| /* Complex math module */ |
| |
| /* much code borrowed from mathmodule.c */ |
| |
| #include "Python.h" |
| |
| #ifndef M_PI |
| #define M_PI (3.141592653589793239) |
| #endif |
| |
| /* First, the C functions that do the real work */ |
| |
| /* constants */ |
| static Py_complex c_one = {1., 0.}; |
| static Py_complex c_half = {0.5, 0.}; |
| static Py_complex c_i = {0., 1.}; |
| static Py_complex c_halfi = {0., 0.5}; |
| |
| /* forward declarations */ |
| static Py_complex c_log(Py_complex); |
| static Py_complex c_prodi(Py_complex); |
| static Py_complex c_sqrt(Py_complex); |
| static PyObject * math_error(void); |
| |
| |
| static Py_complex |
| c_acos(Py_complex x) |
| { |
| return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i, |
| c_sqrt(c_diff(c_one,c_prod(x,x)))))))); |
| } |
| |
| PyDoc_STRVAR(c_acos_doc, |
| "acos(x)\n" |
| "\n" |
| "Return the arc cosine of x."); |
| |
| |
| static Py_complex |
| c_acosh(Py_complex x) |
| { |
| Py_complex z; |
| z = c_sqrt(c_half); |
| z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)), |
| c_sqrt(c_diff(x,c_one))))); |
| return c_sum(z, z); |
| } |
| |
| PyDoc_STRVAR(c_acosh_doc, |
| "acosh(x)\n" |
| "\n" |
| "Return the hyperbolic arccosine of x."); |
| |
| |
| static Py_complex |
| c_asin(Py_complex x) |
| { |
| /* -i * log[(sqrt(1-x**2) + i*x] */ |
| const Py_complex squared = c_prod(x, x); |
| const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared)); |
| return c_neg(c_prodi(c_log( |
| c_sum(sqrt_1_minus_x_sq, c_prodi(x)) |
| ) ) ); |
| } |
| |
| PyDoc_STRVAR(c_asin_doc, |
| "asin(x)\n" |
| "\n" |
| "Return the arc sine of x."); |
| |
| |
| static Py_complex |
| c_asinh(Py_complex x) |
| { |
| Py_complex z; |
| z = c_sqrt(c_half); |
| z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)), |
| c_sqrt(c_diff(x, c_i))))); |
| return c_sum(z, z); |
| } |
| |
| PyDoc_STRVAR(c_asinh_doc, |
| "asinh(x)\n" |
| "\n" |
| "Return the hyperbolic arc sine of x."); |
| |
| |
| static Py_complex |
| c_atan(Py_complex x) |
| { |
| return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x)))); |
| } |
| |
| PyDoc_STRVAR(c_atan_doc, |
| "atan(x)\n" |
| "\n" |
| "Return the arc tangent of x."); |
| |
| |
| static Py_complex |
| c_atanh(Py_complex x) |
| { |
| return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x)))); |
| } |
| |
| PyDoc_STRVAR(c_atanh_doc, |
| "atanh(x)\n" |
| "\n" |
| "Return the hyperbolic arc tangent of x."); |
| |
| |
| static Py_complex |
| c_cos(Py_complex x) |
| { |
| Py_complex r; |
| r.real = cos(x.real)*cosh(x.imag); |
| r.imag = -sin(x.real)*sinh(x.imag); |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_cos_doc, |
| "cos(x)\n" |
| "n" |
| "Return the cosine of x."); |
| |
| |
| static Py_complex |
| c_cosh(Py_complex x) |
| { |
| Py_complex r; |
| r.real = cos(x.imag)*cosh(x.real); |
| r.imag = sin(x.imag)*sinh(x.real); |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_cosh_doc, |
| "cosh(x)\n" |
| "n" |
| "Return the hyperbolic cosine of x."); |
| |
| |
| static Py_complex |
| c_exp(Py_complex x) |
| { |
| Py_complex r; |
| double l = exp(x.real); |
| r.real = l*cos(x.imag); |
| r.imag = l*sin(x.imag); |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_exp_doc, |
| "exp(x)\n" |
| "\n" |
| "Return the exponential value e**x."); |
| |
| |
| static Py_complex |
| c_log(Py_complex x) |
| { |
| Py_complex r; |
| double l = hypot(x.real,x.imag); |
| r.imag = atan2(x.imag, x.real); |
| r.real = log(l); |
| return r; |
| } |
| |
| |
| static Py_complex |
| c_log10(Py_complex x) |
| { |
| Py_complex r; |
| double l = hypot(x.real,x.imag); |
| r.imag = atan2(x.imag, x.real)/log(10.); |
| r.real = log10(l); |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_log10_doc, |
| "log10(x)\n" |
| "\n" |
| "Return the base-10 logarithm of x."); |
| |
| |
| /* internal function not available from Python */ |
| static Py_complex |
| c_prodi(Py_complex x) |
| { |
| Py_complex r; |
| r.real = -x.imag; |
| r.imag = x.real; |
| return r; |
| } |
| |
| |
| static Py_complex |
| c_sin(Py_complex x) |
| { |
| Py_complex r; |
| r.real = sin(x.real) * cosh(x.imag); |
| r.imag = cos(x.real) * sinh(x.imag); |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_sin_doc, |
| "sin(x)\n" |
| "\n" |
| "Return the sine of x."); |
| |
| |
| static Py_complex |
| c_sinh(Py_complex x) |
| { |
| Py_complex r; |
| r.real = cos(x.imag) * sinh(x.real); |
| r.imag = sin(x.imag) * cosh(x.real); |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_sinh_doc, |
| "sinh(x)\n" |
| "\n" |
| "Return the hyperbolic sine of x."); |
| |
| |
| static Py_complex |
| c_sqrt(Py_complex x) |
| { |
| Py_complex r; |
| double s,d; |
| if (x.real == 0. && x.imag == 0.) |
| r = x; |
| else { |
| s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag))); |
| d = 0.5*x.imag/s; |
| if (x.real > 0.) { |
| r.real = s; |
| r.imag = d; |
| } |
| else if (x.imag >= 0.) { |
| r.real = d; |
| r.imag = s; |
| } |
| else { |
| r.real = -d; |
| r.imag = -s; |
| } |
| } |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_sqrt_doc, |
| "sqrt(x)\n" |
| "\n" |
| "Return the square root of x."); |
| |
| |
| static Py_complex |
| c_tan(Py_complex x) |
| { |
| Py_complex r; |
| double sr,cr,shi,chi; |
| double rs,is,rc,ic; |
| double d; |
| sr = sin(x.real); |
| cr = cos(x.real); |
| shi = sinh(x.imag); |
| chi = cosh(x.imag); |
| rs = sr * chi; |
| is = cr * shi; |
| rc = cr * chi; |
| ic = -sr * shi; |
| d = rc*rc + ic * ic; |
| r.real = (rs*rc + is*ic) / d; |
| r.imag = (is*rc - rs*ic) / d; |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_tan_doc, |
| "tan(x)\n" |
| "\n" |
| "Return the tangent of x."); |
| |
| |
| static Py_complex |
| c_tanh(Py_complex x) |
| { |
| Py_complex r; |
| double si,ci,shr,chr; |
| double rs,is,rc,ic; |
| double d; |
| si = sin(x.imag); |
| ci = cos(x.imag); |
| shr = sinh(x.real); |
| chr = cosh(x.real); |
| rs = ci * shr; |
| is = si * chr; |
| rc = ci * chr; |
| ic = si * shr; |
| d = rc*rc + ic*ic; |
| r.real = (rs*rc + is*ic) / d; |
| r.imag = (is*rc - rs*ic) / d; |
| return r; |
| } |
| |
| PyDoc_STRVAR(c_tanh_doc, |
| "tanh(x)\n" |
| "\n" |
| "Return the hyperbolic tangent of x."); |
| |
| static PyObject * |
| cmath_log(PyObject *self, PyObject *args) |
| { |
| Py_complex x; |
| Py_complex y; |
| |
| if (!PyArg_ParseTuple(args, "D|D", &x, &y)) |
| return NULL; |
| |
| errno = 0; |
| PyFPE_START_PROTECT("complex function", return 0) |
| x = c_log(x); |
| if (PyTuple_GET_SIZE(args) == 2) |
| x = c_quot(x, c_log(y)); |
| PyFPE_END_PROTECT(x) |
| if (errno != 0) |
| return math_error(); |
| Py_ADJUST_ERANGE2(x.real, x.imag); |
| return PyComplex_FromCComplex(x); |
| } |
| |
| PyDoc_STRVAR(cmath_log_doc, |
| "log(x[, base]) -> the logarithm of x to the given base.\n\ |
| If the base not specified, returns the natural logarithm (base e) of x."); |
| |
| |
| /* And now the glue to make them available from Python: */ |
| |
| static PyObject * |
| math_error(void) |
| { |
| if (errno == EDOM) |
| PyErr_SetString(PyExc_ValueError, "math domain error"); |
| else if (errno == ERANGE) |
| PyErr_SetString(PyExc_OverflowError, "math range error"); |
| else /* Unexpected math error */ |
| PyErr_SetFromErrno(PyExc_ValueError); |
| return NULL; |
| } |
| |
| static PyObject * |
| math_1(PyObject *args, Py_complex (*func)(Py_complex)) |
| { |
| Py_complex x; |
| if (!PyArg_ParseTuple(args, "D", &x)) |
| return NULL; |
| errno = 0; |
| PyFPE_START_PROTECT("complex function", return 0) |
| x = (*func)(x); |
| PyFPE_END_PROTECT(x) |
| Py_ADJUST_ERANGE2(x.real, x.imag); |
| if (errno != 0) |
| return math_error(); |
| else |
| return PyComplex_FromCComplex(x); |
| } |
| |
| #define FUNC1(stubname, func) \ |
| static PyObject * stubname(PyObject *self, PyObject *args) { \ |
| return math_1(args, func); \ |
| } |
| |
| FUNC1(cmath_acos, c_acos) |
| FUNC1(cmath_acosh, c_acosh) |
| FUNC1(cmath_asin, c_asin) |
| FUNC1(cmath_asinh, c_asinh) |
| FUNC1(cmath_atan, c_atan) |
| FUNC1(cmath_atanh, c_atanh) |
| FUNC1(cmath_cos, c_cos) |
| FUNC1(cmath_cosh, c_cosh) |
| FUNC1(cmath_exp, c_exp) |
| FUNC1(cmath_log10, c_log10) |
| FUNC1(cmath_sin, c_sin) |
| FUNC1(cmath_sinh, c_sinh) |
| FUNC1(cmath_sqrt, c_sqrt) |
| FUNC1(cmath_tan, c_tan) |
| FUNC1(cmath_tanh, c_tanh) |
| |
| |
| PyDoc_STRVAR(module_doc, |
| "This module is always available. It provides access to mathematical\n" |
| "functions for complex numbers."); |
| |
| static PyMethodDef cmath_methods[] = { |
| {"acos", cmath_acos, METH_VARARGS, c_acos_doc}, |
| {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc}, |
| {"asin", cmath_asin, METH_VARARGS, c_asin_doc}, |
| {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc}, |
| {"atan", cmath_atan, METH_VARARGS, c_atan_doc}, |
| {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc}, |
| {"cos", cmath_cos, METH_VARARGS, c_cos_doc}, |
| {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc}, |
| {"exp", cmath_exp, METH_VARARGS, c_exp_doc}, |
| {"log", cmath_log, METH_VARARGS, cmath_log_doc}, |
| {"log10", cmath_log10, METH_VARARGS, c_log10_doc}, |
| {"sin", cmath_sin, METH_VARARGS, c_sin_doc}, |
| {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc}, |
| {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc}, |
| {"tan", cmath_tan, METH_VARARGS, c_tan_doc}, |
| {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyMODINIT_FUNC |
| initcmath(void) |
| { |
| PyObject *m; |
| |
| m = Py_InitModule3("cmath", cmath_methods, module_doc); |
| |
| PyModule_AddObject(m, "pi", |
| PyFloat_FromDouble(atan(1.0) * 4.0)); |
| PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0))); |
| } |