blob: 4d38e4d8c1fc83c0afea401531d8b23e9667f3e6 [file] [log] [blame]
"""distutils.unixccompiler
Contains the UnixCCompiler class, a subclass of CCompiler that handles
the "typical" Unix-style command-line C compiler:
* macros defined with -Dname[=value]
* macros undefined with -Uname
* include search directories specified with -Idir
* libraries specified with -lllib
* library search directories specified with -Ldir
* compile handled by 'cc' (or similar) executable with -c option:
compiles .c to .o
* link static library handled by 'ar' command (possibly with 'ranlib')
* link shared library handled by 'cc -shared'
"""
# created 1999/07/05, Greg Ward
__revision__ = "$Id$"
import string, re, os
from types import *
from copy import copy
from distutils import sysconfig
from distutils.ccompiler import \
CCompiler, gen_preprocess_options, gen_lib_options
from distutils.errors import \
DistutilsExecError, CompileError, LibError, LinkError
# XXX Things not currently handled:
# * optimization/debug/warning flags; we just use whatever's in Python's
# Makefile and live with it. Is this adequate? If not, we might
# have to have a bunch of subclasses GNUCCompiler, SGICCompiler,
# SunCCompiler, and I suspect down that road lies madness.
# * even if we don't know a warning flag from an optimization flag,
# we need some way for outsiders to feed preprocessor/compiler/linker
# flags in to us -- eg. a sysadmin might want to mandate certain flags
# via a site config file, or a user might want to set something for
# compiling this module distribution only via the setup.py command
# line, whatever. As long as these options come from something on the
# current system, they can be as system-dependent as they like, and we
# should just happily stuff them into the preprocessor/compiler/linker
# options and carry on.
class UnixCCompiler (CCompiler):
# XXX perhaps there should really be *three* kinds of include
# directories: those built in to the preprocessor, those from Python's
# Makefiles, and those supplied to {add,set}_include_dirs(). Currently
# we make no distinction between the latter two at this point; it's all
# up to the client class to select the include directories to use above
# and beyond the compiler's defaults. That is, both the Python include
# directories and any module- or package-specific include directories
# are specified via {add,set}_include_dirs(), and there's no way to
# distinguish them. This might be a bug.
compiler_type = 'unix'
# Needed for the filename generation methods provided by the
# base class, CCompiler.
src_extensions = [".c",".C",".cc",".cxx",".cpp"]
obj_extension = ".o"
static_lib_extension = ".a"
shared_lib_extension = sysconfig.SO
static_lib_format = shared_lib_format = "lib%s%s"
# Command to create a static library: seems to be pretty consistent
# across the major Unices. Might have to move down into the
# constructor if we need platform-specific guesswork.
archiver = sysconfig.AR
archiver_options = "-cr"
ranlib = sysconfig.RANLIB
def __init__ (self,
verbose=0,
dry_run=0,
force=0):
CCompiler.__init__ (self, verbose, dry_run, force)
self.preprocess_options = None
self.compile_options = None
# Munge CC and OPT together in case there are flags stuck in CC.
# Note that using these variables from sysconfig immediately makes
# this module specific to building Python extensions and
# inappropriate as a general-purpose C compiler front-end. So sue
# me. Note also that we use OPT rather than CFLAGS, because CFLAGS
# is the flags used to compile Python itself -- not only are there
# -I options in there, they are the *wrong* -I options. We'll
# leave selection of include directories up to the class using
# UnixCCompiler!
(self.cc, self.ccflags) = \
_split_command (sysconfig.CC + ' ' + sysconfig.OPT)
self.ccflags_shared = string.split (sysconfig.CCSHARED)
(self.ld_shared, self.ldflags_shared) = \
_split_command (sysconfig.LDSHARED)
self.ld_exec = self.cc
# __init__ ()
def compile (self,
sources,
output_dir=None,
macros=None,
include_dirs=None,
debug=0,
extra_preargs=None,
extra_postargs=None):
(output_dir, macros, include_dirs) = \
self._fix_compile_args (output_dir, macros, include_dirs)
(objects, skip_sources) = self._prep_compile (sources, output_dir)
# Figure out the options for the compiler command line.
pp_opts = gen_preprocess_options (macros, include_dirs)
cc_args = ['-c'] + pp_opts + self.ccflags + self.ccflags_shared
if debug:
cc_args[:0] = ['-g']
if extra_preargs:
cc_args[:0] = extra_preargs
if extra_postargs is None:
extra_postargs = []
# Compile all source files that weren't eliminated by
# '_prep_compile()'.
for i in range (len (sources)):
src = sources[i] ; obj = objects[i]
if skip_sources[src]:
self.announce ("skipping %s (%s up-to-date)" % (src, obj))
else:
self.mkpath (os.path.dirname (obj))
try:
self.spawn ([self.cc] + cc_args +
[src, '-o', obj] +
extra_postargs)
except DistutilsExecError, msg:
raise CompileError, msg
# Return *all* object filenames, not just the ones we just built.
return objects
# compile ()
def create_static_lib (self,
objects,
output_libname,
output_dir=None,
debug=0):
(objects, output_dir) = self._fix_object_args (objects, output_dir)
output_filename = \
self.library_filename (output_libname, output_dir=output_dir)
if self._need_link (objects, output_filename):
self.mkpath (os.path.dirname (output_filename))
self.spawn ([self.archiver,
self.archiver_options,
output_filename] +
objects + self.objects)
# Not many Unices required ranlib anymore -- SunOS 4.x is, I
# think the only major Unix that does. Maybe we need some
# platform intelligence here to skip ranlib if it's not
# needed -- or maybe Python's configure script took care of
# it for us, hence the check for leading colon.
if self.ranlib[0] != ':':
try:
self.spawn ([self.ranlib, output_filename])
except DistutilsExecError, msg:
raise LibError, msg
else:
self.announce ("skipping %s (up-to-date)" % output_filename)
# create_static_lib ()
def link_shared_lib (self,
objects,
output_libname,
output_dir=None,
libraries=None,
library_dirs=None,
runtime_library_dirs=None,
export_symbols=None,
debug=0,
extra_preargs=None,
extra_postargs=None):
self.link_shared_object (
objects,
self.shared_library_filename (output_libname),
output_dir,
libraries,
library_dirs,
runtime_library_dirs,
export_symbols,
debug,
extra_preargs,
extra_postargs)
def link_shared_object (self,
objects,
output_filename,
output_dir=None,
libraries=None,
library_dirs=None,
runtime_library_dirs=None,
export_symbols=None,
debug=0,
extra_preargs=None,
extra_postargs=None):
(objects, output_dir) = self._fix_object_args (objects, output_dir)
(libraries, library_dirs, runtime_library_dirs) = \
self._fix_lib_args (libraries, library_dirs, runtime_library_dirs)
lib_opts = gen_lib_options (self,
library_dirs, runtime_library_dirs,
libraries)
if type (output_dir) not in (StringType, NoneType):
raise TypeError, "'output_dir' must be a string or None"
if output_dir is not None:
output_filename = os.path.join (output_dir, output_filename)
if self._need_link (objects, output_filename):
ld_args = (self.ldflags_shared + objects + self.objects +
lib_opts + ['-o', output_filename])
if debug:
ld_args[:0] = ['-g']
if extra_preargs:
ld_args[:0] = extra_preargs
if extra_postargs:
ld_args.extend (extra_postargs)
self.mkpath (os.path.dirname (output_filename))
try:
self.spawn ([self.ld_shared] + ld_args)
except DistutilsExecError, msg:
raise LinkError, msg
else:
self.announce ("skipping %s (up-to-date)" % output_filename)
# link_shared_object ()
def link_executable (self,
objects,
output_progname,
output_dir=None,
libraries=None,
library_dirs=None,
runtime_library_dirs=None,
debug=0,
extra_preargs=None,
extra_postargs=None):
(objects, output_dir) = self._fix_object_args (objects, output_dir)
(libraries, library_dirs, runtime_library_dirs) = \
self._fix_lib_args (libraries, library_dirs, runtime_library_dirs)
lib_opts = gen_lib_options (self,
library_dirs, runtime_library_dirs,
libraries)
output_filename = output_progname # Unix-ism!
if output_dir is not None:
output_filename = os.path.join (output_dir, output_filename)
if self._need_link (objects, output_filename):
ld_args = objects + self.objects + lib_opts + ['-o', output_filename]
if debug:
ld_args[:0] = ['-g']
if extra_preargs:
ld_args[:0] = extra_preargs
if extra_postargs:
ld_args.extend (extra_postargs)
self.mkpath (os.path.dirname (output_filename))
try:
self.spawn ([self.ld_exec] + ld_args)
except DistutilsExecError, msg:
raise LinkError, msg
else:
self.announce ("skipping %s (up-to-date)" % output_filename)
# link_executable ()
# -- Miscellaneous methods -----------------------------------------
# These are all used by the 'gen_lib_options() function, in
# ccompiler.py.
def library_dir_option (self, dir):
return "-L" + dir
def runtime_library_dir_option (self, dir):
return "-R" + dir
def library_option (self, lib):
return "-l" + lib
def find_library_file (self, dirs, lib):
for dir in dirs:
shared = os.path.join (dir, self.shared_library_filename (lib))
static = os.path.join (dir, self.library_filename (lib))
# We're second-guessing the linker here, with not much hard
# data to go on: GCC seems to prefer the shared library, so I'm
# assuming that *all* Unix C compilers do. And of course I'm
# ignoring even GCC's "-static" option. So sue me.
if os.path.exists (shared):
return shared
elif os.path.exists (static):
return static
else:
# Oops, didn't find it in *any* of 'dirs'
return None
# find_library_file ()
# class UnixCCompiler
def _split_command (cmd):
"""Split a command string up into the progam to run (a string) and
the list of arguments; return them as (cmd, arglist)."""
args = string.split (cmd)
return (args[0], args[1:])