/b), if trunc truncates towards zero. | 
 |    Some examples: | 
 |      a           b      a rem b         a mod b | 
 |      13          10      3               3 | 
 |     -13          10     -3               7 | 
 |      13         -10      3              -7 | 
 |     -13         -10     -3              -3 | 
 |    So, to get from rem to mod, we have to add b if a and b | 
 |    have different signs.  We then subtract one from the 'div' | 
 |    part of the outcome to keep the invariant intact. */ | 
 |  | 
 | /* Compute | 
 |  *     *pdiv, *pmod = divmod(v, w) | 
 |  * NULL can be passed for pdiv or pmod, in which case that part of | 
 |  * the result is simply thrown away.  The caller owns a reference to | 
 |  * each of these it requests (does not pass NULL for). | 
 |  */ | 
 | static int | 
 | l_divmod(PyLongObject *v, PyLongObject *w, | 
 |          PyLongObject **pdiv, PyLongObject **pmod) | 
 | { | 
 |     PyLongObject *div, *mod; | 
 |  | 
 |     if (long_divrem(v, w, &div, &mod) < 0) | 
 |         return -1; | 
 |     if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || | 
 |         (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { | 
 |         PyLongObject *temp; | 
 |         PyLongObject *one; | 
 |         temp = (PyLongObject *) long_add(mod, w); | 
 |         Py_DECREF(mod); | 
 |         mod = temp; | 
 |         if (mod == NULL) { | 
 |             Py_DECREF(div); | 
 |             return -1; | 
 |         } | 
 |         one = (PyLongObject *) PyLong_FromLong(1L); | 
 |         if (one == NULL || | 
 |             (temp = (PyLongObject *) long_sub(div, one)) == NULL) { | 
 |             Py_DECREF(mod); | 
 |             Py_DECREF(div); | 
 |             Py_XDECREF(one); | 
 |             return -1; | 
 |         } | 
 |         Py_DECREF(one); | 
 |         Py_DECREF(div); | 
 |         div = temp; | 
 |     } | 
 |     if (pdiv != NULL) | 
 |         *pdiv = div; | 
 |     else | 
 |         Py_DECREF(div); | 
 |  | 
 |     if (pmod != NULL) | 
 |         *pmod = mod; | 
 |     else | 
 |         Py_DECREF(mod); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_div(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *div; | 
 |  | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |     if (l_divmod(a, b, &div, NULL) < 0) | 
 |         div = NULL; | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *)div; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_classic_div(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *div; | 
 |  | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |     if (Py_DivisionWarningFlag && | 
 |         PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0) | 
 |         div = NULL; | 
 |     else if (l_divmod(a, b, &div, NULL) < 0) | 
 |         div = NULL; | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *)div; | 
 | } | 
 |  | 
 | /* PyLong/PyLong -> float, with correctly rounded result. */ | 
 |  | 
 | #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT) | 
 | #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT) | 
 |  | 
 | static PyObject * | 
 | long_true_divide(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *x; | 
 |     Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; | 
 |     digit mask, low; | 
 |     int inexact, negate, a_is_small, b_is_small; | 
 |     double dx, result; | 
 |  | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 |     /* | 
 |        Method in a nutshell: | 
 |  | 
 |          0. reduce to case a, b > 0; filter out obvious underflow/overflow | 
 |          1. choose a suitable integer 'shift' | 
 |          2. use integer arithmetic to compute x = floor(2**-shift*a/b) | 
 |          3. adjust x for correct rounding | 
 |          4. convert x to a double dx with the same value | 
 |          5. return ldexp(dx, shift). | 
 |  | 
 |        In more detail: | 
 |  | 
 |        0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b | 
 |        returns either 0.0 or -0.0, depending on the sign of b.  For a and | 
 |        b both nonzero, ignore signs of a and b, and add the sign back in | 
 |        at the end.  Now write a_bits and b_bits for the bit lengths of a | 
 |        and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise | 
 |        for b).  Then | 
 |  | 
 |           2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). | 
 |  | 
 |        So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and | 
 |        so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP - | 
 |        DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of | 
 |        the way, we can assume that | 
 |  | 
 |           DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. | 
 |  | 
 |        1. The integer 'shift' is chosen so that x has the right number of | 
 |        bits for a double, plus two or three extra bits that will be used | 
 |        in the rounding decisions.  Writing a_bits and b_bits for the | 
 |        number of significant bits in a and b respectively, a | 
 |        straightforward formula for shift is: | 
 |  | 
 |           shift = a_bits - b_bits - DBL_MANT_DIG - 2 | 
 |  | 
 |        This is fine in the usual case, but if a/b is smaller than the | 
 |        smallest normal float then it can lead to double rounding on an | 
 |        IEEE 754 platform, giving incorrectly rounded results.  So we | 
 |        adjust the formula slightly.  The actual formula used is: | 
 |  | 
 |            shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 | 
 |  | 
 |        2. The quantity x is computed by first shifting a (left -shift bits | 
 |        if shift <= 0, right shift bits if shift > 0) and then dividing by | 
 |        b.  For both the shift and the division, we keep track of whether | 
 |        the result is inexact, in a flag 'inexact'; this information is | 
 |        needed at the rounding stage. | 
 |  | 
 |        With the choice of shift above, together with our assumption that | 
 |        a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows | 
 |        that x >= 1. | 
 |  | 
 |        3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace | 
 |        this with an exactly representable float of the form | 
 |  | 
 |           round(x/2**extra_bits) * 2**(extra_bits+shift). | 
 |  | 
 |        For float representability, we need x/2**extra_bits < | 
 |        2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - | 
 |        DBL_MANT_DIG.  This translates to the condition: | 
 |  | 
 |           extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG | 
 |  | 
 |        To round, we just modify the bottom digit of x in-place; this can | 
 |        end up giving a digit with value > PyLONG_MASK, but that's not a | 
 |        problem since digits can hold values up to 2*PyLONG_MASK+1. | 
 |  | 
 |        With the original choices for shift above, extra_bits will always | 
 |        be 2 or 3.  Then rounding under the round-half-to-even rule, we | 
 |        round up iff the most significant of the extra bits is 1, and | 
 |        either: (a) the computation of x in step 2 had an inexact result, | 
 |        or (b) at least one other of the extra bits is 1, or (c) the least | 
 |        significant bit of x (above those to be rounded) is 1. | 
 |  | 
 |        4. Conversion to a double is straightforward; all floating-point | 
 |        operations involved in the conversion are exact, so there's no | 
 |        danger of rounding errors. | 
 |  | 
 |        5. Use ldexp(x, shift) to compute x*2**shift, the final result. | 
 |        The result will always be exactly representable as a double, except | 
 |        in the case that it overflows.  To avoid dependence on the exact | 
 |        behaviour of ldexp on overflow, we check for overflow before | 
 |        applying ldexp.  The result of ldexp is adjusted for sign before | 
 |        returning. | 
 |     */ | 
 |  | 
 |     /* Reduce to case where a and b are both positive. */ | 
 |     a_size = ABS(Py_SIZE(a)); | 
 |     b_size = ABS(Py_SIZE(b)); | 
 |     negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0); | 
 |     if (b_size == 0) { | 
 |         PyErr_SetString(PyExc_ZeroDivisionError, | 
 |                         "division by zero"); | 
 |         goto error; | 
 |     } | 
 |     if (a_size == 0) | 
 |         goto underflow_or_zero; | 
 |  | 
 |     /* Fast path for a and b small (exactly representable in a double). | 
 |        Relies on floating-point division being correctly rounded; results | 
 |        may be subject to double rounding on x86 machines that operate with | 
 |        the x87 FPU set to 64-bit precision. */ | 
 |     a_is_small = a_size <= MANT_DIG_DIGITS || | 
 |         (a_size == MANT_DIG_DIGITS+1 && | 
 |          a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); | 
 |     b_is_small = b_size <= MANT_DIG_DIGITS || | 
 |         (b_size == MANT_DIG_DIGITS+1 && | 
 |          b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); | 
 |     if (a_is_small && b_is_small) { | 
 |         double da, db; | 
 |         da = a->ob_digit[--a_size]; | 
 |         while (a_size > 0) | 
 |             da = da * PyLong_BASE + a->ob_digit[--a_size]; | 
 |         db = b->ob_digit[--b_size]; | 
 |         while (b_size > 0) | 
 |             db = db * PyLong_BASE + b->ob_digit[--b_size]; | 
 |         result = da / db; | 
 |         goto success; | 
 |     } | 
 |  | 
 |     /* Catch obvious cases of underflow and overflow */ | 
 |     diff = a_size - b_size; | 
 |     if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) | 
 |         /* Extreme overflow */ | 
 |         goto overflow; | 
 |     else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) | 
 |         /* Extreme underflow */ | 
 |         goto underflow_or_zero; | 
 |     /* Next line is now safe from overflowing a Py_ssize_t */ | 
 |     diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) - | 
 |         bits_in_digit(b->ob_digit[b_size - 1]); | 
 |     /* Now diff = a_bits - b_bits. */ | 
 |     if (diff > DBL_MAX_EXP) | 
 |         goto overflow; | 
 |     else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) | 
 |         goto underflow_or_zero; | 
 |  | 
 |     /* Choose value for shift; see comments for step 1 above. */ | 
 |     shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; | 
 |  | 
 |     inexact = 0; | 
 |  | 
 |     /* x = abs(a * 2**-shift) */ | 
 |     if (shift <= 0) { | 
 |         Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; | 
 |         digit rem; | 
 |         /* x = a << -shift */ | 
 |         if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { | 
 |             /* In practice, it's probably impossible to end up | 
 |                here.  Both a and b would have to be enormous, | 
 |                using close to SIZE_T_MAX bytes of memory each. */ | 
 |             PyErr_SetString(PyExc_OverflowError, | 
 |                             "intermediate overflow during division"); | 
 |             goto error; | 
 |         } | 
 |         x = _PyLong_New(a_size + shift_digits + 1); | 
 |         if (x == NULL) | 
 |             goto error; | 
 |         for (i = 0; i < shift_digits; i++) | 
 |             x->ob_digit[i] = 0; | 
 |         rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit, | 
 |                        a_size, -shift % PyLong_SHIFT); | 
 |         x->ob_digit[a_size + shift_digits] = rem; | 
 |     } | 
 |     else { | 
 |         Py_ssize_t shift_digits = shift / PyLong_SHIFT; | 
 |         digit rem; | 
 |         /* x = a >> shift */ | 
 |         assert(a_size >= shift_digits); | 
 |         x = _PyLong_New(a_size - shift_digits); | 
 |         if (x == NULL) | 
 |             goto error; | 
 |         rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits, | 
 |                        a_size - shift_digits, shift % PyLong_SHIFT); | 
 |         /* set inexact if any of the bits shifted out is nonzero */ | 
 |         if (rem) | 
 |             inexact = 1; | 
 |         while (!inexact && shift_digits > 0) | 
 |             if (a->ob_digit[--shift_digits]) | 
 |                 inexact = 1; | 
 |     } | 
 |     long_normalize(x); | 
 |     x_size = Py_SIZE(x); | 
 |  | 
 |     /* x //= b. If the remainder is nonzero, set inexact.  We own the only | 
 |        reference to x, so it's safe to modify it in-place. */ | 
 |     if (b_size == 1) { | 
 |         digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size, | 
 |                               b->ob_digit[0]); | 
 |         long_normalize(x); | 
 |         if (rem) | 
 |             inexact = 1; | 
 |     } | 
 |     else { | 
 |         PyLongObject *div, *rem; | 
 |         div = x_divrem(x, b, &rem); | 
 |         Py_DECREF(x); | 
 |         x = div; | 
 |         if (x == NULL) | 
 |             goto error; | 
 |         if (Py_SIZE(rem)) | 
 |             inexact = 1; | 
 |         Py_DECREF(rem); | 
 |     } | 
 |     x_size = ABS(Py_SIZE(x)); | 
 |     assert(x_size > 0); /* result of division is never zero */ | 
 |     x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]); | 
 |  | 
 |     /* The number of extra bits that have to be rounded away. */ | 
 |     extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; | 
 |     assert(extra_bits == 2 || extra_bits == 3); | 
 |  | 
 |     /* Round by directly modifying the low digit of x. */ | 
 |     mask = (digit)1 << (extra_bits - 1); | 
 |     low = x->ob_digit[0] | inexact; | 
 |     if (low & mask && low & (3*mask-1)) | 
 |         low += mask; | 
 |     x->ob_digit[0] = low & ~(mask-1U); | 
 |  | 
 |     /* Convert x to a double dx; the conversion is exact. */ | 
 |     dx = x->ob_digit[--x_size]; | 
 |     while (x_size > 0) | 
 |         dx = dx * PyLong_BASE + x->ob_digit[--x_size]; | 
 |     Py_DECREF(x); | 
 |  | 
 |     /* Check whether ldexp result will overflow a double. */ | 
 |     if (shift + x_bits >= DBL_MAX_EXP && | 
 |         (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) | 
 |         goto overflow; | 
 |     result = ldexp(dx, (int)shift); | 
 |  | 
 |   success: | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return PyFloat_FromDouble(negate ? -result : result); | 
 |  | 
 |   underflow_or_zero: | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return PyFloat_FromDouble(negate ? -0.0 : 0.0); | 
 |  | 
 |   overflow: | 
 |     PyErr_SetString(PyExc_OverflowError, | 
 |                     "integer division result too large for a float"); | 
 |   error: | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_mod(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *mod; | 
 |  | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 |     if (l_divmod(a, b, NULL, &mod) < 0) | 
 |         mod = NULL; | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *)mod; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_divmod(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b, *div, *mod; | 
 |     PyObject *z; | 
 |  | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 |     if (l_divmod(a, b, &div, &mod) < 0) { | 
 |         Py_DECREF(a); | 
 |         Py_DECREF(b); | 
 |         return NULL; | 
 |     } | 
 |     z = PyTuple_New(2); | 
 |     if (z != NULL) { | 
 |         PyTuple_SetItem(z, 0, (PyObject *) div); | 
 |         PyTuple_SetItem(z, 1, (PyObject *) mod); | 
 |     } | 
 |     else { | 
 |         Py_DECREF(div); | 
 |         Py_DECREF(mod); | 
 |     } | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return z; | 
 | } | 
 |  | 
 | /* pow(v, w, x) */ | 
 | static PyObject * | 
 | long_pow(PyObject *v, PyObject *w, PyObject *x) | 
 | { | 
 |     PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ | 
 |     int negativeOutput = 0;  /* if x<0 return negative output */ | 
 |  | 
 |     PyLongObject *z = NULL;  /* accumulated result */ | 
 |     Py_ssize_t i, j, k;             /* counters */ | 
 |     PyLongObject *temp = NULL; | 
 |  | 
 |     /* 5-ary values.  If the exponent is large enough, table is | 
 |      * precomputed so that table[i] == a**i % c for i in range(32). | 
 |      */ | 
 |     PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
 |                                0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | 
 |  | 
 |     /* a, b, c = v, w, x */ | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |     if (PyLong_Check(x)) { | 
 |         c = (PyLongObject *)x; | 
 |         Py_INCREF(x); | 
 |     } | 
 |     else if (PyInt_Check(x)) { | 
 |         c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x)); | 
 |         if (c == NULL) | 
 |             goto Error; | 
 |     } | 
 |     else if (x == Py_None) | 
 |         c = NULL; | 
 |     else { | 
 |         Py_DECREF(a); | 
 |         Py_DECREF(b); | 
 |         Py_INCREF(Py_NotImplemented); | 
 |         return Py_NotImplemented; | 
 |     } | 
 |  | 
 |     if (Py_SIZE(b) < 0) {  /* if exponent is negative */ | 
 |         if (c) { | 
 |             PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " | 
 |                             "cannot be negative when 3rd argument specified"); | 
 |             goto Error; | 
 |         } | 
 |         else { | 
 |             /* else return a float.  This works because we know | 
 |                that this calls float_pow() which converts its | 
 |                arguments to double. */ | 
 |             Py_DECREF(a); | 
 |             Py_DECREF(b); | 
 |             return PyFloat_Type.tp_as_number->nb_power(v, w, x); | 
 |         } | 
 |     } | 
 |  | 
 |     if (c) { | 
 |         /* if modulus == 0: | 
 |                raise ValueError() */ | 
 |         if (Py_SIZE(c) == 0) { | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "pow() 3rd argument cannot be 0"); | 
 |             goto Error; | 
 |         } | 
 |  | 
 |         /* if modulus < 0: | 
 |                negativeOutput = True | 
 |                modulus = -modulus */ | 
 |         if (Py_SIZE(c) < 0) { | 
 |             negativeOutput = 1; | 
 |             temp = (PyLongObject *)_PyLong_Copy(c); | 
 |             if (temp == NULL) | 
 |                 goto Error; | 
 |             Py_DECREF(c); | 
 |             c = temp; | 
 |             temp = NULL; | 
 |             c->ob_size = - c->ob_size; | 
 |         } | 
 |  | 
 |         /* if modulus == 1: | 
 |                return 0 */ | 
 |         if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { | 
 |             z = (PyLongObject *)PyLong_FromLong(0L); | 
 |             goto Done; | 
 |         } | 
 |  | 
 |         /* if base < 0: | 
 |                base = base % modulus | 
 |            Having the base positive just makes things easier. */ | 
 |         if (Py_SIZE(a) < 0) { | 
 |             if (l_divmod(a, c, NULL, &temp) < 0) | 
 |                 goto Error; | 
 |             Py_DECREF(a); | 
 |             a = temp; | 
 |             temp = NULL; | 
 |         } | 
 |     } | 
 |  | 
 |     /* At this point a, b, and c are guaranteed non-negative UNLESS | 
 |        c is NULL, in which case a may be negative. */ | 
 |  | 
 |     z = (PyLongObject *)PyLong_FromLong(1L); | 
 |     if (z == NULL) | 
 |         goto Error; | 
 |  | 
 |     /* Perform a modular reduction, X = X % c, but leave X alone if c | 
 |      * is NULL. | 
 |      */ | 
 | #define REDUCE(X)                                       \ | 
 |     do {                                                \ | 
 |         if (c != NULL) {                                \ | 
 |             if (l_divmod(X, c, NULL, &temp) < 0)        \ | 
 |                 goto Error;                             \ | 
 |             Py_XDECREF(X);                              \ | 
 |             X = temp;                                   \ | 
 |             temp = NULL;                                \ | 
 |         }                                               \ | 
 |     } while(0) | 
 |  | 
 |     /* Multiply two values, then reduce the result: | 
 |        result = X*Y % c.  If c is NULL, skip the mod. */ | 
 | #define MULT(X, Y, result)                      \ | 
 |     do {                                        \ | 
 |         temp = (PyLongObject *)long_mul(X, Y);  \ | 
 |         if (temp == NULL)                       \ | 
 |             goto Error;                         \ | 
 |         Py_XDECREF(result);                     \ | 
 |         result = temp;                          \ | 
 |         temp = NULL;                            \ | 
 |         REDUCE(result);                         \ | 
 |     } while(0) | 
 |  | 
 |     if (Py_SIZE(b) <= FIVEARY_CUTOFF) { | 
 |         /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ | 
 |         /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */ | 
 |         for (i = Py_SIZE(b) - 1; i >= 0; --i) { | 
 |             digit bi = b->ob_digit[i]; | 
 |  | 
 |             for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { | 
 |                 MULT(z, z, z); | 
 |                 if (bi & j) | 
 |                     MULT(z, a, z); | 
 |             } | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ | 
 |         Py_INCREF(z);           /* still holds 1L */ | 
 |         table[0] = z; | 
 |         for (i = 1; i < 32; ++i) | 
 |             MULT(table[i-1], a, table[i]); | 
 |  | 
 |         for (i = Py_SIZE(b) - 1; i >= 0; --i) { | 
 |             const digit bi = b->ob_digit[i]; | 
 |  | 
 |             for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { | 
 |                 const int index = (bi >> j) & 0x1f; | 
 |                 for (k = 0; k < 5; ++k) | 
 |                     MULT(z, z, z); | 
 |                 if (index) | 
 |                     MULT(z, table[index], z); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (negativeOutput && (Py_SIZE(z) != 0)) { | 
 |         temp = (PyLongObject *)long_sub(z, c); | 
 |         if (temp == NULL) | 
 |             goto Error; | 
 |         Py_DECREF(z); | 
 |         z = temp; | 
 |         temp = NULL; | 
 |     } | 
 |     goto Done; | 
 |  | 
 |   Error: | 
 |     if (z != NULL) { | 
 |         Py_DECREF(z); | 
 |         z = NULL; | 
 |     } | 
 |     /* fall through */ | 
 |   Done: | 
 |     if (Py_SIZE(b) > FIVEARY_CUTOFF) { | 
 |         for (i = 0; i < 32; ++i) | 
 |             Py_XDECREF(table[i]); | 
 |     } | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     Py_XDECREF(c); | 
 |     Py_XDECREF(temp); | 
 |     return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_invert(PyLongObject *v) | 
 | { | 
 |     /* Implement ~x as -(x+1) */ | 
 |     PyLongObject *x; | 
 |     PyLongObject *w; | 
 |     w = (PyLongObject *)PyLong_FromLong(1L); | 
 |     if (w == NULL) | 
 |         return NULL; | 
 |     x = (PyLongObject *) long_add(v, w); | 
 |     Py_DECREF(w); | 
 |     if (x == NULL) | 
 |         return NULL; | 
 |     Py_SIZE(x) = -(Py_SIZE(x)); | 
 |     return (PyObject *)x; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_neg(PyLongObject *v) | 
 | { | 
 |     PyLongObject *z; | 
 |     if (v->ob_size == 0 && PyLong_CheckExact(v)) { | 
 |         /* -0 == 0 */ | 
 |         Py_INCREF(v); | 
 |         return (PyObject *) v; | 
 |     } | 
 |     z = (PyLongObject *)_PyLong_Copy(v); | 
 |     if (z != NULL) | 
 |         z->ob_size = -(v->ob_size); | 
 |     return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_abs(PyLongObject *v) | 
 | { | 
 |     if (v->ob_size < 0) | 
 |         return long_neg(v); | 
 |     else | 
 |         return long_long((PyObject *)v); | 
 | } | 
 |  | 
 | static int | 
 | long_nonzero(PyLongObject *v) | 
 | { | 
 |     return Py_SIZE(v) != 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_rshift(PyLongObject *v, PyLongObject *w) | 
 | { | 
 |     PyLongObject *a, *b; | 
 |     PyLongObject *z = NULL; | 
 |     Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j; | 
 |     digit lomask, himask; | 
 |  | 
 |     CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | 
 |  | 
 |     if (Py_SIZE(a) < 0) { | 
 |         /* Right shifting negative numbers is harder */ | 
 |         PyLongObject *a1, *a2; | 
 |         a1 = (PyLongObject *) long_invert(a); | 
 |         if (a1 == NULL) | 
 |             goto rshift_error; | 
 |         a2 = (PyLongObject *) long_rshift(a1, b); | 
 |         Py_DECREF(a1); | 
 |         if (a2 == NULL) | 
 |             goto rshift_error; | 
 |         z = (PyLongObject *) long_invert(a2); | 
 |         Py_DECREF(a2); | 
 |     } | 
 |     else { | 
 |         shiftby = PyLong_AsSsize_t((PyObject *)b); | 
 |         if (shiftby == -1L && PyErr_Occurred()) | 
 |             goto rshift_error; | 
 |         if (shiftby < 0) { | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "negative shift count"); | 
 |             goto rshift_error; | 
 |         } | 
 |         wordshift = shiftby / PyLong_SHIFT; | 
 |         newsize = ABS(Py_SIZE(a)) - wordshift; | 
 |         if (newsize <= 0) { | 
 |             z = _PyLong_New(0); | 
 |             Py_DECREF(a); | 
 |             Py_DECREF(b); | 
 |             return (PyObject *)z; | 
 |         } | 
 |         loshift = shiftby % PyLong_SHIFT; | 
 |         hishift = PyLong_SHIFT - loshift; | 
 |         lomask = ((digit)1 << hishift) - 1; | 
 |         himask = PyLong_MASK ^ lomask; | 
 |         z = _PyLong_New(newsize); | 
 |         if (z == NULL) | 
 |             goto rshift_error; | 
 |         if (Py_SIZE(a) < 0) | 
 |             Py_SIZE(z) = -(Py_SIZE(z)); | 
 |         for (i = 0, j = wordshift; i < newsize; i++, j++) { | 
 |             z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; | 
 |             if (i+1 < newsize) | 
 |                 z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask; | 
 |         } | 
 |         z = long_normalize(z); | 
 |     } | 
 |   rshift_error: | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *) z; | 
 |  | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_lshift(PyObject *v, PyObject *w) | 
 | { | 
 |     /* This version due to Tim Peters */ | 
 |     PyLongObject *a, *b; | 
 |     PyLongObject *z = NULL; | 
 |     Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j; | 
 |     twodigits accum; | 
 |  | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 |     shiftby = PyLong_AsSsize_t((PyObject *)b); | 
 |     if (shiftby == -1L && PyErr_Occurred()) | 
 |         goto lshift_error; | 
 |     if (shiftby < 0) { | 
 |         PyErr_SetString(PyExc_ValueError, "negative shift count"); | 
 |         goto lshift_error; | 
 |     } | 
 |     /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ | 
 |     wordshift = shiftby / PyLong_SHIFT; | 
 |     remshift  = shiftby - wordshift * PyLong_SHIFT; | 
 |  | 
 |     oldsize = ABS(a->ob_size); | 
 |     newsize = oldsize + wordshift; | 
 |     if (remshift) | 
 |         ++newsize; | 
 |     z = _PyLong_New(newsize); | 
 |     if (z == NULL) | 
 |         goto lshift_error; | 
 |     if (a->ob_size < 0) | 
 |         z->ob_size = -(z->ob_size); | 
 |     for (i = 0; i < wordshift; i++) | 
 |         z->ob_digit[i] = 0; | 
 |     accum = 0; | 
 |     for (i = wordshift, j = 0; j < oldsize; i++, j++) { | 
 |         accum |= (twodigits)a->ob_digit[j] << remshift; | 
 |         z->ob_digit[i] = (digit)(accum & PyLong_MASK); | 
 |         accum >>= PyLong_SHIFT; | 
 |     } | 
 |     if (remshift) | 
 |         z->ob_digit[newsize-1] = (digit)accum; | 
 |     else | 
 |         assert(!accum); | 
 |     z = long_normalize(z); | 
 |   lshift_error: | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *) z; | 
 | } | 
 |  | 
 | /* Compute two's complement of digit vector a[0:m], writing result to | 
 |    z[0:m].  The digit vector a need not be normalized, but should not | 
 |    be entirely zero.  a and z may point to the same digit vector. */ | 
 |  | 
 | static void | 
 | v_complement(digit *z, digit *a, Py_ssize_t m) | 
 | { | 
 |     Py_ssize_t i; | 
 |     digit carry = 1; | 
 |     for (i = 0; i < m; ++i) { | 
 |         carry += a[i] ^ PyLong_MASK; | 
 |         z[i] = carry & PyLong_MASK; | 
 |         carry >>= PyLong_SHIFT; | 
 |     } | 
 |     assert(carry == 0); | 
 | } | 
 |  | 
 | /* Bitwise and/xor/or operations */ | 
 |  | 
 | static PyObject * | 
 | long_bitwise(PyLongObject *a, | 
 |              int op,  /* '&', '|', '^' */ | 
 |              PyLongObject *b) | 
 | { | 
 |     int nega, negb, negz; | 
 |     Py_ssize_t size_a, size_b, size_z, i; | 
 |     PyLongObject *z; | 
 |  | 
 |     /* Bitwise operations for negative numbers operate as though | 
 |        on a two's complement representation.  So convert arguments | 
 |        from sign-magnitude to two's complement, and convert the | 
 |        result back to sign-magnitude at the end. */ | 
 |  | 
 |     /* If a is negative, replace it by its two's complement. */ | 
 |     size_a = ABS(Py_SIZE(a)); | 
 |     nega = Py_SIZE(a) < 0; | 
 |     if (nega) { | 
 |         z = _PyLong_New(size_a); | 
 |         if (z == NULL) | 
 |             return NULL; | 
 |         v_complement(z->ob_digit, a->ob_digit, size_a); | 
 |         a = z; | 
 |     } | 
 |     else | 
 |         /* Keep reference count consistent. */ | 
 |         Py_INCREF(a); | 
 |  | 
 |     /* Same for b. */ | 
 |     size_b = ABS(Py_SIZE(b)); | 
 |     negb = Py_SIZE(b) < 0; | 
 |     if (negb) { | 
 |         z = _PyLong_New(size_b); | 
 |         if (z == NULL) { | 
 |             Py_DECREF(a); | 
 |             return NULL; | 
 |         } | 
 |         v_complement(z->ob_digit, b->ob_digit, size_b); | 
 |         b = z; | 
 |     } | 
 |     else | 
 |         Py_INCREF(b); | 
 |  | 
 |     /* Swap a and b if necessary to ensure size_a >= size_b. */ | 
 |     if (size_a < size_b) { | 
 |         z = a; a = b; b = z; | 
 |         size_z = size_a; size_a = size_b; size_b = size_z; | 
 |         negz = nega; nega = negb; negb = negz; | 
 |     } | 
 |  | 
 |     /* JRH: The original logic here was to allocate the result value (z) | 
 |        as the longer of the two operands.  However, there are some cases | 
 |        where the result is guaranteed to be shorter than that: AND of two | 
 |        positives, OR of two negatives: use the shorter number.  AND with | 
 |        mixed signs: use the positive number.  OR with mixed signs: use the | 
 |        negative number. | 
 |     */ | 
 |     switch (op) { | 
 |     case '^': | 
 |         negz = nega ^ negb; | 
 |         size_z = size_a; | 
 |         break; | 
 |     case '&': | 
 |         negz = nega & negb; | 
 |         size_z = negb ? size_a : size_b; | 
 |         break; | 
 |     case '|': | 
 |         negz = nega | negb; | 
 |         size_z = negb ? size_b : size_a; | 
 |         break; | 
 |     default: | 
 |         PyErr_BadArgument(); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* We allow an extra digit if z is negative, to make sure that | 
 |        the final two's complement of z doesn't overflow. */ | 
 |     z = _PyLong_New(size_z + negz); | 
 |     if (z == NULL) { | 
 |         Py_DECREF(a); | 
 |         Py_DECREF(b); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* Compute digits for overlap of a and b. */ | 
 |     switch(op) { | 
 |     case '&': | 
 |         for (i = 0; i < size_b; ++i) | 
 |             z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; | 
 |         break; | 
 |     case '|': | 
 |         for (i = 0; i < size_b; ++i) | 
 |             z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; | 
 |         break; | 
 |     case '^': | 
 |         for (i = 0; i < size_b; ++i) | 
 |             z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; | 
 |         break; | 
 |     default: | 
 |         PyErr_BadArgument(); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* Copy any remaining digits of a, inverting if necessary. */ | 
 |     if (op == '^' && negb) | 
 |         for (; i < size_z; ++i) | 
 |             z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; | 
 |     else if (i < size_z) | 
 |         memcpy(&z->ob_digit[i], &a->ob_digit[i], | 
 |                (size_z-i)*sizeof(digit)); | 
 |  | 
 |     /* Complement result if negative. */ | 
 |     if (negz) { | 
 |         Py_SIZE(z) = -(Py_SIZE(z)); | 
 |         z->ob_digit[size_z] = PyLong_MASK; | 
 |         v_complement(z->ob_digit, z->ob_digit, size_z+1); | 
 |     } | 
 |  | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return (PyObject *)long_normalize(z); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_and(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b; | 
 |     PyObject *c; | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |     c = long_bitwise(a, '&', b); | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return c; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_xor(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b; | 
 |     PyObject *c; | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |     c = long_bitwise(a, '^', b); | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return c; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_or(PyObject *v, PyObject *w) | 
 | { | 
 |     PyLongObject *a, *b; | 
 |     PyObject *c; | 
 |     CONVERT_BINOP(v, w, &a, &b); | 
 |     c = long_bitwise(a, '|', b); | 
 |     Py_DECREF(a); | 
 |     Py_DECREF(b); | 
 |     return c; | 
 | } | 
 |  | 
 | static int | 
 | long_coerce(PyObject **pv, PyObject **pw) | 
 | { | 
 |     if (PyInt_Check(*pw)) { | 
 |         *pw = PyLong_FromLong(PyInt_AS_LONG(*pw)); | 
 |         if (*pw == NULL) | 
 |             return -1; | 
 |         Py_INCREF(*pv); | 
 |         return 0; | 
 |     } | 
 |     else if (PyLong_Check(*pw)) { | 
 |         Py_INCREF(*pv); | 
 |         Py_INCREF(*pw); | 
 |         return 0; | 
 |     } | 
 |     return 1; /* Can't do it */ | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_long(PyObject *v) | 
 | { | 
 |     if (PyLong_CheckExact(v)) | 
 |         Py_INCREF(v); | 
 |     else | 
 |         v = _PyLong_Copy((PyLongObject *)v); | 
 |     return v; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_int(PyObject *v) | 
 | { | 
 |     long x; | 
 |     x = PyLong_AsLong(v); | 
 |     if (PyErr_Occurred()) { | 
 |         if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | 
 |             PyErr_Clear(); | 
 |             if (PyLong_CheckExact(v)) { | 
 |                 Py_INCREF(v); | 
 |                 return v; | 
 |             } | 
 |             else | 
 |                 return _PyLong_Copy((PyLongObject *)v); | 
 |         } | 
 |         else | 
 |             return NULL; | 
 |     } | 
 |     return PyInt_FromLong(x); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_float(PyObject *v) | 
 | { | 
 |     double result; | 
 |     result = PyLong_AsDouble(v); | 
 |     if (result == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_oct(PyObject *v) | 
 | { | 
 |     return _PyLong_Format(v, 8, 1, 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_hex(PyObject *v) | 
 | { | 
 |     return _PyLong_Format(v, 16, 1, 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | 
 |  | 
 | static PyObject * | 
 | long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 |     PyObject *x = NULL; | 
 |     int base = -909;                         /* unlikely! */ | 
 |     static char *kwlist[] = {"x", "base", 0}; | 
 |  | 
 |     if (type != &PyLong_Type) | 
 |         return long_subtype_new(type, args, kwds); /* Wimp out */ | 
 |     if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist, | 
 |                                      &x, &base)) | 
 |         return NULL; | 
 |     if (x == NULL) { | 
 |         if (base != -909) { | 
 |             PyErr_SetString(PyExc_TypeError, | 
 |                             "long() missing string argument"); | 
 |             return NULL; | 
 |         } | 
 |         return PyLong_FromLong(0L); | 
 |     } | 
 |     if (base == -909) | 
 |         return PyNumber_Long(x); | 
 |     else if (PyString_Check(x)) { | 
 |         /* Since PyLong_FromString doesn't have a length parameter, | 
 |          * check here for possible NULs in the string. */ | 
 |         char *string = PyString_AS_STRING(x); | 
 |         if (strlen(string) != (size_t)PyString_Size(x)) { | 
 |             /* create a repr() of the input string, | 
 |              * just like PyLong_FromString does. */ | 
 |             PyObject *srepr; | 
 |             srepr = PyObject_Repr(x); | 
 |             if (srepr == NULL) | 
 |                 return NULL; | 
 |             PyErr_Format(PyExc_ValueError, | 
 |                          "invalid literal for long() with base %d: %s", | 
 |                          base, PyString_AS_STRING(srepr)); | 
 |             Py_DECREF(srepr); | 
 |             return NULL; | 
 |         } | 
 |         return PyLong_FromString(PyString_AS_STRING(x), NULL, base); | 
 |     } | 
 | #ifdef Py_USING_UNICODE | 
 |     else if (PyUnicode_Check(x)) | 
 |         return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), | 
 |                                   PyUnicode_GET_SIZE(x), | 
 |                                   base); | 
 | #endif | 
 |     else { | 
 |         PyErr_SetString(PyExc_TypeError, | 
 |                         "long() can't convert non-string with explicit base"); | 
 |         return NULL; | 
 |     } | 
 | } | 
 |  | 
 | /* Wimpy, slow approach to tp_new calls for subtypes of long: | 
 |    first create a regular long from whatever arguments we got, | 
 |    then allocate a subtype instance and initialize it from | 
 |    the regular long.  The regular long is then thrown away. | 
 | */ | 
 | static PyObject * | 
 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 |     PyLongObject *tmp, *newobj; | 
 |     Py_ssize_t i, n; | 
 |  | 
 |     assert(PyType_IsSubtype(type, &PyLong_Type)); | 
 |     tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); | 
 |     if (tmp == NULL) | 
 |         return NULL; | 
 |     assert(PyLong_CheckExact(tmp)); | 
 |     n = Py_SIZE(tmp); | 
 |     if (n < 0) | 
 |         n = -n; | 
 |     newobj = (PyLongObject *)type->tp_alloc(type, n); | 
 |     if (newobj == NULL) { | 
 |         Py_DECREF(tmp); | 
 |         return NULL; | 
 |     } | 
 |     assert(PyLong_Check(newobj)); | 
 |     Py_SIZE(newobj) = Py_SIZE(tmp); | 
 |     for (i = 0; i < n; i++) | 
 |         newobj->ob_digit[i] = tmp->ob_digit[i]; | 
 |     Py_DECREF(tmp); | 
 |     return (PyObject *)newobj; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_getnewargs(PyLongObject *v) | 
 | { | 
 |     return Py_BuildValue("(N)", _PyLong_Copy(v)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_get0(PyLongObject *v, void *context) { | 
 |     return PyLong_FromLong(0L); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_get1(PyLongObject *v, void *context) { | 
 |     return PyLong_FromLong(1L); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long__format__(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *format_spec; | 
 |  | 
 |     if (!PyArg_ParseTuple(args, "O:__format__", &format_spec)) | 
 |         return NULL; | 
 |     if (PyBytes_Check(format_spec)) | 
 |         return _PyLong_FormatAdvanced(self, | 
 |                                       PyBytes_AS_STRING(format_spec), | 
 |                                       PyBytes_GET_SIZE(format_spec)); | 
 |     if (PyUnicode_Check(format_spec)) { | 
 |         /* Convert format_spec to a str */ | 
 |         PyObject *result; | 
 |         PyObject *str_spec = PyObject_Str(format_spec); | 
 |  | 
 |         if (str_spec == NULL) | 
 |             return NULL; | 
 |  | 
 |         result = _PyLong_FormatAdvanced(self, | 
 |                                         PyBytes_AS_STRING(str_spec), | 
 |                                         PyBytes_GET_SIZE(str_spec)); | 
 |  | 
 |         Py_DECREF(str_spec); | 
 |         return result; | 
 |     } | 
 |     PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode"); | 
 |     return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_sizeof(PyLongObject *v) | 
 | { | 
 |     Py_ssize_t res; | 
 |  | 
 |     res = v->ob_type->tp_basicsize + ABS(Py_SIZE(v))*sizeof(digit); | 
 |     return PyInt_FromSsize_t(res); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_bit_length(PyLongObject *v) | 
 | { | 
 |     PyLongObject *result, *x, *y; | 
 |     Py_ssize_t ndigits, msd_bits = 0; | 
 |     digit msd; | 
 |  | 
 |     assert(v != NULL); | 
 |     assert(PyLong_Check(v)); | 
 |  | 
 |     ndigits = ABS(Py_SIZE(v)); | 
 |     if (ndigits == 0) | 
 |         return PyInt_FromLong(0); | 
 |  | 
 |     msd = v->ob_digit[ndigits-1]; | 
 |     while (msd >= 32) { | 
 |         msd_bits += 6; | 
 |         msd >>= 6; | 
 |     } | 
 |     msd_bits += (long)(BitLengthTable[msd]); | 
 |  | 
 |     if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT) | 
 |         return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits); | 
 |  | 
 |     /* expression above may overflow; use Python integers instead */ | 
 |     result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1); | 
 |     if (result == NULL) | 
 |         return NULL; | 
 |     x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT); | 
 |     if (x == NULL) | 
 |         goto error; | 
 |     y = (PyLongObject *)long_mul(result, x); | 
 |     Py_DECREF(x); | 
 |     if (y == NULL) | 
 |         goto error; | 
 |     Py_DECREF(result); | 
 |     result = y; | 
 |  | 
 |     x = (PyLongObject *)PyLong_FromLong((long)msd_bits); | 
 |     if (x == NULL) | 
 |         goto error; | 
 |     y = (PyLongObject *)long_add(result, x); | 
 |     Py_DECREF(x); | 
 |     if (y == NULL) | 
 |         goto error; | 
 |     Py_DECREF(result); | 
 |     result = y; | 
 |  | 
 |     return (PyObject *)result; | 
 |  | 
 |   error: | 
 |     Py_DECREF(result); | 
 |     return NULL; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(long_bit_length_doc, | 
 | "long.bit_length() -> int or long\n\ | 
 | \n\ | 
 | Number of bits necessary to represent self in binary.\n\ | 
 | >>> bin(37L)\n\ | 
 | '0b100101'\n\ | 
 | >>> (37L).bit_length()\n\ | 
 | 6"); | 
 |  | 
 | #if 0 | 
 | static PyObject * | 
 | long_is_finite(PyObject *v) | 
 | { | 
 |     Py_RETURN_TRUE; | 
 | } | 
 | #endif | 
 |  | 
 | static PyMethodDef long_methods[] = { | 
 |     {"conjugate",       (PyCFunction)long_long, METH_NOARGS, | 
 |      "Returns self, the complex conjugate of any long."}, | 
 |     {"bit_length",      (PyCFunction)long_bit_length, METH_NOARGS, | 
 |      long_bit_length_doc}, | 
 | #if 0 | 
 |     {"is_finite",       (PyCFunction)long_is_finite,    METH_NOARGS, | 
 |      "Returns always True."}, | 
 | #endif | 
 |     {"__trunc__",       (PyCFunction)long_long, METH_NOARGS, | 
 |      "Truncating an Integral returns itself."}, | 
 |     {"__getnewargs__",          (PyCFunction)long_getnewargs,   METH_NOARGS}, | 
 |     {"__format__", (PyCFunction)long__format__, METH_VARARGS}, | 
 |     {"__sizeof__",      (PyCFunction)long_sizeof, METH_NOARGS, | 
 |      "Returns size in memory, in bytes"}, | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 | static PyGetSetDef long_getset[] = { | 
 |     {"real", | 
 |      (getter)long_long, (setter)NULL, | 
 |      "the real part of a complex number", | 
 |      NULL}, | 
 |     {"imag", | 
 |      (getter)long_get0, (setter)NULL, | 
 |      "the imaginary part of a complex number", | 
 |      NULL}, | 
 |     {"numerator", | 
 |      (getter)long_long, (setter)NULL, | 
 |      "the numerator of a rational number in lowest terms", | 
 |      NULL}, | 
 |     {"denominator", | 
 |      (getter)long_get1, (setter)NULL, | 
 |      "the denominator of a rational number in lowest terms", | 
 |      NULL}, | 
 |     {NULL}  /* Sentinel */ | 
 | }; | 
 |  | 
 | PyDoc_STRVAR(long_doc, | 
 | "long(x=0) -> long\n\ | 
 | long(x, base=10) -> long\n\ | 
 | \n\ | 
 | Convert a number or string to a long integer, or return 0L if no arguments\n\ | 
 | are given.  If x is floating point, the conversion truncates towards zero.\n\ | 
 | \n\ | 
 | If x is not a number or if base is given, then x must be a string or\n\ | 
 | Unicode object representing an integer literal in the given base.  The\n\ | 
 | literal can be preceded by '+' or '-' and be surrounded by whitespace.\n\ | 
 | The base defaults to 10.  Valid bases are 0 and 2-36.  Base 0 means to\n\ | 
 | interpret the base from the string as an integer literal.\n\ | 
 | >>> int('0b100', base=0)\n\ | 
 | 4L"); | 
 |  | 
 | static PyNumberMethods long_as_number = { | 
 |     (binaryfunc)long_add,       /*nb_add*/ | 
 |     (binaryfunc)long_sub,       /*nb_subtract*/ | 
 |     (binaryfunc)long_mul,       /*nb_multiply*/ | 
 |     long_classic_div,           /*nb_divide*/ | 
 |     long_mod,                   /*nb_remainder*/ | 
 |     long_divmod,                /*nb_divmod*/ | 
 |     long_pow,                   /*nb_power*/ | 
 |     (unaryfunc)long_neg,        /*nb_negative*/ | 
 |     (unaryfunc)long_long,       /*tp_positive*/ | 
 |     (unaryfunc)long_abs,        /*tp_absolute*/ | 
 |     (inquiry)long_nonzero,      /*tp_nonzero*/ | 
 |     (unaryfunc)long_invert,     /*nb_invert*/ | 
 |     long_lshift,                /*nb_lshift*/ | 
 |     (binaryfunc)long_rshift,    /*nb_rshift*/ | 
 |     long_and,                   /*nb_and*/ | 
 |     long_xor,                   /*nb_xor*/ | 
 |     long_or,                    /*nb_or*/ | 
 |     long_coerce,                /*nb_coerce*/ | 
 |     long_int,                   /*nb_int*/ | 
 |     long_long,                  /*nb_long*/ | 
 |     long_float,                 /*nb_float*/ | 
 |     long_oct,                   /*nb_oct*/ | 
 |     long_hex,                   /*nb_hex*/ | 
 |     0,                          /* nb_inplace_add */ | 
 |     0,                          /* nb_inplace_subtract */ | 
 |     0,                          /* nb_inplace_multiply */ | 
 |     0,                          /* nb_inplace_divide */ | 
 |     0,                          /* nb_inplace_remainder */ | 
 |     0,                          /* nb_inplace_power */ | 
 |     0,                          /* nb_inplace_lshift */ | 
 |     0,                          /* nb_inplace_rshift */ | 
 |     0,                          /* nb_inplace_and */ | 
 |     0,                          /* nb_inplace_xor */ | 
 |     0,                          /* nb_inplace_or */ | 
 |     long_div,                   /* nb_floor_divide */ | 
 |     long_true_divide,           /* nb_true_divide */ | 
 |     0,                          /* nb_inplace_floor_divide */ | 
 |     0,                          /* nb_inplace_true_divide */ | 
 |     long_long,                  /* nb_index */ | 
 | }; | 
 |  | 
 | PyTypeObject PyLong_Type = { | 
 |     PyObject_HEAD_INIT(&PyType_Type) | 
 |     0,                                          /* ob_size */ | 
 |     "long",                                     /* tp_name */ | 
 |     offsetof(PyLongObject, ob_digit),           /* tp_basicsize */ | 
 |     sizeof(digit),                              /* tp_itemsize */ | 
 |     long_dealloc,                               /* tp_dealloc */ | 
 |     0,                                          /* tp_print */ | 
 |     0,                                          /* tp_getattr */ | 
 |     0,                                          /* tp_setattr */ | 
 |     (cmpfunc)long_compare,                      /* tp_compare */ | 
 |     long_repr,                                  /* tp_repr */ | 
 |     &long_as_number,                            /* tp_as_number */ | 
 |     0,                                          /* tp_as_sequence */ | 
 |     0,                                          /* tp_as_mapping */ | 
 |     (hashfunc)long_hash,                        /* tp_hash */ | 
 |     0,                                          /* tp_call */ | 
 |     long_str,                                   /* tp_str */ | 
 |     PyObject_GenericGetAttr,                    /* tp_getattro */ | 
 |     0,                                          /* tp_setattro */ | 
 |     0,                                          /* tp_as_buffer */ | 
 |     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | | 
 |         Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */ | 
 |     long_doc,                                   /* tp_doc */ | 
 |     0,                                          /* tp_traverse */ | 
 |     0,                                          /* tp_clear */ | 
 |     0,                                          /* tp_richcompare */ | 
 |     0,                                          /* tp_weaklistoffset */ | 
 |     0,                                          /* tp_iter */ | 
 |     0,                                          /* tp_iternext */ | 
 |     long_methods,                               /* tp_methods */ | 
 |     0,                                          /* tp_members */ | 
 |     long_getset,                                /* tp_getset */ | 
 |     0,                                          /* tp_base */ | 
 |     0,                                          /* tp_dict */ | 
 |     0,                                          /* tp_descr_get */ | 
 |     0,                                          /* tp_descr_set */ | 
 |     0,                                          /* tp_dictoffset */ | 
 |     0,                                          /* tp_init */ | 
 |     0,                                          /* tp_alloc */ | 
 |     long_new,                                   /* tp_new */ | 
 |     PyObject_Del,                               /* tp_free */ | 
 | }; | 
 |  | 
 | static PyTypeObject Long_InfoType; | 
 |  | 
 | PyDoc_STRVAR(long_info__doc__, | 
 | "sys.long_info\n\ | 
 | \n\ | 
 | A struct sequence that holds information about Python's\n\ | 
 | internal representation of integers.  The attributes are read only."); | 
 |  | 
 | static PyStructSequence_Field long_info_fields[] = { | 
 |     {"bits_per_digit", "size of a digit in bits"}, | 
 |     {"sizeof_digit", "size in bytes of the C type used to represent a digit"}, | 
 |     {NULL, NULL} | 
 | }; | 
 |  | 
 | static PyStructSequence_Desc long_info_desc = { | 
 |     "sys.long_info",   /* name */ | 
 |     long_info__doc__,  /* doc */ | 
 |     long_info_fields,  /* fields */ | 
 |     2                  /* number of fields */ | 
 | }; | 
 |  | 
 | PyObject * | 
 | PyLong_GetInfo(void) | 
 | { | 
 |     PyObject* long_info; | 
 |     int field = 0; | 
 |     long_info = PyStructSequence_New(&Long_InfoType); | 
 |     if (long_info == NULL) | 
 |         return NULL; | 
 |     PyStructSequence_SET_ITEM(long_info, field++, | 
 |                               PyInt_FromLong(PyLong_SHIFT)); | 
 |     PyStructSequence_SET_ITEM(long_info, field++, | 
 |                               PyInt_FromLong(sizeof(digit))); | 
 |     if (PyErr_Occurred()) { | 
 |         Py_CLEAR(long_info); | 
 |         return NULL; | 
 |     } | 
 |     return long_info; | 
 | } | 
 |  | 
 | int | 
 | _PyLong_Init(void) | 
 | { | 
 |     /* initialize long_info */ | 
 |     if (Long_InfoType.tp_name == 0) | 
 |         PyStructSequence_InitType(&Long_InfoType, &long_info_desc); | 
 |     return 1; | 
 | } |