|  | 
 | /* Generic object operations; and implementation of None (NoObject) */ | 
 |  | 
 | #include "Python.h" | 
 | #include "frameobject.h" | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #ifdef Py_REF_DEBUG | 
 | Py_ssize_t _Py_RefTotal; | 
 |  | 
 | Py_ssize_t | 
 | _Py_GetRefTotal(void) | 
 | { | 
 | 	PyObject *o; | 
 | 	Py_ssize_t total = _Py_RefTotal; | 
 |         /* ignore the references to the dummy object of the dicts and sets | 
 |            because they are not reliable and not useful (now that the | 
 |            hash table code is well-tested) */ | 
 | 	o = _PyDict_Dummy(); | 
 | 	if (o != NULL) | 
 | 		total -= o->ob_refcnt; | 
 | 	o = _PySet_Dummy(); | 
 | 	if (o != NULL) | 
 | 		total -= o->ob_refcnt; | 
 | 	return total; | 
 | } | 
 | #endif /* Py_REF_DEBUG */ | 
 |  | 
 | int Py_DivisionWarningFlag; | 
 | int Py_Py3kWarningFlag; | 
 |  | 
 | /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. | 
 |    These are used by the individual routines for object creation. | 
 |    Do not call them otherwise, they do not initialize the object! */ | 
 |  | 
 | #ifdef Py_TRACE_REFS | 
 | /* Head of circular doubly-linked list of all objects.  These are linked | 
 |  * together via the _ob_prev and _ob_next members of a PyObject, which | 
 |  * exist only in a Py_TRACE_REFS build. | 
 |  */ | 
 | static PyObject refchain = {&refchain, &refchain}; | 
 |  | 
 | /* Insert op at the front of the list of all objects.  If force is true, | 
 |  * op is added even if _ob_prev and _ob_next are non-NULL already.  If | 
 |  * force is false amd _ob_prev or _ob_next are non-NULL, do nothing. | 
 |  * force should be true if and only if op points to freshly allocated, | 
 |  * uninitialized memory, or you've unlinked op from the list and are | 
 |  * relinking it into the front. | 
 |  * Note that objects are normally added to the list via _Py_NewReference, | 
 |  * which is called by PyObject_Init.  Not all objects are initialized that | 
 |  * way, though; exceptions include statically allocated type objects, and | 
 |  * statically allocated singletons (like Py_True and Py_None). | 
 |  */ | 
 | void | 
 | _Py_AddToAllObjects(PyObject *op, int force) | 
 | { | 
 | #ifdef  Py_DEBUG | 
 | 	if (!force) { | 
 | 		/* If it's initialized memory, op must be in or out of | 
 | 		 * the list unambiguously. | 
 | 		 */ | 
 | 		assert((op->_ob_prev == NULL) == (op->_ob_next == NULL)); | 
 | 	} | 
 | #endif | 
 | 	if (force || op->_ob_prev == NULL) { | 
 | 		op->_ob_next = refchain._ob_next; | 
 | 		op->_ob_prev = &refchain; | 
 | 		refchain._ob_next->_ob_prev = op; | 
 | 		refchain._ob_next = op; | 
 | 	} | 
 | } | 
 | #endif	/* Py_TRACE_REFS */ | 
 |  | 
 | #ifdef COUNT_ALLOCS | 
 | static PyTypeObject *type_list; | 
 | /* All types are added to type_list, at least when | 
 |    they get one object created. That makes them | 
 |    immortal, which unfortunately contributes to | 
 |    garbage itself. If unlist_types_without_objects | 
 |    is set, they will be removed from the type_list | 
 |    once the last object is deallocated. */ | 
 | static int unlist_types_without_objects; | 
 | extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs; | 
 | extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs; | 
 | extern Py_ssize_t null_strings, one_strings; | 
 | void | 
 | dump_counts(FILE* f) | 
 | { | 
 | 	PyTypeObject *tp; | 
 |  | 
 | 	for (tp = type_list; tp; tp = tp->tp_next) | 
 | 		fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, " | 
 | 			"freed: %" PY_FORMAT_SIZE_T "d, " | 
 | 			"max in use: %" PY_FORMAT_SIZE_T "d\n", | 
 | 			tp->tp_name, tp->tp_allocs, tp->tp_frees, | 
 | 			tp->tp_maxalloc); | 
 | 	fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, " | 
 | 		"empty: %" PY_FORMAT_SIZE_T "d\n", | 
 | 		fast_tuple_allocs, tuple_zero_allocs); | 
 | 	fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, " | 
 | 		"neg: %" PY_FORMAT_SIZE_T "d\n", | 
 | 		quick_int_allocs, quick_neg_int_allocs); | 
 | 	fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, " | 
 | 		"1-strings: %" PY_FORMAT_SIZE_T "d\n", | 
 | 		null_strings, one_strings); | 
 | } | 
 |  | 
 | PyObject * | 
 | get_counts(void) | 
 | { | 
 | 	PyTypeObject *tp; | 
 | 	PyObject *result; | 
 | 	PyObject *v; | 
 |  | 
 | 	result = PyList_New(0); | 
 | 	if (result == NULL) | 
 | 		return NULL; | 
 | 	for (tp = type_list; tp; tp = tp->tp_next) { | 
 | 		v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs, | 
 | 				  tp->tp_frees, tp->tp_maxalloc); | 
 | 		if (v == NULL) { | 
 | 			Py_DECREF(result); | 
 | 			return NULL; | 
 | 		} | 
 | 		if (PyList_Append(result, v) < 0) { | 
 | 			Py_DECREF(v); | 
 | 			Py_DECREF(result); | 
 | 			return NULL; | 
 | 		} | 
 | 		Py_DECREF(v); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | void | 
 | inc_count(PyTypeObject *tp) | 
 | { | 
 | 	if (tp->tp_next == NULL && tp->tp_prev == NULL) { | 
 | 		/* first time; insert in linked list */ | 
 | 		if (tp->tp_next != NULL) /* sanity check */ | 
 | 			Py_FatalError("XXX inc_count sanity check"); | 
 | 		if (type_list) | 
 | 			type_list->tp_prev = tp; | 
 | 		tp->tp_next = type_list; | 
 | 		/* Note that as of Python 2.2, heap-allocated type objects | 
 | 		 * can go away, but this code requires that they stay alive | 
 | 		 * until program exit.  That's why we're careful with | 
 | 		 * refcounts here.  type_list gets a new reference to tp, | 
 | 		 * while ownership of the reference type_list used to hold | 
 | 		 * (if any) was transferred to tp->tp_next in the line above. | 
 | 		 * tp is thus effectively immortal after this. | 
 | 		 */ | 
 | 		Py_INCREF(tp); | 
 | 		type_list = tp; | 
 | #ifdef Py_TRACE_REFS | 
 | 		/* Also insert in the doubly-linked list of all objects, | 
 | 		 * if not already there. | 
 | 		 */ | 
 | 		_Py_AddToAllObjects((PyObject *)tp, 0); | 
 | #endif | 
 | 	} | 
 | 	tp->tp_allocs++; | 
 | 	if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc) | 
 | 		tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees; | 
 | } | 
 |  | 
 | void dec_count(PyTypeObject *tp) | 
 | { | 
 | 	tp->tp_frees++; | 
 | 	if (unlist_types_without_objects && | 
 | 	    tp->tp_allocs == tp->tp_frees) { | 
 | 		/* unlink the type from type_list */ | 
 | 		if (tp->tp_prev) | 
 | 			tp->tp_prev->tp_next = tp->tp_next; | 
 | 		else | 
 | 			type_list = tp->tp_next; | 
 | 		if (tp->tp_next) | 
 | 			tp->tp_next->tp_prev = tp->tp_prev; | 
 | 		tp->tp_next = tp->tp_prev = NULL; | 
 | 		Py_DECREF(tp); | 
 | 	} | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef Py_REF_DEBUG | 
 | /* Log a fatal error; doesn't return. */ | 
 | void | 
 | _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op) | 
 | { | 
 | 	char buf[300]; | 
 |  | 
 | 	PyOS_snprintf(buf, sizeof(buf), | 
 | 		      "%s:%i object at %p has negative ref count " | 
 | 		      "%" PY_FORMAT_SIZE_T "d", | 
 | 		      fname, lineno, op, op->ob_refcnt); | 
 | 	Py_FatalError(buf); | 
 | } | 
 |  | 
 | #endif /* Py_REF_DEBUG */ | 
 |  | 
 | void | 
 | Py_IncRef(PyObject *o) | 
 | { | 
 |     Py_XINCREF(o); | 
 | } | 
 |  | 
 | void | 
 | Py_DecRef(PyObject *o) | 
 | { | 
 |     Py_XDECREF(o); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyObject_Init(PyObject *op, PyTypeObject *tp) | 
 | { | 
 | 	if (op == NULL) | 
 | 		return PyErr_NoMemory(); | 
 | 	/* Any changes should be reflected in PyObject_INIT (objimpl.h) */ | 
 | 	Py_TYPE(op) = tp; | 
 | 	_Py_NewReference(op); | 
 | 	return op; | 
 | } | 
 |  | 
 | PyVarObject * | 
 | PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size) | 
 | { | 
 | 	if (op == NULL) | 
 | 		return (PyVarObject *) PyErr_NoMemory(); | 
 | 	/* Any changes should be reflected in PyObject_INIT_VAR */ | 
 | 	op->ob_size = size; | 
 | 	Py_TYPE(op) = tp; | 
 | 	_Py_NewReference((PyObject *)op); | 
 | 	return op; | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyObject_New(PyTypeObject *tp) | 
 | { | 
 | 	PyObject *op; | 
 | 	op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp)); | 
 | 	if (op == NULL) | 
 | 		return PyErr_NoMemory(); | 
 | 	return PyObject_INIT(op, tp); | 
 | } | 
 |  | 
 | PyVarObject * | 
 | _PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems) | 
 | { | 
 | 	PyVarObject *op; | 
 | 	const size_t size = _PyObject_VAR_SIZE(tp, nitems); | 
 | 	op = (PyVarObject *) PyObject_MALLOC(size); | 
 | 	if (op == NULL) | 
 | 		return (PyVarObject *)PyErr_NoMemory(); | 
 | 	return PyObject_INIT_VAR(op, tp, nitems); | 
 | } | 
 |  | 
 | /* for binary compatibility with 2.2 */ | 
 | #undef _PyObject_Del | 
 | void | 
 | _PyObject_Del(PyObject *op) | 
 | { | 
 | 	PyObject_FREE(op); | 
 | } | 
 |  | 
 | /* Implementation of PyObject_Print with recursion checking */ | 
 | static int | 
 | internal_print(PyObject *op, FILE *fp, int flags, int nesting) | 
 | { | 
 | 	int ret = 0; | 
 | 	if (nesting > 10) { | 
 | 		PyErr_SetString(PyExc_RuntimeError, "print recursion"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (PyErr_CheckSignals()) | 
 | 		return -1; | 
 | #ifdef USE_STACKCHECK | 
 | 	if (PyOS_CheckStack()) { | 
 | 		PyErr_SetString(PyExc_MemoryError, "stack overflow"); | 
 | 		return -1; | 
 | 	} | 
 | #endif | 
 | 	clearerr(fp); /* Clear any previous error condition */ | 
 | 	if (op == NULL) { | 
 | 		Py_BEGIN_ALLOW_THREADS | 
 | 		fprintf(fp, "<nil>"); | 
 | 		Py_END_ALLOW_THREADS | 
 | 	} | 
 | 	else { | 
 | 		if (op->ob_refcnt <= 0) | 
 | 			/* XXX(twouters) cast refcount to long until %zd is | 
 | 			   universally available */ | 
 | 			Py_BEGIN_ALLOW_THREADS | 
 | 			fprintf(fp, "<refcnt %ld at %p>", | 
 | 				(long)op->ob_refcnt, op); | 
 | 			Py_END_ALLOW_THREADS | 
 | 		else if (Py_TYPE(op)->tp_print == NULL) { | 
 | 			PyObject *s; | 
 | 			if (flags & Py_PRINT_RAW) | 
 | 				s = PyObject_Str(op); | 
 | 			else | 
 | 				s = PyObject_Repr(op); | 
 | 			if (s == NULL) | 
 | 				ret = -1; | 
 | 			else { | 
 | 				ret = internal_print(s, fp, Py_PRINT_RAW, | 
 | 						     nesting+1); | 
 | 			} | 
 | 			Py_XDECREF(s); | 
 | 		} | 
 | 		else | 
 | 			ret = (*Py_TYPE(op)->tp_print)(op, fp, flags); | 
 | 	} | 
 | 	if (ret == 0) { | 
 | 		if (ferror(fp)) { | 
 | 			PyErr_SetFromErrno(PyExc_IOError); | 
 | 			clearerr(fp); | 
 | 			ret = -1; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int | 
 | PyObject_Print(PyObject *op, FILE *fp, int flags) | 
 | { | 
 | 	return internal_print(op, fp, flags, 0); | 
 | } | 
 |  | 
 |  | 
 | /* For debugging convenience.  See Misc/gdbinit for some useful gdb hooks */ | 
 | void _PyObject_Dump(PyObject* op) | 
 | { | 
 | 	if (op == NULL) | 
 | 		fprintf(stderr, "NULL\n"); | 
 | 	else { | 
 | #ifdef WITH_THREAD | 
 | 		PyGILState_STATE gil; | 
 | #endif | 
 | 		fprintf(stderr, "object  : "); | 
 | #ifdef WITH_THREAD | 
 | 		gil = PyGILState_Ensure(); | 
 | #endif | 
 | 		(void)PyObject_Print(op, stderr, 0); | 
 | #ifdef WITH_THREAD | 
 | 		PyGILState_Release(gil); | 
 | #endif | 
 | 		/* XXX(twouters) cast refcount to long until %zd is | 
 | 		   universally available */ | 
 | 		fprintf(stderr, "\n" | 
 | 			"type    : %s\n" | 
 | 			"refcount: %ld\n" | 
 | 			"address : %p\n", | 
 | 			Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name, | 
 | 			(long)op->ob_refcnt, | 
 | 			op); | 
 | 	} | 
 | } | 
 |  | 
 | PyObject * | 
 | PyObject_Repr(PyObject *v) | 
 | { | 
 | 	if (PyErr_CheckSignals()) | 
 | 		return NULL; | 
 | #ifdef USE_STACKCHECK | 
 | 	if (PyOS_CheckStack()) { | 
 | 		PyErr_SetString(PyExc_MemoryError, "stack overflow"); | 
 | 		return NULL; | 
 | 	} | 
 | #endif | 
 | 	if (v == NULL) | 
 | 		return PyString_FromString("<NULL>"); | 
 | 	else if (Py_TYPE(v)->tp_repr == NULL) | 
 | 		return PyString_FromFormat("<%s object at %p>", | 
 | 					   Py_TYPE(v)->tp_name, v); | 
 | 	else { | 
 | 		PyObject *res; | 
 | 		res = (*Py_TYPE(v)->tp_repr)(v); | 
 | 		if (res == NULL) | 
 | 			return NULL; | 
 | #ifdef Py_USING_UNICODE | 
 | 		if (PyUnicode_Check(res)) { | 
 | 			PyObject* str; | 
 | 			str = PyUnicode_AsEncodedString(res, NULL, NULL); | 
 | 			Py_DECREF(res); | 
 | 			if (str) | 
 | 				res = str; | 
 | 			else | 
 | 				return NULL; | 
 | 		} | 
 | #endif | 
 | 		if (!PyString_Check(res)) { | 
 | 			PyErr_Format(PyExc_TypeError, | 
 | 				     "__repr__ returned non-string (type %.200s)", | 
 | 				     Py_TYPE(res)->tp_name); | 
 | 			Py_DECREF(res); | 
 | 			return NULL; | 
 | 		} | 
 | 		return res; | 
 | 	} | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyObject_Str(PyObject *v) | 
 | { | 
 | 	PyObject *res; | 
 | 	int type_ok; | 
 | 	if (v == NULL) | 
 | 		return PyString_FromString("<NULL>"); | 
 | 	if (PyString_CheckExact(v)) { | 
 | 		Py_INCREF(v); | 
 | 		return v; | 
 | 	} | 
 | #ifdef Py_USING_UNICODE | 
 | 	if (PyUnicode_CheckExact(v)) { | 
 | 		Py_INCREF(v); | 
 | 		return v; | 
 | 	} | 
 | #endif | 
 | 	if (Py_TYPE(v)->tp_str == NULL) | 
 | 		return PyObject_Repr(v); | 
 |  | 
 | 	/* It is possible for a type to have a tp_str representation that loops | 
 | 	   infinitely. */ | 
 | 	if (Py_EnterRecursiveCall(" while getting the str of an object")) | 
 | 		return NULL; | 
 | 	res = (*Py_TYPE(v)->tp_str)(v); | 
 | 	Py_LeaveRecursiveCall(); | 
 | 	if (res == NULL) | 
 | 		return NULL; | 
 | 	type_ok = PyString_Check(res); | 
 | #ifdef Py_USING_UNICODE | 
 | 	type_ok = type_ok || PyUnicode_Check(res); | 
 | #endif | 
 | 	if (!type_ok) { | 
 | 		PyErr_Format(PyExc_TypeError, | 
 | 			     "__str__ returned non-string (type %.200s)", | 
 | 			     Py_TYPE(res)->tp_name); | 
 | 		Py_DECREF(res); | 
 | 		return NULL; | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyObject_Str(PyObject *v) | 
 | { | 
 | 	PyObject *res = _PyObject_Str(v); | 
 | 	if (res == NULL) | 
 | 		return NULL; | 
 | #ifdef Py_USING_UNICODE | 
 | 	if (PyUnicode_Check(res)) { | 
 | 		PyObject* str; | 
 | 		str = PyUnicode_AsEncodedString(res, NULL, NULL); | 
 | 		Py_DECREF(res); | 
 | 		if (str) | 
 | 			res = str; | 
 | 		else | 
 | 		    	return NULL; | 
 | 	} | 
 | #endif | 
 | 	assert(PyString_Check(res)); | 
 | 	return res; | 
 | } | 
 |  | 
 | #ifdef Py_USING_UNICODE | 
 | PyObject * | 
 | PyObject_Unicode(PyObject *v) | 
 | { | 
 | 	PyObject *res; | 
 | 	PyObject *func; | 
 | 	PyObject *str; | 
 | 	int unicode_method_found = 0; | 
 | 	static PyObject *unicodestr; | 
 |  | 
 | 	if (v == NULL) { | 
 | 		res = PyString_FromString("<NULL>"); | 
 | 		if (res == NULL) | 
 | 			return NULL; | 
 | 		str = PyUnicode_FromEncodedObject(res, NULL, "strict"); | 
 | 		Py_DECREF(res); | 
 | 		return str; | 
 | 	} else if (PyUnicode_CheckExact(v)) { | 
 | 		Py_INCREF(v); | 
 | 		return v; | 
 | 	} | 
 |  | 
 | 	/* Try the __unicode__ method */ | 
 | 	if (unicodestr == NULL) { | 
 | 		unicodestr= PyString_InternFromString("__unicode__"); | 
 | 		if (unicodestr == NULL) | 
 | 			return NULL; | 
 | 	} | 
 | 	if (PyInstance_Check(v)) { | 
 | 		/* We're an instance of a classic class */ | 
 | 		/* Try __unicode__ from the instance -- alas we have no type */ | 
 | 		func = PyObject_GetAttr(v, unicodestr); | 
 | 		if (func != NULL) { | 
 | 			unicode_method_found = 1; | 
 | 			res = PyObject_CallFunctionObjArgs(func, NULL); | 
 | 			Py_DECREF(func); | 
 | 		} | 
 | 		else { | 
 | 			PyErr_Clear();  | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* Not a classic class instance, try __unicode__ from type */ | 
 | 		/* _PyType_Lookup doesn't create a reference */ | 
 | 		func = _PyType_Lookup(Py_TYPE(v), unicodestr); | 
 | 		if (func != NULL) { | 
 | 			unicode_method_found = 1; | 
 | 			res = PyObject_CallFunctionObjArgs(func, v, NULL); | 
 | 		} | 
 | 		else { | 
 | 			PyErr_Clear(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Didn't find __unicode__ */ | 
 | 	if (!unicode_method_found) { | 
 | 		if (PyUnicode_Check(v)) { | 
 | 			/* For a Unicode subtype that's didn't overwrite __unicode__, | 
 | 			   return a true Unicode object with the same data. */ | 
 | 			return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v), | 
 | 						     PyUnicode_GET_SIZE(v)); | 
 | 		} | 
 | 		if (PyString_CheckExact(v)) { | 
 | 			Py_INCREF(v); | 
 | 			res = v; | 
 | 		} | 
 | 		else { | 
 | 			if (Py_TYPE(v)->tp_str != NULL) | 
 | 				res = (*Py_TYPE(v)->tp_str)(v); | 
 | 			else | 
 | 				res = PyObject_Repr(v); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (res == NULL) | 
 | 		return NULL; | 
 | 	if (!PyUnicode_Check(res)) { | 
 | 		str = PyUnicode_FromEncodedObject(res, NULL, "strict"); | 
 | 		Py_DECREF(res); | 
 | 		res = str; | 
 | 	} | 
 | 	return res; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | /* Helper to warn about deprecated tp_compare return values.  Return: | 
 |    -2 for an exception; | 
 |    -1 if v <  w; | 
 |     0 if v == w; | 
 |     1 if v  > w. | 
 |    (This function cannot return 2.) | 
 | */ | 
 | static int | 
 | adjust_tp_compare(int c) | 
 | { | 
 | 	if (PyErr_Occurred()) { | 
 | 		if (c != -1 && c != -2) { | 
 | 			PyObject *t, *v, *tb; | 
 | 			PyErr_Fetch(&t, &v, &tb); | 
 | 			if (PyErr_Warn(PyExc_RuntimeWarning, | 
 | 				       "tp_compare didn't return -1 or -2 " | 
 | 				       "for exception") < 0) { | 
 | 				Py_XDECREF(t); | 
 | 				Py_XDECREF(v); | 
 | 				Py_XDECREF(tb); | 
 | 			} | 
 | 			else | 
 | 				PyErr_Restore(t, v, tb); | 
 | 		} | 
 | 		return -2; | 
 | 	} | 
 | 	else if (c < -1 || c > 1) { | 
 | 		if (PyErr_Warn(PyExc_RuntimeWarning, | 
 | 			       "tp_compare didn't return -1, 0 or 1") < 0) | 
 | 			return -2; | 
 | 		else | 
 | 			return c < -1 ? -1 : 1; | 
 | 	} | 
 | 	else { | 
 | 		assert(c >= -1 && c <= 1); | 
 | 		return c; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Macro to get the tp_richcompare field of a type if defined */ | 
 | #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \ | 
 |                          ? (t)->tp_richcompare : NULL) | 
 |  | 
 | /* Map rich comparison operators to their swapped version, e.g. LT --> GT */ | 
 | int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; | 
 |  | 
 | /* Try a genuine rich comparison, returning an object.  Return: | 
 |    NULL for exception; | 
 |    NotImplemented if this particular rich comparison is not implemented or | 
 |      undefined; | 
 |    some object not equal to NotImplemented if it is implemented | 
 |      (this latter object may not be a Boolean). | 
 | */ | 
 | static PyObject * | 
 | try_rich_compare(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	richcmpfunc f; | 
 | 	PyObject *res; | 
 |  | 
 | 	if (v->ob_type != w->ob_type && | 
 | 	    PyType_IsSubtype(w->ob_type, v->ob_type) && | 
 | 	    (f = RICHCOMPARE(w->ob_type)) != NULL) { | 
 | 		res = (*f)(w, v, _Py_SwappedOp[op]); | 
 | 		if (res != Py_NotImplemented) | 
 | 			return res; | 
 | 		Py_DECREF(res); | 
 | 	} | 
 | 	if ((f = RICHCOMPARE(v->ob_type)) != NULL) { | 
 | 		res = (*f)(v, w, op); | 
 | 		if (res != Py_NotImplemented) | 
 | 			return res; | 
 | 		Py_DECREF(res); | 
 | 	} | 
 | 	if ((f = RICHCOMPARE(w->ob_type)) != NULL) { | 
 | 		return (*f)(w, v, _Py_SwappedOp[op]); | 
 | 	} | 
 | 	res = Py_NotImplemented; | 
 | 	Py_INCREF(res); | 
 | 	return res; | 
 | } | 
 |  | 
 | /* Try a genuine rich comparison, returning an int.  Return: | 
 |    -1 for exception (including the case where try_rich_compare() returns an | 
 |       object that's not a Boolean); | 
 |     0 if the outcome is false; | 
 |     1 if the outcome is true; | 
 |     2 if this particular rich comparison is not implemented or undefined. | 
 | */ | 
 | static int | 
 | try_rich_compare_bool(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	PyObject *res; | 
 | 	int ok; | 
 |  | 
 | 	if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) | 
 | 		return 2; /* Shortcut, avoid INCREF+DECREF */ | 
 | 	res = try_rich_compare(v, w, op); | 
 | 	if (res == NULL) | 
 | 		return -1; | 
 | 	if (res == Py_NotImplemented) { | 
 | 		Py_DECREF(res); | 
 | 		return 2; | 
 | 	} | 
 | 	ok = PyObject_IsTrue(res); | 
 | 	Py_DECREF(res); | 
 | 	return ok; | 
 | } | 
 |  | 
 | /* Try rich comparisons to determine a 3-way comparison.  Return: | 
 |    -2 for an exception; | 
 |    -1 if v  < w; | 
 |     0 if v == w; | 
 |     1 if v  > w; | 
 |     2 if this particular rich comparison is not implemented or undefined. | 
 | */ | 
 | static int | 
 | try_rich_to_3way_compare(PyObject *v, PyObject *w) | 
 | { | 
 | 	static struct { int op; int outcome; } tries[3] = { | 
 | 		/* Try this operator, and if it is true, use this outcome: */ | 
 | 		{Py_EQ, 0}, | 
 | 		{Py_LT, -1}, | 
 | 		{Py_GT, 1}, | 
 | 	}; | 
 | 	int i; | 
 |  | 
 | 	if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) | 
 | 		return 2; /* Shortcut */ | 
 |  | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		switch (try_rich_compare_bool(v, w, tries[i].op)) { | 
 | 		case -1: | 
 | 			return -2; | 
 | 		case 1: | 
 | 			return tries[i].outcome; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 2; | 
 | } | 
 |  | 
 | /* Try a 3-way comparison, returning an int.  Return: | 
 |    -2 for an exception; | 
 |    -1 if v <  w; | 
 |     0 if v == w; | 
 |     1 if v  > w; | 
 |     2 if this particular 3-way comparison is not implemented or undefined. | 
 | */ | 
 | static int | 
 | try_3way_compare(PyObject *v, PyObject *w) | 
 | { | 
 | 	int c; | 
 | 	cmpfunc f; | 
 |  | 
 | 	/* Comparisons involving instances are given to instance_compare, | 
 | 	   which has the same return conventions as this function. */ | 
 |  | 
 | 	f = v->ob_type->tp_compare; | 
 | 	if (PyInstance_Check(v)) | 
 | 		return (*f)(v, w); | 
 | 	if (PyInstance_Check(w)) | 
 | 		return (*w->ob_type->tp_compare)(v, w); | 
 |  | 
 | 	/* If both have the same (non-NULL) tp_compare, use it. */ | 
 | 	if (f != NULL && f == w->ob_type->tp_compare) { | 
 | 		c = (*f)(v, w); | 
 | 		return adjust_tp_compare(c); | 
 | 	} | 
 |  | 
 | 	/* If either tp_compare is _PyObject_SlotCompare, that's safe. */ | 
 | 	if (f == _PyObject_SlotCompare || | 
 | 	    w->ob_type->tp_compare == _PyObject_SlotCompare) | 
 | 		return _PyObject_SlotCompare(v, w); | 
 |  | 
 | 	/* If we're here, v and w, | 
 | 	    a) are not instances; | 
 | 	    b) have different types or a type without tp_compare; and | 
 | 	    c) don't have a user-defined tp_compare. | 
 | 	   tp_compare implementations in C assume that both arguments | 
 | 	   have their type, so we give up if the coercion fails or if | 
 | 	   it yields types which are still incompatible (which can | 
 | 	   happen with a user-defined nb_coerce). | 
 | 	*/ | 
 | 	c = PyNumber_CoerceEx(&v, &w); | 
 | 	if (c < 0) | 
 | 		return -2; | 
 | 	if (c > 0) | 
 | 		return 2; | 
 | 	f = v->ob_type->tp_compare; | 
 | 	if (f != NULL && f == w->ob_type->tp_compare) { | 
 | 		c = (*f)(v, w); | 
 | 		Py_DECREF(v); | 
 | 		Py_DECREF(w); | 
 | 		return adjust_tp_compare(c); | 
 | 	} | 
 |  | 
 | 	/* No comparison defined */ | 
 | 	Py_DECREF(v); | 
 | 	Py_DECREF(w); | 
 | 	return 2; | 
 | } | 
 |  | 
 | /* Final fallback 3-way comparison, returning an int.  Return: | 
 |    -2 if an error occurred; | 
 |    -1 if v <  w; | 
 |     0 if v == w; | 
 |     1 if v >  w. | 
 | */ | 
 | static int | 
 | default_3way_compare(PyObject *v, PyObject *w) | 
 | { | 
 | 	int c; | 
 | 	const char *vname, *wname; | 
 |  | 
 | 	if (v->ob_type == w->ob_type) { | 
 | 		/* When comparing these pointers, they must be cast to | 
 | 		 * integer types (i.e. Py_uintptr_t, our spelling of C9X's | 
 | 		 * uintptr_t).  ANSI specifies that pointer compares other | 
 | 		 * than == and != to non-related structures are undefined. | 
 | 		 */ | 
 | 		Py_uintptr_t vv = (Py_uintptr_t)v; | 
 | 		Py_uintptr_t ww = (Py_uintptr_t)w; | 
 | 		return (vv < ww) ? -1 : (vv > ww) ? 1 : 0; | 
 | 	} | 
 |  | 
 | 	/* None is smaller than anything */ | 
 | 	if (v == Py_None) | 
 | 		return -1; | 
 | 	if (w == Py_None) | 
 | 		return 1; | 
 |  | 
 | 	/* different type: compare type names; numbers are smaller */ | 
 | 	if (PyNumber_Check(v)) | 
 | 		vname = ""; | 
 | 	else | 
 | 		vname = v->ob_type->tp_name; | 
 | 	if (PyNumber_Check(w)) | 
 | 		wname = ""; | 
 | 	else | 
 | 		wname = w->ob_type->tp_name; | 
 | 	c = strcmp(vname, wname); | 
 | 	if (c < 0) | 
 | 		return -1; | 
 | 	if (c > 0) | 
 | 		return 1; | 
 | 	/* Same type name, or (more likely) incomparable numeric types */ | 
 | 	return ((Py_uintptr_t)(v->ob_type) < ( | 
 | 		Py_uintptr_t)(w->ob_type)) ? -1 : 1; | 
 | } | 
 |  | 
 | /* Do a 3-way comparison, by hook or by crook.  Return: | 
 |    -2 for an exception (but see below); | 
 |    -1 if v <  w; | 
 |     0 if v == w; | 
 |     1 if v >  w; | 
 |    BUT: if the object implements a tp_compare function, it returns | 
 |    whatever this function returns (whether with an exception or not). | 
 | */ | 
 | static int | 
 | do_cmp(PyObject *v, PyObject *w) | 
 | { | 
 | 	int c; | 
 | 	cmpfunc f; | 
 |  | 
 | 	if (v->ob_type == w->ob_type | 
 | 	    && (f = v->ob_type->tp_compare) != NULL) { | 
 | 		c = (*f)(v, w); | 
 | 		if (PyInstance_Check(v)) { | 
 | 			/* Instance tp_compare has a different signature. | 
 | 			   But if it returns undefined we fall through. */ | 
 | 			if (c != 2) | 
 | 				return c; | 
 | 			/* Else fall through to try_rich_to_3way_compare() */ | 
 | 		} | 
 | 		else | 
 | 			return adjust_tp_compare(c); | 
 | 	} | 
 | 	/* We only get here if one of the following is true: | 
 | 	   a) v and w have different types | 
 | 	   b) v and w have the same type, which doesn't have tp_compare | 
 | 	   c) v and w are instances, and either __cmp__ is not defined or | 
 | 	      __cmp__ returns NotImplemented | 
 | 	*/ | 
 | 	c = try_rich_to_3way_compare(v, w); | 
 | 	if (c < 2) | 
 | 		return c; | 
 | 	c = try_3way_compare(v, w); | 
 | 	if (c < 2) | 
 | 		return c; | 
 | 	return default_3way_compare(v, w); | 
 | } | 
 |  | 
 | /* Compare v to w.  Return | 
 |    -1 if v <  w or exception (PyErr_Occurred() true in latter case). | 
 |     0 if v == w. | 
 |     1 if v > w. | 
 |    XXX The docs (C API manual) say the return value is undefined in case | 
 |    XXX of error. | 
 | */ | 
 | int | 
 | PyObject_Compare(PyObject *v, PyObject *w) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	if (v == NULL || w == NULL) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	if (v == w) | 
 | 		return 0; | 
 | 	if (Py_EnterRecursiveCall(" in cmp")) | 
 | 		return -1; | 
 | 	result = do_cmp(v, w); | 
 | 	Py_LeaveRecursiveCall(); | 
 | 	return result < 0 ? -1 : result; | 
 | } | 
 |  | 
 | /* Return (new reference to) Py_True or Py_False. */ | 
 | static PyObject * | 
 | convert_3way_to_object(int op, int c) | 
 | { | 
 | 	PyObject *result; | 
 | 	switch (op) { | 
 | 	case Py_LT: c = c <  0; break; | 
 | 	case Py_LE: c = c <= 0; break; | 
 | 	case Py_EQ: c = c == 0; break; | 
 | 	case Py_NE: c = c != 0; break; | 
 | 	case Py_GT: c = c >  0; break; | 
 | 	case Py_GE: c = c >= 0; break; | 
 | 	} | 
 | 	result = c ? Py_True : Py_False; | 
 | 	Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* We want a rich comparison but don't have one.  Try a 3-way cmp instead. | 
 |    Return | 
 |    NULL      if error | 
 |    Py_True   if v op w | 
 |    Py_False  if not (v op w) | 
 | */ | 
 | static PyObject * | 
 | try_3way_to_rich_compare(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	int c; | 
 |  | 
 | 	c = try_3way_compare(v, w); | 
 | 	if (c >= 2) { | 
 |  | 
 | 		/* Py3K warning if types are not equal and comparison isn't == or !=  */ | 
 | 		if (Py_Py3kWarningFlag && | 
 | 		    v->ob_type != w->ob_type && op != Py_EQ && op != Py_NE && | 
 | 		    PyErr_WarnEx(PyExc_DeprecationWarning, | 
 | 			       "comparing unequal types not supported " | 
 | 			       "in 3.x", 1) < 0) { | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		c = default_3way_compare(v, w); | 
 | 	} | 
 | 	if (c <= -2) | 
 | 		return NULL; | 
 | 	return convert_3way_to_object(op, c); | 
 | } | 
 |  | 
 | /* Do rich comparison on v and w.  Return | 
 |    NULL      if error | 
 |    Else a new reference to an object other than Py_NotImplemented, usually(?): | 
 |    Py_True   if v op w | 
 |    Py_False  if not (v op w) | 
 | */ | 
 | static PyObject * | 
 | do_richcmp(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	PyObject *res; | 
 |  | 
 | 	res = try_rich_compare(v, w, op); | 
 | 	if (res != Py_NotImplemented) | 
 | 		return res; | 
 | 	Py_DECREF(res); | 
 |  | 
 | 	return try_3way_to_rich_compare(v, w, op); | 
 | } | 
 |  | 
 | /* Return: | 
 |    NULL for exception; | 
 |    some object not equal to NotImplemented if it is implemented | 
 |      (this latter object may not be a Boolean). | 
 | */ | 
 | PyObject * | 
 | PyObject_RichCompare(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	PyObject *res; | 
 |  | 
 | 	assert(Py_LT <= op && op <= Py_GE); | 
 | 	if (Py_EnterRecursiveCall(" in cmp")) | 
 | 		return NULL; | 
 |  | 
 | 	/* If the types are equal, and not old-style instances, try to | 
 | 	   get out cheap (don't bother with coercions etc.). */ | 
 | 	if (v->ob_type == w->ob_type && !PyInstance_Check(v)) { | 
 | 		cmpfunc fcmp; | 
 | 		richcmpfunc frich = RICHCOMPARE(v->ob_type); | 
 | 		/* If the type has richcmp, try it first.  try_rich_compare | 
 | 		   tries it two-sided, which is not needed since we've a | 
 | 		   single type only. */ | 
 | 		if (frich != NULL) { | 
 | 			res = (*frich)(v, w, op); | 
 | 			if (res != Py_NotImplemented) | 
 | 				goto Done; | 
 | 			Py_DECREF(res); | 
 | 		} | 
 | 		/* No richcmp, or this particular richmp not implemented. | 
 | 		   Try 3-way cmp. */ | 
 | 		fcmp = v->ob_type->tp_compare; | 
 | 		if (fcmp != NULL) { | 
 | 			int c = (*fcmp)(v, w); | 
 | 			c = adjust_tp_compare(c); | 
 | 			if (c == -2) { | 
 | 				res = NULL; | 
 | 				goto Done; | 
 | 			} | 
 | 			res = convert_3way_to_object(op, c); | 
 | 			goto Done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Fast path not taken, or couldn't deliver a useful result. */ | 
 | 	res = do_richcmp(v, w, op); | 
 | Done: | 
 | 	Py_LeaveRecursiveCall(); | 
 | 	return res; | 
 | } | 
 |  | 
 | /* Return -1 if error; 1 if v op w; 0 if not (v op w). */ | 
 | int | 
 | PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	PyObject *res; | 
 | 	int ok; | 
 |  | 
 | 	/* Quick result when objects are the same. | 
 | 	   Guarantees that identity implies equality. */ | 
 | 	if (v == w) { | 
 | 		if (op == Py_EQ) | 
 | 			return 1; | 
 | 		else if (op == Py_NE) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	res = PyObject_RichCompare(v, w, op); | 
 | 	if (res == NULL) | 
 | 		return -1; | 
 | 	if (PyBool_Check(res)) | 
 | 		ok = (res == Py_True); | 
 | 	else | 
 | 		ok = PyObject_IsTrue(res); | 
 | 	Py_DECREF(res); | 
 | 	return ok; | 
 | } | 
 |  | 
 | /* Set of hash utility functions to help maintaining the invariant that | 
 | 	if a==b then hash(a)==hash(b) | 
 |  | 
 |    All the utility functions (_Py_Hash*()) return "-1" to signify an error. | 
 | */ | 
 |  | 
 | long | 
 | _Py_HashDouble(double v) | 
 | { | 
 | 	double intpart, fractpart; | 
 | 	int expo; | 
 | 	long hipart; | 
 | 	long x;		/* the final hash value */ | 
 | 	/* This is designed so that Python numbers of different types | 
 | 	 * that compare equal hash to the same value; otherwise comparisons | 
 | 	 * of mapping keys will turn out weird. | 
 | 	 */ | 
 |  | 
 | 	fractpart = modf(v, &intpart); | 
 | 	if (fractpart == 0.0) { | 
 | 		/* This must return the same hash as an equal int or long. */ | 
 | 		if (intpart > LONG_MAX/2 || -intpart > LONG_MAX/2) { | 
 | 			/* Convert to long and use its hash. */ | 
 | 			PyObject *plong;	/* converted to Python long */ | 
 | 			if (Py_IS_INFINITY(intpart)) | 
 | 				/* can't convert to long int -- arbitrary */ | 
 | 				v = v < 0 ? -271828.0 : 314159.0; | 
 | 			plong = PyLong_FromDouble(v); | 
 | 			if (plong == NULL) | 
 | 				return -1; | 
 | 			x = PyObject_Hash(plong); | 
 | 			Py_DECREF(plong); | 
 | 			return x; | 
 | 		} | 
 | 		/* Fits in a C long == a Python int, so is its own hash. */ | 
 | 		x = (long)intpart; | 
 | 		if (x == -1) | 
 | 			x = -2; | 
 | 		return x; | 
 | 	} | 
 | 	/* The fractional part is non-zero, so we don't have to worry about | 
 | 	 * making this match the hash of some other type. | 
 | 	 * Use frexp to get at the bits in the double. | 
 | 	 * Since the VAX D double format has 56 mantissa bits, which is the | 
 | 	 * most of any double format in use, each of these parts may have as | 
 | 	 * many as (but no more than) 56 significant bits. | 
 | 	 * So, assuming sizeof(long) >= 4, each part can be broken into two | 
 | 	 * longs; frexp and multiplication are used to do that. | 
 | 	 * Also, since the Cray double format has 15 exponent bits, which is | 
 | 	 * the most of any double format in use, shifting the exponent field | 
 | 	 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4). | 
 | 	 */ | 
 | 	v = frexp(v, &expo); | 
 | 	v *= 2147483648.0;	/* 2**31 */ | 
 | 	hipart = (long)v;	/* take the top 32 bits */ | 
 | 	v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */ | 
 | 	x = hipart + (long)v + (expo << 15); | 
 | 	if (x == -1) | 
 | 		x = -2; | 
 | 	return x; | 
 | } | 
 |  | 
 | long | 
 | _Py_HashPointer(void *p) | 
 | { | 
 | 	long x; | 
 | 	size_t y = (size_t)p; | 
 | 	/* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid | 
 | 	   excessive hash collisions for dicts and sets */ | 
 | 	y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); | 
 | 	x = (long)y; | 
 | 	if (x == -1) | 
 | 		x = -2; | 
 | 	return x; | 
 | } | 
 |  | 
 | long | 
 | PyObject_HashNotImplemented(PyObject *self) | 
 | { | 
 | 	PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'", | 
 | 		     self->ob_type->tp_name); | 
 | 	return -1; | 
 | } | 
 |  | 
 | long | 
 | PyObject_Hash(PyObject *v) | 
 | { | 
 | 	PyTypeObject *tp = v->ob_type; | 
 | 	if (tp->tp_hash != NULL) | 
 | 		return (*tp->tp_hash)(v); | 
 | 	/* To keep to the general practice that inheriting | 
 | 	 * solely from object in C code should work without | 
 | 	 * an explicit call to PyType_Ready, we implicitly call | 
 | 	 * PyType_Ready here and then check the tp_hash slot again | 
 | 	 */ | 
 | 	if (tp->tp_dict == NULL) { | 
 | 		if (PyType_Ready(tp) < 0) | 
 | 			return -1; | 
 | 		if (tp->tp_hash != NULL) | 
 | 			return (*tp->tp_hash)(v); | 
 | 	} | 
 | 	if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) { | 
 | 		return _Py_HashPointer(v); /* Use address as hash value */ | 
 | 	} | 
 | 	/* If there's a cmp but no hash defined, the object can't be hashed */ | 
 | 	return PyObject_HashNotImplemented(v); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyObject_GetAttrString(PyObject *v, const char *name) | 
 | { | 
 | 	PyObject *w, *res; | 
 |  | 
 | 	if (Py_TYPE(v)->tp_getattr != NULL) | 
 | 		return (*Py_TYPE(v)->tp_getattr)(v, (char*)name); | 
 | 	w = PyString_InternFromString(name); | 
 | 	if (w == NULL) | 
 | 		return NULL; | 
 | 	res = PyObject_GetAttr(v, w); | 
 | 	Py_XDECREF(w); | 
 | 	return res; | 
 | } | 
 |  | 
 | int | 
 | PyObject_HasAttrString(PyObject *v, const char *name) | 
 | { | 
 | 	PyObject *res = PyObject_GetAttrString(v, name); | 
 | 	if (res != NULL) { | 
 | 		Py_DECREF(res); | 
 | 		return 1; | 
 | 	} | 
 | 	PyErr_Clear(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w) | 
 | { | 
 | 	PyObject *s; | 
 | 	int res; | 
 |  | 
 | 	if (Py_TYPE(v)->tp_setattr != NULL) | 
 | 		return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w); | 
 | 	s = PyString_InternFromString(name); | 
 | 	if (s == NULL) | 
 | 		return -1; | 
 | 	res = PyObject_SetAttr(v, s, w); | 
 | 	Py_XDECREF(s); | 
 | 	return res; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyObject_GetAttr(PyObject *v, PyObject *name) | 
 | { | 
 | 	PyTypeObject *tp = Py_TYPE(v); | 
 |  | 
 | 	if (!PyString_Check(name)) { | 
 | #ifdef Py_USING_UNICODE | 
 | 		/* The Unicode to string conversion is done here because the | 
 | 		   existing tp_getattro slots expect a string object as name | 
 | 		   and we wouldn't want to break those. */ | 
 | 		if (PyUnicode_Check(name)) { | 
 | 			name = _PyUnicode_AsDefaultEncodedString(name, NULL); | 
 | 			if (name == NULL) | 
 | 				return NULL; | 
 | 		} | 
 | 		else | 
 | #endif | 
 | 		{ | 
 | 			PyErr_Format(PyExc_TypeError, | 
 | 				     "attribute name must be string, not '%.200s'", | 
 | 				     Py_TYPE(name)->tp_name); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	if (tp->tp_getattro != NULL) | 
 | 		return (*tp->tp_getattro)(v, name); | 
 | 	if (tp->tp_getattr != NULL) | 
 | 		return (*tp->tp_getattr)(v, PyString_AS_STRING(name)); | 
 | 	PyErr_Format(PyExc_AttributeError, | 
 | 		     "'%.50s' object has no attribute '%.400s'", | 
 | 		     tp->tp_name, PyString_AS_STRING(name)); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int | 
 | PyObject_HasAttr(PyObject *v, PyObject *name) | 
 | { | 
 | 	PyObject *res = PyObject_GetAttr(v, name); | 
 | 	if (res != NULL) { | 
 | 		Py_DECREF(res); | 
 | 		return 1; | 
 | 	} | 
 | 	PyErr_Clear(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) | 
 | { | 
 | 	PyTypeObject *tp = Py_TYPE(v); | 
 | 	int err; | 
 |  | 
 | 	if (!PyString_Check(name)){ | 
 | #ifdef Py_USING_UNICODE | 
 | 		/* The Unicode to string conversion is done here because the | 
 | 		   existing tp_setattro slots expect a string object as name | 
 | 		   and we wouldn't want to break those. */ | 
 | 		if (PyUnicode_Check(name)) { | 
 | 			name = PyUnicode_AsEncodedString(name, NULL, NULL); | 
 | 			if (name == NULL) | 
 | 				return -1; | 
 | 		} | 
 | 		else | 
 | #endif | 
 | 		{ | 
 | 			PyErr_Format(PyExc_TypeError, | 
 | 				     "attribute name must be string, not '%.200s'", | 
 | 				     Py_TYPE(name)->tp_name); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	else | 
 | 		Py_INCREF(name); | 
 |  | 
 | 	PyString_InternInPlace(&name); | 
 | 	if (tp->tp_setattro != NULL) { | 
 | 		err = (*tp->tp_setattro)(v, name, value); | 
 | 		Py_DECREF(name); | 
 | 		return err; | 
 | 	} | 
 | 	if (tp->tp_setattr != NULL) { | 
 | 		err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value); | 
 | 		Py_DECREF(name); | 
 | 		return err; | 
 | 	} | 
 | 	Py_DECREF(name); | 
 | 	if (tp->tp_getattr == NULL && tp->tp_getattro == NULL) | 
 | 		PyErr_Format(PyExc_TypeError, | 
 | 			     "'%.100s' object has no attributes " | 
 | 			     "(%s .%.100s)", | 
 | 			     tp->tp_name, | 
 | 			     value==NULL ? "del" : "assign to", | 
 | 			     PyString_AS_STRING(name)); | 
 | 	else | 
 | 		PyErr_Format(PyExc_TypeError, | 
 | 			     "'%.100s' object has only read-only attributes " | 
 | 			     "(%s .%.100s)", | 
 | 			     tp->tp_name, | 
 | 			     value==NULL ? "del" : "assign to", | 
 | 			     PyString_AS_STRING(name)); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Helper to get a pointer to an object's __dict__ slot, if any */ | 
 |  | 
 | PyObject ** | 
 | _PyObject_GetDictPtr(PyObject *obj) | 
 | { | 
 | 	Py_ssize_t dictoffset; | 
 | 	PyTypeObject *tp = Py_TYPE(obj); | 
 |  | 
 | 	if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS)) | 
 | 		return NULL; | 
 | 	dictoffset = tp->tp_dictoffset; | 
 | 	if (dictoffset == 0) | 
 | 		return NULL; | 
 | 	if (dictoffset < 0) { | 
 | 		Py_ssize_t tsize; | 
 | 		size_t size; | 
 |  | 
 | 		tsize = ((PyVarObject *)obj)->ob_size; | 
 | 		if (tsize < 0) | 
 | 			tsize = -tsize; | 
 | 		size = _PyObject_VAR_SIZE(tp, tsize); | 
 |  | 
 | 		dictoffset += (long)size; | 
 | 		assert(dictoffset > 0); | 
 | 		assert(dictoffset % SIZEOF_VOID_P == 0); | 
 | 	} | 
 | 	return (PyObject **) ((char *)obj + dictoffset); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyObject_SelfIter(PyObject *obj) | 
 | { | 
 | 	Py_INCREF(obj); | 
 | 	return obj; | 
 | } | 
 |  | 
 | /* Helper used when the __next__ method is removed from a type: | 
 |    tp_iternext is never NULL and can be safely called without checking | 
 |    on every iteration. | 
 |  */ | 
 |  | 
 | PyObject * | 
 | _PyObject_NextNotImplemented(PyObject *self) | 
 | { | 
 | 	PyErr_Format(PyExc_TypeError, | 
 | 		     "'%.200s' object is not iterable", | 
 | 		     Py_TYPE(self)->tp_name); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */ | 
 |  | 
 | PyObject * | 
 | PyObject_GenericGetAttr(PyObject *obj, PyObject *name) | 
 | { | 
 | 	PyTypeObject *tp = Py_TYPE(obj); | 
 | 	PyObject *descr = NULL; | 
 | 	PyObject *res = NULL; | 
 | 	descrgetfunc f; | 
 | 	Py_ssize_t dictoffset; | 
 | 	PyObject **dictptr; | 
 |  | 
 | 	if (!PyString_Check(name)){ | 
 | #ifdef Py_USING_UNICODE | 
 | 		/* The Unicode to string conversion is done here because the | 
 | 		   existing tp_setattro slots expect a string object as name | 
 | 		   and we wouldn't want to break those. */ | 
 | 		if (PyUnicode_Check(name)) { | 
 | 			name = PyUnicode_AsEncodedString(name, NULL, NULL); | 
 | 			if (name == NULL) | 
 | 				return NULL; | 
 | 		} | 
 | 		else | 
 | #endif | 
 | 		{ | 
 | 			PyErr_Format(PyExc_TypeError, | 
 | 				     "attribute name must be string, not '%.200s'", | 
 | 				     Py_TYPE(name)->tp_name); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	else | 
 | 		Py_INCREF(name); | 
 |  | 
 | 	if (tp->tp_dict == NULL) { | 
 | 		if (PyType_Ready(tp) < 0) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | #if 0 /* XXX this is not quite _PyType_Lookup anymore */ | 
 | 	/* Inline _PyType_Lookup */ | 
 | 	{ | 
 | 		Py_ssize_t i, n; | 
 | 		PyObject *mro, *base, *dict; | 
 |  | 
 | 		/* Look in tp_dict of types in MRO */ | 
 | 		mro = tp->tp_mro; | 
 | 		assert(mro != NULL); | 
 | 		assert(PyTuple_Check(mro)); | 
 | 		n = PyTuple_GET_SIZE(mro); | 
 | 		for (i = 0; i < n; i++) { | 
 | 			base = PyTuple_GET_ITEM(mro, i); | 
 | 			if (PyClass_Check(base)) | 
 | 				dict = ((PyClassObject *)base)->cl_dict; | 
 | 			else { | 
 | 				assert(PyType_Check(base)); | 
 | 				dict = ((PyTypeObject *)base)->tp_dict; | 
 | 			} | 
 | 			assert(dict && PyDict_Check(dict)); | 
 | 			descr = PyDict_GetItem(dict, name); | 
 | 			if (descr != NULL) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | #else | 
 | 	descr = _PyType_Lookup(tp, name); | 
 | #endif | 
 |  | 
 | 	Py_XINCREF(descr); | 
 |  | 
 | 	f = NULL; | 
 | 	if (descr != NULL && | 
 | 	    PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) { | 
 | 		f = descr->ob_type->tp_descr_get; | 
 | 		if (f != NULL && PyDescr_IsData(descr)) { | 
 | 			res = f(descr, obj, (PyObject *)obj->ob_type); | 
 | 			Py_DECREF(descr); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Inline _PyObject_GetDictPtr */ | 
 | 	dictoffset = tp->tp_dictoffset; | 
 | 	if (dictoffset != 0) { | 
 | 		PyObject *dict; | 
 | 		if (dictoffset < 0) { | 
 | 			Py_ssize_t tsize; | 
 | 			size_t size; | 
 |  | 
 | 			tsize = ((PyVarObject *)obj)->ob_size; | 
 | 			if (tsize < 0) | 
 | 				tsize = -tsize; | 
 | 			size = _PyObject_VAR_SIZE(tp, tsize); | 
 |  | 
 | 			dictoffset += (long)size; | 
 | 			assert(dictoffset > 0); | 
 | 			assert(dictoffset % SIZEOF_VOID_P == 0); | 
 | 		} | 
 | 		dictptr = (PyObject **) ((char *)obj + dictoffset); | 
 | 		dict = *dictptr; | 
 | 		if (dict != NULL) { | 
 | 			Py_INCREF(dict); | 
 | 			res = PyDict_GetItem(dict, name); | 
 | 			if (res != NULL) { | 
 | 				Py_INCREF(res); | 
 | 				Py_XDECREF(descr); | 
 |                                 Py_DECREF(dict); | 
 | 				goto done; | 
 | 			} | 
 |                         Py_DECREF(dict); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (f != NULL) { | 
 | 		res = f(descr, obj, (PyObject *)Py_TYPE(obj)); | 
 | 		Py_DECREF(descr); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (descr != NULL) { | 
 | 		res = descr; | 
 | 		/* descr was already increfed above */ | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	PyErr_Format(PyExc_AttributeError, | 
 | 		     "'%.50s' object has no attribute '%.400s'", | 
 | 		     tp->tp_name, PyString_AS_STRING(name)); | 
 |   done: | 
 | 	Py_DECREF(name); | 
 | 	return res; | 
 | } | 
 |  | 
 | int | 
 | PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value) | 
 | { | 
 | 	PyTypeObject *tp = Py_TYPE(obj); | 
 | 	PyObject *descr; | 
 | 	descrsetfunc f; | 
 | 	PyObject **dictptr; | 
 | 	int res = -1; | 
 |  | 
 | 	if (!PyString_Check(name)){ | 
 | #ifdef Py_USING_UNICODE | 
 | 		/* The Unicode to string conversion is done here because the | 
 | 		   existing tp_setattro slots expect a string object as name | 
 | 		   and we wouldn't want to break those. */ | 
 | 		if (PyUnicode_Check(name)) { | 
 | 			name = PyUnicode_AsEncodedString(name, NULL, NULL); | 
 | 			if (name == NULL) | 
 | 				return -1; | 
 | 		} | 
 | 		else | 
 | #endif | 
 | 		{ | 
 | 			PyErr_Format(PyExc_TypeError, | 
 | 				     "attribute name must be string, not '%.200s'", | 
 | 				     Py_TYPE(name)->tp_name); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	else | 
 | 		Py_INCREF(name); | 
 |  | 
 | 	if (tp->tp_dict == NULL) { | 
 | 		if (PyType_Ready(tp) < 0) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	descr = _PyType_Lookup(tp, name); | 
 | 	f = NULL; | 
 | 	if (descr != NULL && | 
 | 	    PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) { | 
 | 		f = descr->ob_type->tp_descr_set; | 
 | 		if (f != NULL && PyDescr_IsData(descr)) { | 
 | 			res = f(descr, obj, value); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dictptr = _PyObject_GetDictPtr(obj); | 
 | 	if (dictptr != NULL) { | 
 | 		PyObject *dict = *dictptr; | 
 | 		if (dict == NULL && value != NULL) { | 
 | 			dict = PyDict_New(); | 
 | 			if (dict == NULL) | 
 | 				goto done; | 
 | 			*dictptr = dict; | 
 | 		} | 
 | 		if (dict != NULL) { | 
 | 			Py_INCREF(dict); | 
 | 			if (value == NULL) | 
 | 				res = PyDict_DelItem(dict, name); | 
 | 			else | 
 | 				res = PyDict_SetItem(dict, name, value); | 
 | 			if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) | 
 | 				PyErr_SetObject(PyExc_AttributeError, name); | 
 | 			Py_DECREF(dict); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (f != NULL) { | 
 | 		res = f(descr, obj, value); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (descr == NULL) { | 
 | 		PyErr_Format(PyExc_AttributeError, | 
 | 			     "'%.100s' object has no attribute '%.200s'", | 
 | 			     tp->tp_name, PyString_AS_STRING(name)); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	PyErr_Format(PyExc_AttributeError, | 
 | 		     "'%.50s' object attribute '%.400s' is read-only", | 
 | 		     tp->tp_name, PyString_AS_STRING(name)); | 
 |   done: | 
 | 	Py_DECREF(name); | 
 | 	return res; | 
 | } | 
 |  | 
 | /* Test a value used as condition, e.g., in a for or if statement. | 
 |    Return -1 if an error occurred */ | 
 |  | 
 | int | 
 | PyObject_IsTrue(PyObject *v) | 
 | { | 
 | 	Py_ssize_t res; | 
 | 	if (v == Py_True) | 
 | 		return 1; | 
 | 	if (v == Py_False) | 
 | 		return 0; | 
 | 	if (v == Py_None) | 
 | 		return 0; | 
 | 	else if (v->ob_type->tp_as_number != NULL && | 
 | 		 v->ob_type->tp_as_number->nb_nonzero != NULL) | 
 | 		res = (*v->ob_type->tp_as_number->nb_nonzero)(v); | 
 | 	else if (v->ob_type->tp_as_mapping != NULL && | 
 | 		 v->ob_type->tp_as_mapping->mp_length != NULL) | 
 | 		res = (*v->ob_type->tp_as_mapping->mp_length)(v); | 
 | 	else if (v->ob_type->tp_as_sequence != NULL && | 
 | 		 v->ob_type->tp_as_sequence->sq_length != NULL) | 
 | 		res = (*v->ob_type->tp_as_sequence->sq_length)(v); | 
 | 	else | 
 | 		return 1; | 
 | 	/* if it is negative, it should be either -1 or -2 */ | 
 | 	return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int); | 
 | } | 
 |  | 
 | /* equivalent of 'not v' | 
 |    Return -1 if an error occurred */ | 
 |  | 
 | int | 
 | PyObject_Not(PyObject *v) | 
 | { | 
 | 	int res; | 
 | 	res = PyObject_IsTrue(v); | 
 | 	if (res < 0) | 
 | 		return res; | 
 | 	return res == 0; | 
 | } | 
 |  | 
 | /* Coerce two numeric types to the "larger" one. | 
 |    Increment the reference count on each argument. | 
 |    Return value: | 
 |    -1 if an error occurred; | 
 |    0 if the coercion succeeded (and then the reference counts are increased); | 
 |    1 if no coercion is possible (and no error is raised). | 
 | */ | 
 | int | 
 | PyNumber_CoerceEx(PyObject **pv, PyObject **pw) | 
 | { | 
 | 	register PyObject *v = *pv; | 
 | 	register PyObject *w = *pw; | 
 | 	int res; | 
 |  | 
 | 	/* Shortcut only for old-style types */ | 
 | 	if (v->ob_type == w->ob_type && | 
 | 	    !PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES)) | 
 | 	{ | 
 | 		Py_INCREF(v); | 
 | 		Py_INCREF(w); | 
 | 		return 0; | 
 | 	} | 
 | 	if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) { | 
 | 		res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw); | 
 | 		if (res <= 0) | 
 | 			return res; | 
 | 	} | 
 | 	if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) { | 
 | 		res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv); | 
 | 		if (res <= 0) | 
 | 			return res; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Coerce two numeric types to the "larger" one. | 
 |    Increment the reference count on each argument. | 
 |    Return -1 and raise an exception if no coercion is possible | 
 |    (and then no reference count is incremented). | 
 | */ | 
 | int | 
 | PyNumber_Coerce(PyObject **pv, PyObject **pw) | 
 | { | 
 | 	int err = PyNumber_CoerceEx(pv, pw); | 
 | 	if (err <= 0) | 
 | 		return err; | 
 | 	PyErr_SetString(PyExc_TypeError, "number coercion failed"); | 
 | 	return -1; | 
 | } | 
 |  | 
 |  | 
 | /* Test whether an object can be called */ | 
 |  | 
 | int | 
 | PyCallable_Check(PyObject *x) | 
 | { | 
 | 	if (x == NULL) | 
 | 		return 0; | 
 | 	if (PyInstance_Check(x)) { | 
 | 		PyObject *call = PyObject_GetAttrString(x, "__call__"); | 
 | 		if (call == NULL) { | 
 | 			PyErr_Clear(); | 
 | 			return 0; | 
 | 		} | 
 | 		/* Could test recursively but don't, for fear of endless | 
 | 		   recursion if some joker sets self.__call__ = self */ | 
 | 		Py_DECREF(call); | 
 | 		return 1; | 
 | 	} | 
 | 	else { | 
 | 		return x->ob_type->tp_call != NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* ------------------------- PyObject_Dir() helpers ------------------------- */ | 
 |  | 
 | /* Helper for PyObject_Dir. | 
 |    Merge the __dict__ of aclass into dict, and recursively also all | 
 |    the __dict__s of aclass's base classes.  The order of merging isn't | 
 |    defined, as it's expected that only the final set of dict keys is | 
 |    interesting. | 
 |    Return 0 on success, -1 on error. | 
 | */ | 
 |  | 
 | static int | 
 | merge_class_dict(PyObject* dict, PyObject* aclass) | 
 | { | 
 | 	PyObject *classdict; | 
 | 	PyObject *bases; | 
 |  | 
 | 	assert(PyDict_Check(dict)); | 
 | 	assert(aclass); | 
 |  | 
 | 	/* Merge in the type's dict (if any). */ | 
 | 	classdict = PyObject_GetAttrString(aclass, "__dict__"); | 
 | 	if (classdict == NULL) | 
 | 		PyErr_Clear(); | 
 | 	else { | 
 | 		int status = PyDict_Update(dict, classdict); | 
 | 		Py_DECREF(classdict); | 
 | 		if (status < 0) | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | 	/* Recursively merge in the base types' (if any) dicts. */ | 
 | 	bases = PyObject_GetAttrString(aclass, "__bases__"); | 
 | 	if (bases == NULL) | 
 | 		PyErr_Clear(); | 
 | 	else { | 
 | 		/* We have no guarantee that bases is a real tuple */ | 
 | 		Py_ssize_t i, n; | 
 | 		n = PySequence_Size(bases); /* This better be right */ | 
 | 		if (n < 0) | 
 | 			PyErr_Clear(); | 
 | 		else { | 
 | 			for (i = 0; i < n; i++) { | 
 | 				int status; | 
 | 				PyObject *base = PySequence_GetItem(bases, i); | 
 | 				if (base == NULL) { | 
 | 					Py_DECREF(bases); | 
 | 					return -1; | 
 | 				} | 
 | 				status = merge_class_dict(dict, base); | 
 | 				Py_DECREF(base); | 
 | 				if (status < 0) { | 
 | 					Py_DECREF(bases); | 
 | 					return -1; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		Py_DECREF(bases); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Helper for PyObject_Dir. | 
 |    If obj has an attr named attrname that's a list, merge its string | 
 |    elements into keys of dict. | 
 |    Return 0 on success, -1 on error.  Errors due to not finding the attr, | 
 |    or the attr not being a list, are suppressed. | 
 | */ | 
 |  | 
 | static int | 
 | merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname) | 
 | { | 
 | 	PyObject *list; | 
 | 	int result = 0; | 
 |  | 
 | 	assert(PyDict_Check(dict)); | 
 | 	assert(obj); | 
 | 	assert(attrname); | 
 |  | 
 | 	list = PyObject_GetAttrString(obj, attrname); | 
 | 	if (list == NULL) | 
 | 		PyErr_Clear(); | 
 |  | 
 | 	else if (PyList_Check(list)) { | 
 | 		int i; | 
 | 		for (i = 0; i < PyList_GET_SIZE(list); ++i) { | 
 | 			PyObject *item = PyList_GET_ITEM(list, i); | 
 | 			if (PyString_Check(item)) { | 
 | 				result = PyDict_SetItem(dict, item, Py_None); | 
 | 				if (result < 0) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 		if (Py_Py3kWarningFlag && | 
 | 		    (strcmp(attrname, "__members__") == 0 || | 
 | 		     strcmp(attrname, "__methods__") == 0)) { | 
 | 			if (PyErr_WarnEx(PyExc_DeprecationWarning,  | 
 | 				       "__members__ and __methods__ not " | 
 | 				       "supported in 3.x", 1) < 0) { | 
 | 				Py_XDECREF(list); | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	Py_XDECREF(list); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Helper for PyObject_Dir without arguments: returns the local scope. */ | 
 | static PyObject * | 
 | _dir_locals(void) | 
 | { | 
 | 	PyObject *names; | 
 | 	PyObject *locals = PyEval_GetLocals(); | 
 |  | 
 | 	if (locals == NULL) { | 
 | 		PyErr_SetString(PyExc_SystemError, "frame does not exist"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	names = PyMapping_Keys(locals); | 
 | 	if (!names) | 
 | 		return NULL; | 
 | 	if (!PyList_Check(names)) { | 
 | 		PyErr_Format(PyExc_TypeError, | 
 | 			"dir(): expected keys() of locals to be a list, " | 
 | 			"not '%.200s'", Py_TYPE(names)->tp_name); | 
 | 		Py_DECREF(names); | 
 | 		return NULL; | 
 | 	} | 
 | 	/* the locals don't need to be DECREF'd */ | 
 | 	return names; | 
 | } | 
 |  | 
 | /* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__. | 
 |    We deliberately don't suck up its __class__, as methods belonging to the  | 
 |    metaclass would probably be more confusing than helpful.  | 
 | */ | 
 | static PyObject *  | 
 | _specialized_dir_type(PyObject *obj) | 
 | { | 
 | 	PyObject *result = NULL; | 
 | 	PyObject *dict = PyDict_New(); | 
 |  | 
 | 	if (dict != NULL && merge_class_dict(dict, obj) == 0) | 
 | 		result = PyDict_Keys(dict); | 
 |  | 
 | 	Py_XDECREF(dict); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Helper for PyObject_Dir of module objects: returns the module's __dict__. */ | 
 | static PyObject * | 
 | _specialized_dir_module(PyObject *obj) | 
 | { | 
 | 	PyObject *result = NULL; | 
 | 	PyObject *dict = PyObject_GetAttrString(obj, "__dict__"); | 
 |  | 
 | 	if (dict != NULL) { | 
 | 		if (PyDict_Check(dict)) | 
 | 			result = PyDict_Keys(dict); | 
 | 		else { | 
 | 			PyErr_Format(PyExc_TypeError, | 
 | 				     "%.200s.__dict__ is not a dictionary", | 
 | 				     PyModule_GetName(obj)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	Py_XDECREF(dict); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Helper for PyObject_Dir of generic objects: returns __dict__, __class__, | 
 |    and recursively up the __class__.__bases__ chain. | 
 | */ | 
 | static PyObject * | 
 | _generic_dir(PyObject *obj) | 
 | { | 
 | 	PyObject *result = NULL; | 
 | 	PyObject *dict = NULL; | 
 | 	PyObject *itsclass = NULL; | 
 | 	 | 
 | 	/* Get __dict__ (which may or may not be a real dict...) */ | 
 | 	dict = PyObject_GetAttrString(obj, "__dict__"); | 
 | 	if (dict == NULL) { | 
 | 		PyErr_Clear(); | 
 | 		dict = PyDict_New(); | 
 | 	} | 
 | 	else if (!PyDict_Check(dict)) { | 
 | 		Py_DECREF(dict); | 
 | 		dict = PyDict_New(); | 
 | 	} | 
 | 	else { | 
 | 		/* Copy __dict__ to avoid mutating it. */ | 
 | 		PyObject *temp = PyDict_Copy(dict); | 
 | 		Py_DECREF(dict); | 
 | 		dict = temp; | 
 | 	} | 
 |  | 
 | 	if (dict == NULL) | 
 | 		goto error; | 
 |  | 
 | 	/* Merge in __members__ and __methods__ (if any). | 
 | 	 * This is removed in Python 3000. */ | 
 | 	if (merge_list_attr(dict, obj, "__members__") < 0) | 
 | 		goto error; | 
 | 	if (merge_list_attr(dict, obj, "__methods__") < 0) | 
 | 		goto error; | 
 |  | 
 | 	/* Merge in attrs reachable from its class. */ | 
 | 	itsclass = PyObject_GetAttrString(obj, "__class__"); | 
 | 	if (itsclass == NULL) | 
 | 		/* XXX(tomer): Perhaps fall back to obj->ob_type if no | 
 | 		               __class__ exists? */ | 
 | 		PyErr_Clear(); | 
 | 	else { | 
 | 		if (merge_class_dict(dict, itsclass) != 0) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	result = PyDict_Keys(dict); | 
 | 	/* fall through */ | 
 | error: | 
 | 	Py_XDECREF(itsclass); | 
 | 	Py_XDECREF(dict); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Helper for PyObject_Dir: object introspection. | 
 |    This calls one of the above specialized versions if no __dir__ method | 
 |    exists. */ | 
 | static PyObject * | 
 | _dir_object(PyObject *obj) | 
 | { | 
 | 	PyObject *result = NULL; | 
 | 	PyObject *dirfunc = PyObject_GetAttrString((PyObject *)obj->ob_type, | 
 | 						   "__dir__"); | 
 |  | 
 | 	assert(obj); | 
 | 	if (dirfunc == NULL) { | 
 | 		/* use default implementation */ | 
 | 		PyErr_Clear(); | 
 | 		if (PyModule_Check(obj)) | 
 | 			result = _specialized_dir_module(obj); | 
 | 		else if (PyType_Check(obj) || PyClass_Check(obj)) | 
 | 			result = _specialized_dir_type(obj); | 
 | 		else | 
 | 			result = _generic_dir(obj); | 
 | 	} | 
 | 	else { | 
 | 		/* use __dir__ */ | 
 | 		result = PyObject_CallFunctionObjArgs(dirfunc, obj, NULL); | 
 | 		Py_DECREF(dirfunc); | 
 | 		if (result == NULL) | 
 | 			return NULL; | 
 |  | 
 | 		/* result must be a list */ | 
 | 		/* XXX(gbrandl): could also check if all items are strings */ | 
 | 		if (!PyList_Check(result)) { | 
 | 			PyErr_Format(PyExc_TypeError, | 
 | 				     "__dir__() must return a list, not %.200s", | 
 | 				     Py_TYPE(result)->tp_name); | 
 | 			Py_DECREF(result); | 
 | 			result = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Implementation of dir() -- if obj is NULL, returns the names in the current | 
 |    (local) scope.  Otherwise, performs introspection of the object: returns a | 
 |    sorted list of attribute names (supposedly) accessible from the object | 
 | */ | 
 | PyObject * | 
 | PyObject_Dir(PyObject *obj) | 
 | { | 
 | 	PyObject * result; | 
 |  | 
 | 	if (obj == NULL) | 
 | 		/* no object -- introspect the locals */ | 
 | 		result = _dir_locals(); | 
 | 	else | 
 | 		/* object -- introspect the object */ | 
 | 		result = _dir_object(obj); | 
 |  | 
 | 	assert(result == NULL || PyList_Check(result)); | 
 |  | 
 | 	if (result != NULL && PyList_Sort(result) != 0) { | 
 | 		/* sorting the list failed */ | 
 | 		Py_DECREF(result); | 
 | 		result = NULL; | 
 | 	} | 
 | 	 | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 | NoObject is usable as a non-NULL undefined value, used by the macro None. | 
 | There is (and should be!) no way to create other objects of this type, | 
 | so there is exactly one (which is indestructible, by the way). | 
 | (XXX This type and the type of NotImplemented below should be unified.) | 
 | */ | 
 |  | 
 | /* ARGSUSED */ | 
 | static PyObject * | 
 | none_repr(PyObject *op) | 
 | { | 
 | 	return PyString_FromString("None"); | 
 | } | 
 |  | 
 | /* ARGUSED */ | 
 | static void | 
 | none_dealloc(PyObject* ignore) | 
 | { | 
 | 	/* This should never get called, but we also don't want to SEGV if | 
 | 	 * we accidentally decref None out of existence. | 
 | 	 */ | 
 | 	Py_FatalError("deallocating None"); | 
 | } | 
 |  | 
 |  | 
 | static PyTypeObject PyNone_Type = { | 
 | 	PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 | 	"NoneType", | 
 | 	0, | 
 | 	0, | 
 | 	none_dealloc,	/*tp_dealloc*/ /*never called*/ | 
 | 	0,		/*tp_print*/ | 
 | 	0,		/*tp_getattr*/ | 
 | 	0,		/*tp_setattr*/ | 
 | 	0,		/*tp_compare*/ | 
 | 	none_repr,	/*tp_repr*/ | 
 | 	0,		/*tp_as_number*/ | 
 | 	0,		/*tp_as_sequence*/ | 
 | 	0,		/*tp_as_mapping*/ | 
 | 	(hashfunc)_Py_HashPointer, /*tp_hash */ | 
 | }; | 
 |  | 
 | PyObject _Py_NoneStruct = { | 
 |   _PyObject_EXTRA_INIT | 
 |   1, &PyNone_Type | 
 | }; | 
 |  | 
 | /* NotImplemented is an object that can be used to signal that an | 
 |    operation is not implemented for the given type combination. */ | 
 |  | 
 | static PyObject * | 
 | NotImplemented_repr(PyObject *op) | 
 | { | 
 | 	return PyString_FromString("NotImplemented"); | 
 | } | 
 |  | 
 | static PyTypeObject PyNotImplemented_Type = { | 
 | 	PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 | 	"NotImplementedType", | 
 | 	0, | 
 | 	0, | 
 | 	none_dealloc,	/*tp_dealloc*/ /*never called*/ | 
 | 	0,		/*tp_print*/ | 
 | 	0,		/*tp_getattr*/ | 
 | 	0,		/*tp_setattr*/ | 
 | 	0,		/*tp_compare*/ | 
 | 	NotImplemented_repr, /*tp_repr*/ | 
 | 	0,		/*tp_as_number*/ | 
 | 	0,		/*tp_as_sequence*/ | 
 | 	0,		/*tp_as_mapping*/ | 
 | 	0,		/*tp_hash */ | 
 | }; | 
 |  | 
 | PyObject _Py_NotImplementedStruct = { | 
 | 	_PyObject_EXTRA_INIT | 
 | 	1, &PyNotImplemented_Type | 
 | }; | 
 |  | 
 | void | 
 | _Py_ReadyTypes(void) | 
 | { | 
 | 	if (PyType_Ready(&PyType_Type) < 0) | 
 | 		Py_FatalError("Can't initialize type type"); | 
 |  | 
 | 	if (PyType_Ready(&_PyWeakref_RefType) < 0) | 
 | 		Py_FatalError("Can't initialize weakref type"); | 
 |  | 
 | 	if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0) | 
 | 		Py_FatalError("Can't initialize callable weakref proxy type"); | 
 |  | 
 | 	if (PyType_Ready(&_PyWeakref_ProxyType) < 0) | 
 | 		Py_FatalError("Can't initialize weakref proxy type"); | 
 |  | 
 | 	if (PyType_Ready(&PyBool_Type) < 0) | 
 | 		Py_FatalError("Can't initialize bool type"); | 
 |  | 
 | 	if (PyType_Ready(&PyString_Type) < 0) | 
 | 		Py_FatalError("Can't initialize str type"); | 
 |  | 
 | 	if (PyType_Ready(&PyByteArray_Type) < 0) | 
 | 		Py_FatalError("Can't initialize bytearray"); | 
 |  | 
 | 	if (PyType_Ready(&PyList_Type) < 0) | 
 | 		Py_FatalError("Can't initialize list"); | 
 |  | 
 | 	if (PyType_Ready(&PyNone_Type) < 0) | 
 | 		Py_FatalError("Can't initialize None type"); | 
 |  | 
 | 	if (PyType_Ready(&PyNotImplemented_Type) < 0) | 
 | 		Py_FatalError("Can't initialize NotImplemented type"); | 
 |  | 
 | 	if (PyType_Ready(&PyTraceBack_Type) < 0) | 
 | 		Py_FatalError("Can't initialize traceback type"); | 
 |  | 
 | 	if (PyType_Ready(&PySuper_Type) < 0) | 
 | 		Py_FatalError("Can't initialize super type"); | 
 |  | 
 | 	if (PyType_Ready(&PyBaseObject_Type) < 0) | 
 | 		Py_FatalError("Can't initialize object type"); | 
 |  | 
 | 	if (PyType_Ready(&PyRange_Type) < 0) | 
 | 		Py_FatalError("Can't initialize xrange type"); | 
 |  | 
 | 	if (PyType_Ready(&PyDict_Type) < 0) | 
 | 		Py_FatalError("Can't initialize dict type"); | 
 |  | 
 | 	if (PyType_Ready(&PySet_Type) < 0) | 
 | 		Py_FatalError("Can't initialize set type"); | 
 |  | 
 | 	if (PyType_Ready(&PyUnicode_Type) < 0) | 
 | 		Py_FatalError("Can't initialize unicode type"); | 
 |  | 
 | 	if (PyType_Ready(&PySlice_Type) < 0) | 
 | 		Py_FatalError("Can't initialize slice type"); | 
 |  | 
 | 	if (PyType_Ready(&PyStaticMethod_Type) < 0) | 
 | 		Py_FatalError("Can't initialize static method type"); | 
 |  | 
 | #ifndef WITHOUT_COMPLEX | 
 | 	if (PyType_Ready(&PyComplex_Type) < 0) | 
 | 		Py_FatalError("Can't initialize complex type"); | 
 | #endif | 
 |  | 
 | 	if (PyType_Ready(&PyFloat_Type) < 0) | 
 | 		Py_FatalError("Can't initialize float type"); | 
 |  | 
 | 	if (PyType_Ready(&PyBuffer_Type) < 0) | 
 | 		Py_FatalError("Can't initialize buffer type"); | 
 |  | 
 | 	if (PyType_Ready(&PyLong_Type) < 0) | 
 | 		Py_FatalError("Can't initialize long type"); | 
 |  | 
 | 	if (PyType_Ready(&PyInt_Type) < 0) | 
 | 		Py_FatalError("Can't initialize int type"); | 
 |  | 
 | 	if (PyType_Ready(&PyFrozenSet_Type) < 0) | 
 | 		Py_FatalError("Can't initialize frozenset type"); | 
 |  | 
 | 	if (PyType_Ready(&PyProperty_Type) < 0) | 
 | 		Py_FatalError("Can't initialize property type"); | 
 |  | 
 | 	if (PyType_Ready(&PyMemoryView_Type) < 0) | 
 | 		Py_FatalError("Can't initialize memoryview type"); | 
 |  | 
 | 	if (PyType_Ready(&PyTuple_Type) < 0) | 
 | 		Py_FatalError("Can't initialize tuple type"); | 
 |  | 
 | 	if (PyType_Ready(&PyEnum_Type) < 0) | 
 | 		Py_FatalError("Can't initialize enumerate type"); | 
 |  | 
 | 	if (PyType_Ready(&PyReversed_Type) < 0) | 
 | 		Py_FatalError("Can't initialize reversed type"); | 
 |  | 
 | 	if (PyType_Ready(&PyCode_Type) < 0) | 
 | 		Py_FatalError("Can't initialize code type"); | 
 |  | 
 | 	if (PyType_Ready(&PyFrame_Type) < 0) | 
 | 		Py_FatalError("Can't initialize frame type"); | 
 |  | 
 | 	if (PyType_Ready(&PyCFunction_Type) < 0) | 
 | 		Py_FatalError("Can't initialize builtin function type"); | 
 |  | 
 | 	if (PyType_Ready(&PyMethod_Type) < 0) | 
 | 		Py_FatalError("Can't initialize method type"); | 
 |  | 
 | 	if (PyType_Ready(&PyFunction_Type) < 0) | 
 | 		Py_FatalError("Can't initialize function type"); | 
 |  | 
 | 	if (PyType_Ready(&PyClass_Type) < 0) | 
 | 		Py_FatalError("Can't initialize class type"); | 
 |  | 
 | 	if (PyType_Ready(&PyDictProxy_Type) < 0) | 
 | 		Py_FatalError("Can't initialize dict proxy type"); | 
 |  | 
 | 	if (PyType_Ready(&PyGen_Type) < 0) | 
 | 		Py_FatalError("Can't initialize generator type"); | 
 |  | 
 | 	if (PyType_Ready(&PyGetSetDescr_Type) < 0) | 
 | 		Py_FatalError("Can't initialize get-set descriptor type"); | 
 |  | 
 | 	if (PyType_Ready(&PyWrapperDescr_Type) < 0) | 
 | 		Py_FatalError("Can't initialize wrapper type"); | 
 |  | 
 | 	if (PyType_Ready(&PyInstance_Type) < 0) | 
 | 		Py_FatalError("Can't initialize instance type"); | 
 |  | 
 | 	if (PyType_Ready(&PyEllipsis_Type) < 0) | 
 | 		Py_FatalError("Can't initialize ellipsis type"); | 
 |  | 
 | 	if (PyType_Ready(&PyMemberDescr_Type) < 0) | 
 | 		Py_FatalError("Can't initialize member descriptor type"); | 
 | } | 
 |  | 
 |  | 
 | #ifdef Py_TRACE_REFS | 
 |  | 
 | void | 
 | _Py_NewReference(PyObject *op) | 
 | { | 
 | 	_Py_INC_REFTOTAL; | 
 | 	op->ob_refcnt = 1; | 
 | 	_Py_AddToAllObjects(op, 1); | 
 | 	_Py_INC_TPALLOCS(op); | 
 | } | 
 |  | 
 | void | 
 | _Py_ForgetReference(register PyObject *op) | 
 | { | 
 | #ifdef SLOW_UNREF_CHECK | 
 |         register PyObject *p; | 
 | #endif | 
 | 	if (op->ob_refcnt < 0) | 
 | 		Py_FatalError("UNREF negative refcnt"); | 
 | 	if (op == &refchain || | 
 | 	    op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) | 
 | 		Py_FatalError("UNREF invalid object"); | 
 | #ifdef SLOW_UNREF_CHECK | 
 | 	for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { | 
 | 		if (p == op) | 
 | 			break; | 
 | 	} | 
 | 	if (p == &refchain) /* Not found */ | 
 | 		Py_FatalError("UNREF unknown object"); | 
 | #endif | 
 | 	op->_ob_next->_ob_prev = op->_ob_prev; | 
 | 	op->_ob_prev->_ob_next = op->_ob_next; | 
 | 	op->_ob_next = op->_ob_prev = NULL; | 
 | 	_Py_INC_TPFREES(op); | 
 | } | 
 |  | 
 | void | 
 | _Py_Dealloc(PyObject *op) | 
 | { | 
 | 	destructor dealloc = Py_TYPE(op)->tp_dealloc; | 
 | 	_Py_ForgetReference(op); | 
 | 	(*dealloc)(op); | 
 | } | 
 |  | 
 | /* Print all live objects.  Because PyObject_Print is called, the | 
 |  * interpreter must be in a healthy state. | 
 |  */ | 
 | void | 
 | _Py_PrintReferences(FILE *fp) | 
 | { | 
 | 	PyObject *op; | 
 | 	fprintf(fp, "Remaining objects:\n"); | 
 | 	for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { | 
 | 		fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt); | 
 | 		if (PyObject_Print(op, fp, 0) != 0) | 
 | 			PyErr_Clear(); | 
 | 		putc('\n', fp); | 
 | 	} | 
 | } | 
 |  | 
 | /* Print the addresses of all live objects.  Unlike _Py_PrintReferences, this | 
 |  * doesn't make any calls to the Python C API, so is always safe to call. | 
 |  */ | 
 | void | 
 | _Py_PrintReferenceAddresses(FILE *fp) | 
 | { | 
 | 	PyObject *op; | 
 | 	fprintf(fp, "Remaining object addresses:\n"); | 
 | 	for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) | 
 | 		fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op, | 
 | 			op->ob_refcnt, Py_TYPE(op)->tp_name); | 
 | } | 
 |  | 
 | PyObject * | 
 | _Py_GetObjects(PyObject *self, PyObject *args) | 
 | { | 
 | 	int i, n; | 
 | 	PyObject *t = NULL; | 
 | 	PyObject *res, *op; | 
 |  | 
 | 	if (!PyArg_ParseTuple(args, "i|O", &n, &t)) | 
 | 		return NULL; | 
 | 	op = refchain._ob_next; | 
 | 	res = PyList_New(0); | 
 | 	if (res == NULL) | 
 | 		return NULL; | 
 | 	for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { | 
 | 		while (op == self || op == args || op == res || op == t || | 
 | 		       (t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) { | 
 | 			op = op->_ob_next; | 
 | 			if (op == &refchain) | 
 | 				return res; | 
 | 		} | 
 | 		if (PyList_Append(res, op) < 0) { | 
 | 			Py_DECREF(res); | 
 | 			return NULL; | 
 | 		} | 
 | 		op = op->_ob_next; | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 | /* Hack to force loading of cobject.o */ | 
 | PyTypeObject *_Py_cobject_hack = &PyCObject_Type; | 
 |  | 
 |  | 
 | /* Hack to force loading of abstract.o */ | 
 | Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size; | 
 |  | 
 |  | 
 | /* Python's malloc wrappers (see pymem.h) */ | 
 |  | 
 | void * | 
 | PyMem_Malloc(size_t nbytes) | 
 | { | 
 | 	return PyMem_MALLOC(nbytes); | 
 | } | 
 |  | 
 | void * | 
 | PyMem_Realloc(void *p, size_t nbytes) | 
 | { | 
 | 	return PyMem_REALLOC(p, nbytes); | 
 | } | 
 |  | 
 | void | 
 | PyMem_Free(void *p) | 
 | { | 
 | 	PyMem_FREE(p); | 
 | } | 
 |  | 
 |  | 
 | /* These methods are used to control infinite recursion in repr, str, print, | 
 |    etc.  Container objects that may recursively contain themselves, | 
 |    e.g. builtin dictionaries and lists, should used Py_ReprEnter() and | 
 |    Py_ReprLeave() to avoid infinite recursion. | 
 |  | 
 |    Py_ReprEnter() returns 0 the first time it is called for a particular | 
 |    object and 1 every time thereafter.  It returns -1 if an exception | 
 |    occurred.  Py_ReprLeave() has no return value. | 
 |  | 
 |    See dictobject.c and listobject.c for examples of use. | 
 | */ | 
 |  | 
 | #define KEY "Py_Repr" | 
 |  | 
 | int | 
 | Py_ReprEnter(PyObject *obj) | 
 | { | 
 | 	PyObject *dict; | 
 | 	PyObject *list; | 
 | 	Py_ssize_t i; | 
 |  | 
 | 	dict = PyThreadState_GetDict(); | 
 | 	if (dict == NULL) | 
 | 		return 0; | 
 | 	list = PyDict_GetItemString(dict, KEY); | 
 | 	if (list == NULL) { | 
 | 		list = PyList_New(0); | 
 | 		if (list == NULL) | 
 | 			return -1; | 
 | 		if (PyDict_SetItemString(dict, KEY, list) < 0) | 
 | 			return -1; | 
 | 		Py_DECREF(list); | 
 | 	} | 
 | 	i = PyList_GET_SIZE(list); | 
 | 	while (--i >= 0) { | 
 | 		if (PyList_GET_ITEM(list, i) == obj) | 
 | 			return 1; | 
 | 	} | 
 | 	PyList_Append(list, obj); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | Py_ReprLeave(PyObject *obj) | 
 | { | 
 | 	PyObject *dict; | 
 | 	PyObject *list; | 
 | 	Py_ssize_t i; | 
 |  | 
 | 	dict = PyThreadState_GetDict(); | 
 | 	if (dict == NULL) | 
 | 		return; | 
 | 	list = PyDict_GetItemString(dict, KEY); | 
 | 	if (list == NULL || !PyList_Check(list)) | 
 | 		return; | 
 | 	i = PyList_GET_SIZE(list); | 
 | 	/* Count backwards because we always expect obj to be list[-1] */ | 
 | 	while (--i >= 0) { | 
 | 		if (PyList_GET_ITEM(list, i) == obj) { | 
 | 			PyList_SetSlice(list, i, i + 1, NULL); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Trashcan support. */ | 
 |  | 
 | /* Current call-stack depth of tp_dealloc calls. */ | 
 | int _PyTrash_delete_nesting = 0; | 
 |  | 
 | /* List of objects that still need to be cleaned up, singly linked via their | 
 |  * gc headers' gc_prev pointers. | 
 |  */ | 
 | PyObject *_PyTrash_delete_later = NULL; | 
 |  | 
 | /* Add op to the _PyTrash_delete_later list.  Called when the current | 
 |  * call-stack depth gets large.  op must be a currently untracked gc'ed | 
 |  * object, with refcount 0.  Py_DECREF must already have been called on it. | 
 |  */ | 
 | void | 
 | _PyTrash_deposit_object(PyObject *op) | 
 | { | 
 | 	assert(PyObject_IS_GC(op)); | 
 | 	assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED); | 
 | 	assert(op->ob_refcnt == 0); | 
 | 	_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later; | 
 | 	_PyTrash_delete_later = op; | 
 | } | 
 |  | 
 | /* Dealloccate all the objects in the _PyTrash_delete_later list.  Called when | 
 |  * the call-stack unwinds again. | 
 |  */ | 
 | void | 
 | _PyTrash_destroy_chain(void) | 
 | { | 
 | 	while (_PyTrash_delete_later) { | 
 | 		PyObject *op = _PyTrash_delete_later; | 
 | 		destructor dealloc = Py_TYPE(op)->tp_dealloc; | 
 |  | 
 | 		_PyTrash_delete_later = | 
 | 			(PyObject*) _Py_AS_GC(op)->gc.gc_prev; | 
 |  | 
 | 		/* Call the deallocator directly.  This used to try to | 
 | 		 * fool Py_DECREF into calling it indirectly, but | 
 | 		 * Py_DECREF was already called on this object, and in | 
 | 		 * assorted non-release builds calling Py_DECREF again ends | 
 | 		 * up distorting allocation statistics. | 
 | 		 */ | 
 | 		assert(op->ob_refcnt == 0); | 
 | 		++_PyTrash_delete_nesting; | 
 | 		(*dealloc)(op); | 
 | 		--_PyTrash_delete_nesting; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef __cplusplus | 
 | } | 
 | #endif |