| /* SHA1 module */ |
| |
| /* This module provides an interface to the SHA1 algorithm */ |
| |
| /* See below for information about the original code this module was |
| based upon. Additional work performed by: |
| |
| Andrew Kuchling (amk@amk.ca) |
| Greg Stein (gstein@lyra.org) |
| Trevor Perrin (trevp@trevp.net) |
| |
| Copyright (C) 2005-2007 Gregory P. Smith (greg@krypto.org) |
| Licensed to PSF under a Contributor Agreement. |
| |
| */ |
| |
| /* SHA1 objects */ |
| |
| #include "Python.h" |
| |
| |
| /* Some useful types */ |
| |
| #if SIZEOF_INT == 4 |
| typedef unsigned int SHA1_INT32; /* 32-bit integer */ |
| typedef PY_LONG_LONG SHA1_INT64; /* 64-bit integer */ |
| #else |
| /* not defined. compilation will die. */ |
| #endif |
| |
| /* The SHA1 block size and message digest sizes, in bytes */ |
| |
| #define SHA1_BLOCKSIZE 64 |
| #define SHA1_DIGESTSIZE 20 |
| |
| /* The structure for storing SHA1 info */ |
| |
| struct sha1_state { |
| SHA1_INT64 length; |
| SHA1_INT32 state[5], curlen; |
| unsigned char buf[SHA1_BLOCKSIZE]; |
| }; |
| |
| typedef struct { |
| PyObject_HEAD |
| |
| struct sha1_state hash_state; |
| } SHA1object; |
| |
| |
| /* ------------------------------------------------------------------------ |
| * |
| * This code for the SHA1 algorithm was noted as public domain. The |
| * original headers are pasted below. |
| * |
| * Several changes have been made to make it more compatible with the |
| * Python environment and desired interface. |
| * |
| */ |
| |
| /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
| * |
| * LibTomCrypt is a library that provides various cryptographic |
| * algorithms in a highly modular and flexible manner. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://libtom.org |
| */ |
| |
| /* rotate the hard way (platform optimizations could be done) */ |
| #define ROL(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) |
| #define ROLc(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) |
| |
| /* Endian Neutral macros that work on all platforms */ |
| |
| #define STORE32H(x, y) \ |
| { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ |
| (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } |
| |
| #define LOAD32H(x, y) \ |
| { x = ((unsigned long)((y)[0] & 255)<<24) | \ |
| ((unsigned long)((y)[1] & 255)<<16) | \ |
| ((unsigned long)((y)[2] & 255)<<8) | \ |
| ((unsigned long)((y)[3] & 255)); } |
| |
| #define STORE64H(x, y) \ |
| { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ |
| (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ |
| (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ |
| (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } |
| |
| #ifndef MIN |
| #define MIN(x, y) ( ((x)<(y))?(x):(y) ) |
| #endif |
| |
| |
| /* SHA1 macros */ |
| |
| #define F0(x,y,z) (z ^ (x & (y ^ z))) |
| #define F1(x,y,z) (x ^ y ^ z) |
| #define F2(x,y,z) ((x & y) | (z & (x | y))) |
| #define F3(x,y,z) (x ^ y ^ z) |
| |
| static void sha1_compress(struct sha1_state *sha1, unsigned char *buf) |
| { |
| SHA1_INT32 a,b,c,d,e,W[80],i; |
| |
| /* copy the state into 512-bits into W[0..15] */ |
| for (i = 0; i < 16; i++) { |
| LOAD32H(W[i], buf + (4*i)); |
| } |
| |
| /* copy state */ |
| a = sha1->state[0]; |
| b = sha1->state[1]; |
| c = sha1->state[2]; |
| d = sha1->state[3]; |
| e = sha1->state[4]; |
| |
| /* expand it */ |
| for (i = 16; i < 80; i++) { |
| W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); |
| } |
| |
| /* compress */ |
| /* round one */ |
| #define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30); |
| #define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30); |
| #define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30); |
| #define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30); |
| |
| for (i = 0; i < 20; ) { |
| FF0(a,b,c,d,e,i++); |
| FF0(e,a,b,c,d,i++); |
| FF0(d,e,a,b,c,i++); |
| FF0(c,d,e,a,b,i++); |
| FF0(b,c,d,e,a,i++); |
| } |
| |
| /* round two */ |
| for (; i < 40; ) { |
| FF1(a,b,c,d,e,i++); |
| FF1(e,a,b,c,d,i++); |
| FF1(d,e,a,b,c,i++); |
| FF1(c,d,e,a,b,i++); |
| FF1(b,c,d,e,a,i++); |
| } |
| |
| /* round three */ |
| for (; i < 60; ) { |
| FF2(a,b,c,d,e,i++); |
| FF2(e,a,b,c,d,i++); |
| FF2(d,e,a,b,c,i++); |
| FF2(c,d,e,a,b,i++); |
| FF2(b,c,d,e,a,i++); |
| } |
| |
| /* round four */ |
| for (; i < 80; ) { |
| FF3(a,b,c,d,e,i++); |
| FF3(e,a,b,c,d,i++); |
| FF3(d,e,a,b,c,i++); |
| FF3(c,d,e,a,b,i++); |
| FF3(b,c,d,e,a,i++); |
| } |
| |
| #undef FF0 |
| #undef FF1 |
| #undef FF2 |
| #undef FF3 |
| |
| /* store */ |
| sha1->state[0] = sha1->state[0] + a; |
| sha1->state[1] = sha1->state[1] + b; |
| sha1->state[2] = sha1->state[2] + c; |
| sha1->state[3] = sha1->state[3] + d; |
| sha1->state[4] = sha1->state[4] + e; |
| } |
| |
| /** |
| Initialize the hash state |
| @param sha1 The hash state you wish to initialize |
| */ |
| void sha1_init(struct sha1_state *sha1) |
| { |
| assert(sha1 != NULL); |
| sha1->state[0] = 0x67452301UL; |
| sha1->state[1] = 0xefcdab89UL; |
| sha1->state[2] = 0x98badcfeUL; |
| sha1->state[3] = 0x10325476UL; |
| sha1->state[4] = 0xc3d2e1f0UL; |
| sha1->curlen = 0; |
| sha1->length = 0; |
| } |
| |
| /** |
| Process a block of memory though the hash |
| @param sha1 The hash state |
| @param in The data to hash |
| @param inlen The length of the data (octets) |
| */ |
| void sha1_process(struct sha1_state *sha1, |
| const unsigned char *in, unsigned long inlen) |
| { |
| unsigned long n; |
| |
| assert(sha1 != NULL); |
| assert(in != NULL); |
| assert(sha1->curlen <= sizeof(sha1->buf)); |
| |
| while (inlen > 0) { |
| if (sha1->curlen == 0 && inlen >= SHA1_BLOCKSIZE) { |
| sha1_compress(sha1, (unsigned char *)in); |
| sha1->length += SHA1_BLOCKSIZE * 8; |
| in += SHA1_BLOCKSIZE; |
| inlen -= SHA1_BLOCKSIZE; |
| } else { |
| n = MIN(inlen, (SHA1_BLOCKSIZE - sha1->curlen)); |
| memcpy(sha1->buf + sha1->curlen, in, (size_t)n); |
| sha1->curlen += n; |
| in += n; |
| inlen -= n; |
| if (sha1->curlen == SHA1_BLOCKSIZE) { |
| sha1_compress(sha1, sha1->buf); |
| sha1->length += 8*SHA1_BLOCKSIZE; |
| sha1->curlen = 0; |
| } |
| } |
| } |
| } |
| |
| /** |
| Terminate the hash to get the digest |
| @param sha1 The hash state |
| @param out [out] The destination of the hash (20 bytes) |
| */ |
| void sha1_done(struct sha1_state *sha1, unsigned char *out) |
| { |
| int i; |
| |
| assert(sha1 != NULL); |
| assert(out != NULL); |
| assert(sha1->curlen < sizeof(sha1->buf)); |
| |
| /* increase the length of the message */ |
| sha1->length += sha1->curlen * 8; |
| |
| /* append the '1' bit */ |
| sha1->buf[sha1->curlen++] = (unsigned char)0x80; |
| |
| /* if the length is currently above 56 bytes we append zeros |
| * then compress. Then we can fall back to padding zeros and length |
| * encoding like normal. |
| */ |
| if (sha1->curlen > 56) { |
| while (sha1->curlen < 64) { |
| sha1->buf[sha1->curlen++] = (unsigned char)0; |
| } |
| sha1_compress(sha1, sha1->buf); |
| sha1->curlen = 0; |
| } |
| |
| /* pad upto 56 bytes of zeroes */ |
| while (sha1->curlen < 56) { |
| sha1->buf[sha1->curlen++] = (unsigned char)0; |
| } |
| |
| /* store length */ |
| STORE64H(sha1->length, sha1->buf+56); |
| sha1_compress(sha1, sha1->buf); |
| |
| /* copy output */ |
| for (i = 0; i < 5; i++) { |
| STORE32H(sha1->state[i], out+(4*i)); |
| } |
| } |
| |
| |
| /* .Source: /cvs/libtom/libtomcrypt/src/hashes/sha1.c,v $ */ |
| /* .Revision: 1.10 $ */ |
| /* .Date: 2007/05/12 14:25:28 $ */ |
| |
| /* |
| * End of copied SHA1 code. |
| * |
| * ------------------------------------------------------------------------ |
| */ |
| |
| static PyTypeObject SHA1type; |
| |
| |
| static SHA1object * |
| newSHA1object(void) |
| { |
| return (SHA1object *)PyObject_New(SHA1object, &SHA1type); |
| } |
| |
| |
| /* Internal methods for a hash object */ |
| |
| static void |
| SHA1_dealloc(PyObject *ptr) |
| { |
| PyObject_Del(ptr); |
| } |
| |
| |
| /* External methods for a hash object */ |
| |
| PyDoc_STRVAR(SHA1_copy__doc__, "Return a copy of the hash object."); |
| |
| static PyObject * |
| SHA1_copy(SHA1object *self, PyObject *unused) |
| { |
| SHA1object *newobj; |
| |
| if (Py_TYPE(self) == &SHA1type) { |
| if ( (newobj = newSHA1object())==NULL) |
| return NULL; |
| } else { |
| if ( (newobj = newSHA1object())==NULL) |
| return NULL; |
| } |
| |
| newobj->hash_state = self->hash_state; |
| return (PyObject *)newobj; |
| } |
| |
| PyDoc_STRVAR(SHA1_digest__doc__, |
| "Return the digest value as a string of binary data."); |
| |
| static PyObject * |
| SHA1_digest(SHA1object *self, PyObject *unused) |
| { |
| unsigned char digest[SHA1_DIGESTSIZE]; |
| struct sha1_state temp; |
| |
| temp = self->hash_state; |
| sha1_done(&temp, digest); |
| return PyBytes_FromStringAndSize((const char *)digest, SHA1_DIGESTSIZE); |
| } |
| |
| PyDoc_STRVAR(SHA1_hexdigest__doc__, |
| "Return the digest value as a string of hexadecimal digits."); |
| |
| static PyObject * |
| SHA1_hexdigest(SHA1object *self, PyObject *unused) |
| { |
| unsigned char digest[SHA1_DIGESTSIZE]; |
| struct sha1_state temp; |
| PyObject *retval; |
| Py_UNICODE *hex_digest; |
| int i, j; |
| |
| /* Get the raw (binary) digest value */ |
| temp = self->hash_state; |
| sha1_done(&temp, digest); |
| |
| /* Create a new string */ |
| retval = PyUnicode_FromStringAndSize(NULL, SHA1_DIGESTSIZE * 2); |
| if (!retval) |
| return NULL; |
| hex_digest = PyUnicode_AS_UNICODE(retval); |
| if (!hex_digest) { |
| Py_DECREF(retval); |
| return NULL; |
| } |
| |
| /* Make hex version of the digest */ |
| for(i=j=0; i<SHA1_DIGESTSIZE; i++) { |
| char c; |
| c = (digest[i] >> 4) & 0xf; |
| c = (c>9) ? c+'a'-10 : c + '0'; |
| hex_digest[j++] = c; |
| c = (digest[i] & 0xf); |
| c = (c>9) ? c+'a'-10 : c + '0'; |
| hex_digest[j++] = c; |
| } |
| return retval; |
| } |
| |
| PyDoc_STRVAR(SHA1_update__doc__, |
| "Update this hash object's state with the provided string."); |
| |
| static PyObject * |
| SHA1_update(SHA1object *self, PyObject *args) |
| { |
| unsigned char *cp; |
| int len; |
| |
| if (!PyArg_ParseTuple(args, "s#:update", &cp, &len)) |
| return NULL; |
| |
| sha1_process(&self->hash_state, cp, len); |
| |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| |
| static PyMethodDef SHA1_methods[] = { |
| {"copy", (PyCFunction)SHA1_copy, METH_NOARGS, SHA1_copy__doc__}, |
| {"digest", (PyCFunction)SHA1_digest, METH_NOARGS, SHA1_digest__doc__}, |
| {"hexdigest", (PyCFunction)SHA1_hexdigest, METH_NOARGS, SHA1_hexdigest__doc__}, |
| {"update", (PyCFunction)SHA1_update, METH_VARARGS, SHA1_update__doc__}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyObject * |
| SHA1_get_block_size(PyObject *self, void *closure) |
| { |
| return PyLong_FromLong(SHA1_BLOCKSIZE); |
| } |
| |
| static PyObject * |
| SHA1_get_name(PyObject *self, void *closure) |
| { |
| return PyUnicode_FromStringAndSize("SHA1", 3); |
| } |
| |
| static PyObject * |
| sha1_get_digest_size(PyObject *self, void *closure) |
| { |
| return PyLong_FromLong(SHA1_DIGESTSIZE); |
| } |
| |
| |
| static PyGetSetDef SHA1_getseters[] = { |
| {"block_size", |
| (getter)SHA1_get_block_size, NULL, |
| NULL, |
| NULL}, |
| {"name", |
| (getter)SHA1_get_name, NULL, |
| NULL, |
| NULL}, |
| {"digest_size", |
| (getter)sha1_get_digest_size, NULL, |
| NULL, |
| NULL}, |
| {NULL} /* Sentinel */ |
| }; |
| |
| static PyTypeObject SHA1type = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "_sha1.sha1", /*tp_name*/ |
| sizeof(SHA1object), /*tp_size*/ |
| 0, /*tp_itemsize*/ |
| /* methods */ |
| SHA1_dealloc, /*tp_dealloc*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_compare*/ |
| 0, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash*/ |
| 0, /*tp_call*/ |
| 0, /*tp_str*/ |
| 0, /*tp_getattro*/ |
| 0, /*tp_setattro*/ |
| 0, /*tp_as_buffer*/ |
| Py_TPFLAGS_DEFAULT, /*tp_flags*/ |
| 0, /*tp_doc*/ |
| 0, /*tp_traverse*/ |
| 0, /*tp_clear*/ |
| 0, /*tp_richcompare*/ |
| 0, /*tp_weaklistoffset*/ |
| 0, /*tp_iter*/ |
| 0, /*tp_iternext*/ |
| SHA1_methods, /* tp_methods */ |
| NULL, /* tp_members */ |
| SHA1_getseters, /* tp_getset */ |
| }; |
| |
| |
| /* The single module-level function: new() */ |
| |
| PyDoc_STRVAR(SHA1_new__doc__, |
| "Return a new SHA1 hash object; optionally initialized with a string."); |
| |
| static PyObject * |
| SHA1_new(PyObject *self, PyObject *args, PyObject *kwdict) |
| { |
| static char *kwlist[] = {"string", NULL}; |
| SHA1object *new; |
| unsigned char *cp = NULL; |
| int len; |
| |
| if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist, |
| &cp, &len)) { |
| return NULL; |
| } |
| |
| if ((new = newSHA1object()) == NULL) |
| return NULL; |
| |
| sha1_init(&new->hash_state); |
| |
| if (PyErr_Occurred()) { |
| Py_DECREF(new); |
| return NULL; |
| } |
| if (cp) |
| sha1_process(&new->hash_state, cp, len); |
| |
| return (PyObject *)new; |
| } |
| |
| |
| /* List of functions exported by this module */ |
| |
| static struct PyMethodDef SHA1_functions[] = { |
| {"sha1",(PyCFunction)SHA1_new, METH_VARARGS|METH_KEYWORDS,SHA1_new__doc__}, |
| {NULL, NULL} /* Sentinel */ |
| }; |
| |
| |
| /* Initialize this module. */ |
| |
| #define insint(n,v) { PyModule_AddIntConstant(m,n,v); } |
| |
| |
| static struct PyModuleDef _sha1module = { |
| PyModuleDef_HEAD_INIT, |
| "_sha1", |
| NULL, |
| -1, |
| SHA1_functions, |
| NULL, |
| NULL, |
| NULL, |
| NULL |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit__sha1(void) |
| { |
| PyObject *m; |
| |
| Py_TYPE(&SHA1type) = &PyType_Type; |
| if (PyType_Ready(&SHA1type) < 0) |
| return NULL; |
| return PyModule_Create(&_sha1module); |
| } |