| import unittest | 
 | from test import support | 
 |  | 
 | import sys | 
 |  | 
 | import random | 
 | import math | 
 | import array | 
 |  | 
 | # Used for lazy formatting of failure messages | 
 | class Frm(object): | 
 |     def __init__(self, format, *args): | 
 |         self.format = format | 
 |         self.args = args | 
 |  | 
 |     def __str__(self): | 
 |         return self.format % self.args | 
 |  | 
 | # SHIFT should match the value in longintrepr.h for best testing. | 
 | SHIFT = sys.int_info.bits_per_digit | 
 | BASE = 2 ** SHIFT | 
 | MASK = BASE - 1 | 
 | KARATSUBA_CUTOFF = 70   # from longobject.c | 
 |  | 
 | # Max number of base BASE digits to use in test cases.  Doubling | 
 | # this will more than double the runtime. | 
 | MAXDIGITS = 15 | 
 |  | 
 | # build some special values | 
 | special = [0, 1, 2, BASE, BASE >> 1, 0x5555555555555555, 0xaaaaaaaaaaaaaaaa] | 
 | #  some solid strings of one bits | 
 | p2 = 4  # 0 and 1 already added | 
 | for i in range(2*SHIFT): | 
 |     special.append(p2 - 1) | 
 |     p2 = p2 << 1 | 
 | del p2 | 
 | # add complements & negations | 
 | special += [~x for x in special] + [-x for x in special] | 
 |  | 
 | DBL_MAX = sys.float_info.max | 
 | DBL_MAX_EXP = sys.float_info.max_exp | 
 | DBL_MIN_EXP = sys.float_info.min_exp | 
 | DBL_MANT_DIG = sys.float_info.mant_dig | 
 | DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1) | 
 |  | 
 |  | 
 | # Pure Python version of correctly-rounded integer-to-float conversion. | 
 | def int_to_float(n): | 
 |     """ | 
 |     Correctly-rounded integer-to-float conversion. | 
 |  | 
 |     """ | 
 |     # Constants, depending only on the floating-point format in use. | 
 |     # We use an extra 2 bits of precision for rounding purposes. | 
 |     PRECISION = sys.float_info.mant_dig + 2 | 
 |     SHIFT_MAX = sys.float_info.max_exp - PRECISION | 
 |     Q_MAX = 1 << PRECISION | 
 |     ROUND_HALF_TO_EVEN_CORRECTION = [0, -1, -2, 1, 0, -1, 2, 1] | 
 |  | 
 |     # Reduce to the case where n is positive. | 
 |     if n == 0: | 
 |         return 0.0 | 
 |     elif n < 0: | 
 |         return -int_to_float(-n) | 
 |  | 
 |     # Convert n to a 'floating-point' number q * 2**shift, where q is an | 
 |     # integer with 'PRECISION' significant bits.  When shifting n to create q, | 
 |     # the least significant bit of q is treated as 'sticky'.  That is, the | 
 |     # least significant bit of q is set if either the corresponding bit of n | 
 |     # was already set, or any one of the bits of n lost in the shift was set. | 
 |     shift = n.bit_length() - PRECISION | 
 |     q = n << -shift if shift < 0 else (n >> shift) | bool(n & ~(-1 << shift)) | 
 |  | 
 |     # Round half to even (actually rounds to the nearest multiple of 4, | 
 |     # rounding ties to a multiple of 8). | 
 |     q += ROUND_HALF_TO_EVEN_CORRECTION[q & 7] | 
 |  | 
 |     # Detect overflow. | 
 |     if shift + (q == Q_MAX) > SHIFT_MAX: | 
 |         raise OverflowError("integer too large to convert to float") | 
 |  | 
 |     # Checks: q is exactly representable, and q**2**shift doesn't overflow. | 
 |     assert q % 4 == 0 and q // 4 <= 2**(sys.float_info.mant_dig) | 
 |     assert q * 2**shift <= sys.float_info.max | 
 |  | 
 |     # Some circularity here, since float(q) is doing an int-to-float | 
 |     # conversion.  But here q is of bounded size, and is exactly representable | 
 |     # as a float.  In a low-level C-like language, this operation would be a | 
 |     # simple cast (e.g., from unsigned long long to double). | 
 |     return math.ldexp(float(q), shift) | 
 |  | 
 |  | 
 | # pure Python version of correctly-rounded true division | 
 | def truediv(a, b): | 
 |     """Correctly-rounded true division for integers.""" | 
 |     negative = a^b < 0 | 
 |     a, b = abs(a), abs(b) | 
 |  | 
 |     # exceptions:  division by zero, overflow | 
 |     if not b: | 
 |         raise ZeroDivisionError("division by zero") | 
 |     if a >= DBL_MIN_OVERFLOW * b: | 
 |         raise OverflowError("int/int too large to represent as a float") | 
 |  | 
 |    # find integer d satisfying 2**(d - 1) <= a/b < 2**d | 
 |     d = a.bit_length() - b.bit_length() | 
 |     if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b: | 
 |         d += 1 | 
 |  | 
 |     # compute 2**-exp * a / b for suitable exp | 
 |     exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG | 
 |     a, b = a << max(-exp, 0), b << max(exp, 0) | 
 |     q, r = divmod(a, b) | 
 |  | 
 |     # round-half-to-even: fractional part is r/b, which is > 0.5 iff | 
 |     # 2*r > b, and == 0.5 iff 2*r == b. | 
 |     if 2*r > b or 2*r == b and q % 2 == 1: | 
 |         q += 1 | 
 |  | 
 |     result = math.ldexp(q, exp) | 
 |     return -result if negative else result | 
 |  | 
 |  | 
 | class LongTest(unittest.TestCase): | 
 |  | 
 |     # Get quasi-random long consisting of ndigits digits (in base BASE). | 
 |     # quasi == the most-significant digit will not be 0, and the number | 
 |     # is constructed to contain long strings of 0 and 1 bits.  These are | 
 |     # more likely than random bits to provoke digit-boundary errors. | 
 |     # The sign of the number is also random. | 
 |  | 
 |     def getran(self, ndigits): | 
 |         self.assertTrue(ndigits > 0) | 
 |         nbits_hi = ndigits * SHIFT | 
 |         nbits_lo = nbits_hi - SHIFT + 1 | 
 |         answer = 0 | 
 |         nbits = 0 | 
 |         r = int(random.random() * (SHIFT * 2)) | 1  # force 1 bits to start | 
 |         while nbits < nbits_lo: | 
 |             bits = (r >> 1) + 1 | 
 |             bits = min(bits, nbits_hi - nbits) | 
 |             self.assertTrue(1 <= bits <= SHIFT) | 
 |             nbits = nbits + bits | 
 |             answer = answer << bits | 
 |             if r & 1: | 
 |                 answer = answer | ((1 << bits) - 1) | 
 |             r = int(random.random() * (SHIFT * 2)) | 
 |         self.assertTrue(nbits_lo <= nbits <= nbits_hi) | 
 |         if random.random() < 0.5: | 
 |             answer = -answer | 
 |         return answer | 
 |  | 
 |     # Get random long consisting of ndigits random digits (relative to base | 
 |     # BASE).  The sign bit is also random. | 
 |  | 
 |     def getran2(ndigits): | 
 |         answer = 0 | 
 |         for i in range(ndigits): | 
 |             answer = (answer << SHIFT) | random.randint(0, MASK) | 
 |         if random.random() < 0.5: | 
 |             answer = -answer | 
 |         return answer | 
 |  | 
 |     def check_division(self, x, y): | 
 |         eq = self.assertEqual | 
 |         q, r = divmod(x, y) | 
 |         q2, r2 = x//y, x%y | 
 |         pab, pba = x*y, y*x | 
 |         eq(pab, pba, Frm("multiplication does not commute for %r and %r", x, y)) | 
 |         eq(q, q2, Frm("divmod returns different quotient than / for %r and %r", x, y)) | 
 |         eq(r, r2, Frm("divmod returns different mod than %% for %r and %r", x, y)) | 
 |         eq(x, q*y + r, Frm("x != q*y + r after divmod on x=%r, y=%r", x, y)) | 
 |         if y > 0: | 
 |             self.assertTrue(0 <= r < y, Frm("bad mod from divmod on %r and %r", x, y)) | 
 |         else: | 
 |             self.assertTrue(y < r <= 0, Frm("bad mod from divmod on %r and %r", x, y)) | 
 |  | 
 |     def test_division(self): | 
 |         digits = list(range(1, MAXDIGITS+1)) + list(range(KARATSUBA_CUTOFF, | 
 |                                                       KARATSUBA_CUTOFF + 14)) | 
 |         digits.append(KARATSUBA_CUTOFF * 3) | 
 |         for lenx in digits: | 
 |             x = self.getran(lenx) | 
 |             for leny in digits: | 
 |                 y = self.getran(leny) or 1 | 
 |                 self.check_division(x, y) | 
 |  | 
 |         # specific numbers chosen to exercise corner cases of the | 
 |         # current long division implementation | 
 |  | 
 |         # 30-bit cases involving a quotient digit estimate of BASE+1 | 
 |         self.check_division(1231948412290879395966702881, | 
 |                             1147341367131428698) | 
 |         self.check_division(815427756481275430342312021515587883, | 
 |                        707270836069027745) | 
 |         self.check_division(627976073697012820849443363563599041, | 
 |                        643588798496057020) | 
 |         self.check_division(1115141373653752303710932756325578065, | 
 |                        1038556335171453937726882627) | 
 |         # 30-bit cases that require the post-subtraction correction step | 
 |         self.check_division(922498905405436751940989320930368494, | 
 |                        949985870686786135626943396) | 
 |         self.check_division(768235853328091167204009652174031844, | 
 |                        1091555541180371554426545266) | 
 |  | 
 |         # 15-bit cases involving a quotient digit estimate of BASE+1 | 
 |         self.check_division(20172188947443, 615611397) | 
 |         self.check_division(1020908530270155025, 950795710) | 
 |         self.check_division(128589565723112408, 736393718) | 
 |         self.check_division(609919780285761575, 18613274546784) | 
 |         # 15-bit cases that require the post-subtraction correction step | 
 |         self.check_division(710031681576388032, 26769404391308) | 
 |         self.check_division(1933622614268221, 30212853348836) | 
 |  | 
 |  | 
 |  | 
 |     def test_karatsuba(self): | 
 |         digits = list(range(1, 5)) + list(range(KARATSUBA_CUTOFF, | 
 |                                                 KARATSUBA_CUTOFF + 10)) | 
 |         digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100]) | 
 |  | 
 |         bits = [digit * SHIFT for digit in digits] | 
 |  | 
 |         # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) == | 
 |         # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check. | 
 |         for abits in bits: | 
 |             a = (1 << abits) - 1 | 
 |             for bbits in bits: | 
 |                 if bbits < abits: | 
 |                     continue | 
 |                 b = (1 << bbits) - 1 | 
 |                 x = a * b | 
 |                 y = ((1 << (abits + bbits)) - | 
 |                      (1 << abits) - | 
 |                      (1 << bbits) + | 
 |                      1) | 
 |                 self.assertEqual(x, y, | 
 |                     Frm("bad result for a*b: a=%r, b=%r, x=%r, y=%r", a, b, x, y)) | 
 |  | 
 |     def check_bitop_identities_1(self, x): | 
 |         eq = self.assertEqual | 
 |         eq(x & 0, 0, Frm("x & 0 != 0 for x=%r", x)) | 
 |         eq(x | 0, x, Frm("x | 0 != x for x=%r", x)) | 
 |         eq(x ^ 0, x, Frm("x ^ 0 != x for x=%r", x)) | 
 |         eq(x & -1, x, Frm("x & -1 != x for x=%r", x)) | 
 |         eq(x | -1, -1, Frm("x | -1 != -1 for x=%r", x)) | 
 |         eq(x ^ -1, ~x, Frm("x ^ -1 != ~x for x=%r", x)) | 
 |         eq(x, ~~x, Frm("x != ~~x for x=%r", x)) | 
 |         eq(x & x, x, Frm("x & x != x for x=%r", x)) | 
 |         eq(x | x, x, Frm("x | x != x for x=%r", x)) | 
 |         eq(x ^ x, 0, Frm("x ^ x != 0 for x=%r", x)) | 
 |         eq(x & ~x, 0, Frm("x & ~x != 0 for x=%r", x)) | 
 |         eq(x | ~x, -1, Frm("x | ~x != -1 for x=%r", x)) | 
 |         eq(x ^ ~x, -1, Frm("x ^ ~x != -1 for x=%r", x)) | 
 |         eq(-x, 1 + ~x, Frm("not -x == 1 + ~x for x=%r", x)) | 
 |         eq(-x, ~(x-1), Frm("not -x == ~(x-1) forx =%r", x)) | 
 |         for n in range(2*SHIFT): | 
 |             p2 = 2 ** n | 
 |             eq(x << n >> n, x, | 
 |                 Frm("x << n >> n != x for x=%r, n=%r", (x, n))) | 
 |             eq(x // p2, x >> n, | 
 |                 Frm("x // p2 != x >> n for x=%r n=%r p2=%r", (x, n, p2))) | 
 |             eq(x * p2, x << n, | 
 |                 Frm("x * p2 != x << n for x=%r n=%r p2=%r", (x, n, p2))) | 
 |             eq(x & -p2, x >> n << n, | 
 |                 Frm("not x & -p2 == x >> n << n for x=%r n=%r p2=%r", (x, n, p2))) | 
 |             eq(x & -p2, x & ~(p2 - 1), | 
 |                 Frm("not x & -p2 == x & ~(p2 - 1) for x=%r n=%r p2=%r", (x, n, p2))) | 
 |  | 
 |     def check_bitop_identities_2(self, x, y): | 
 |         eq = self.assertEqual | 
 |         eq(x & y, y & x, Frm("x & y != y & x for x=%r, y=%r", (x, y))) | 
 |         eq(x | y, y | x, Frm("x | y != y | x for x=%r, y=%r", (x, y))) | 
 |         eq(x ^ y, y ^ x, Frm("x ^ y != y ^ x for x=%r, y=%r", (x, y))) | 
 |         eq(x ^ y ^ x, y, Frm("x ^ y ^ x != y for x=%r, y=%r", (x, y))) | 
 |         eq(x & y, ~(~x | ~y), Frm("x & y != ~(~x | ~y) for x=%r, y=%r", (x, y))) | 
 |         eq(x | y, ~(~x & ~y), Frm("x | y != ~(~x & ~y) for x=%r, y=%r", (x, y))) | 
 |         eq(x ^ y, (x | y) & ~(x & y), | 
 |              Frm("x ^ y != (x | y) & ~(x & y) for x=%r, y=%r", (x, y))) | 
 |         eq(x ^ y, (x & ~y) | (~x & y), | 
 |              Frm("x ^ y == (x & ~y) | (~x & y) for x=%r, y=%r", (x, y))) | 
 |         eq(x ^ y, (x | y) & (~x | ~y), | 
 |              Frm("x ^ y == (x | y) & (~x | ~y) for x=%r, y=%r", (x, y))) | 
 |  | 
 |     def check_bitop_identities_3(self, x, y, z): | 
 |         eq = self.assertEqual | 
 |         eq((x & y) & z, x & (y & z), | 
 |              Frm("(x & y) & z != x & (y & z) for x=%r, y=%r, z=%r", (x, y, z))) | 
 |         eq((x | y) | z, x | (y | z), | 
 |              Frm("(x | y) | z != x | (y | z) for x=%r, y=%r, z=%r", (x, y, z))) | 
 |         eq((x ^ y) ^ z, x ^ (y ^ z), | 
 |              Frm("(x ^ y) ^ z != x ^ (y ^ z) for x=%r, y=%r, z=%r", (x, y, z))) | 
 |         eq(x & (y | z), (x & y) | (x & z), | 
 |              Frm("x & (y | z) != (x & y) | (x & z) for x=%r, y=%r, z=%r", (x, y, z))) | 
 |         eq(x | (y & z), (x | y) & (x | z), | 
 |              Frm("x | (y & z) != (x | y) & (x | z) for x=%r, y=%r, z=%r", (x, y, z))) | 
 |  | 
 |     def test_bitop_identities(self): | 
 |         for x in special: | 
 |             self.check_bitop_identities_1(x) | 
 |         digits = range(1, MAXDIGITS+1) | 
 |         for lenx in digits: | 
 |             x = self.getran(lenx) | 
 |             self.check_bitop_identities_1(x) | 
 |             for leny in digits: | 
 |                 y = self.getran(leny) | 
 |                 self.check_bitop_identities_2(x, y) | 
 |                 self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2)) | 
 |  | 
 |     def slow_format(self, x, base): | 
 |         digits = [] | 
 |         sign = 0 | 
 |         if x < 0: | 
 |             sign, x = 1, -x | 
 |         while x: | 
 |             x, r = divmod(x, base) | 
 |             digits.append(int(r)) | 
 |         digits.reverse() | 
 |         digits = digits or [0] | 
 |         return '-'[:sign] + \ | 
 |                {2: '0b', 8: '0o', 10: '', 16: '0x'}[base] + \ | 
 |                "".join("0123456789abcdef"[i] for i in digits) | 
 |  | 
 |     def check_format_1(self, x): | 
 |         for base, mapper in (8, oct), (10, repr), (16, hex): | 
 |             got = mapper(x) | 
 |             expected = self.slow_format(x, base) | 
 |             msg = Frm("%s returned %r but expected %r for %r", | 
 |                 mapper.__name__, got, expected, x) | 
 |             self.assertEqual(got, expected, msg) | 
 |             self.assertEqual(int(got, 0), x, Frm('int("%s", 0) != %r', got, x)) | 
 |         # str() has to be checked a little differently since there's no | 
 |         # trailing "L" | 
 |         got = str(x) | 
 |         expected = self.slow_format(x, 10) | 
 |         msg = Frm("%s returned %r but expected %r for %r", | 
 |             mapper.__name__, got, expected, x) | 
 |         self.assertEqual(got, expected, msg) | 
 |  | 
 |     def test_format(self): | 
 |         for x in special: | 
 |             self.check_format_1(x) | 
 |         for i in range(10): | 
 |             for lenx in range(1, MAXDIGITS+1): | 
 |                 x = self.getran(lenx) | 
 |                 self.check_format_1(x) | 
 |  | 
 |     def test_long(self): | 
 |         # Check conversions from string | 
 |         LL = [ | 
 |                 ('1' + '0'*20, 10**20), | 
 |                 ('1' + '0'*100, 10**100) | 
 |         ] | 
 |         for s, v in LL: | 
 |             for sign in "", "+", "-": | 
 |                 for prefix in "", " ", "\t", "  \t\t  ": | 
 |                     ss = prefix + sign + s | 
 |                     vv = v | 
 |                     if sign == "-" and v is not ValueError: | 
 |                         vv = -v | 
 |                     try: | 
 |                         self.assertEqual(int(ss), vv) | 
 |                     except ValueError: | 
 |                         pass | 
 |  | 
 |         # trailing L should no longer be accepted... | 
 |         self.assertRaises(ValueError, int, '123L') | 
 |         self.assertRaises(ValueError, int, '123l') | 
 |         self.assertRaises(ValueError, int, '0L') | 
 |         self.assertRaises(ValueError, int, '-37L') | 
 |         self.assertRaises(ValueError, int, '0x32L', 16) | 
 |         self.assertRaises(ValueError, int, '1L', 21) | 
 |         # ... but it's just a normal digit if base >= 22 | 
 |         self.assertEqual(int('1L', 22), 43) | 
 |  | 
 |         # tests with base 0 | 
 |         self.assertEqual(int('000', 0), 0) | 
 |         self.assertEqual(int('0o123', 0), 83) | 
 |         self.assertEqual(int('0x123', 0), 291) | 
 |         self.assertEqual(int('0b100', 0), 4) | 
 |         self.assertEqual(int(' 0O123   ', 0), 83) | 
 |         self.assertEqual(int(' 0X123  ', 0), 291) | 
 |         self.assertEqual(int(' 0B100 ', 0), 4) | 
 |         self.assertEqual(int('0', 0), 0) | 
 |         self.assertEqual(int('+0', 0), 0) | 
 |         self.assertEqual(int('-0', 0), 0) | 
 |         self.assertEqual(int('00', 0), 0) | 
 |         self.assertRaises(ValueError, int, '08', 0) | 
 |         self.assertRaises(ValueError, int, '-012395', 0) | 
 |  | 
 |         # invalid bases | 
 |         invalid_bases = [-909, | 
 |                           2**31-1, 2**31, -2**31, -2**31-1, | 
 |                           2**63-1, 2**63, -2**63, -2**63-1, | 
 |                           2**100, -2**100, | 
 |                           ] | 
 |         for base in invalid_bases: | 
 |             self.assertRaises(ValueError, int, '42', base) | 
 |  | 
 |  | 
 |     def test_conversion(self): | 
 |  | 
 |         class JustLong: | 
 |             # test that __long__ no longer used in 3.x | 
 |             def __long__(self): | 
 |                 return 42 | 
 |         self.assertRaises(TypeError, int, JustLong()) | 
 |  | 
 |         class LongTrunc: | 
 |             # __long__ should be ignored in 3.x | 
 |             def __long__(self): | 
 |                 return 42 | 
 |             def __trunc__(self): | 
 |                 return 1729 | 
 |         self.assertEqual(int(LongTrunc()), 1729) | 
 |  | 
 |     def check_float_conversion(self, n): | 
 |         # Check that int -> float conversion behaviour matches | 
 |         # that of the pure Python version above. | 
 |         try: | 
 |             actual = float(n) | 
 |         except OverflowError: | 
 |             actual = 'overflow' | 
 |  | 
 |         try: | 
 |             expected = int_to_float(n) | 
 |         except OverflowError: | 
 |             expected = 'overflow' | 
 |  | 
 |         msg = ("Error in conversion of integer {} to float.  " | 
 |                "Got {}, expected {}.".format(n, actual, expected)) | 
 |         self.assertEqual(actual, expected, msg) | 
 |  | 
 |     @support.requires_IEEE_754 | 
 |     def test_float_conversion(self): | 
 |  | 
 |         exact_values = [0, 1, 2, | 
 |                          2**53-3, | 
 |                          2**53-2, | 
 |                          2**53-1, | 
 |                          2**53, | 
 |                          2**53+2, | 
 |                          2**54-4, | 
 |                          2**54-2, | 
 |                          2**54, | 
 |                          2**54+4] | 
 |         for x in exact_values: | 
 |             self.assertEqual(float(x), x) | 
 |             self.assertEqual(float(-x), -x) | 
 |  | 
 |         # test round-half-even | 
 |         for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]: | 
 |             for p in range(15): | 
 |                 self.assertEqual(int(float(2**p*(2**53+x))), 2**p*(2**53+y)) | 
 |  | 
 |         for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8), | 
 |                      (7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12), | 
 |                      (13, 12), (14, 16), (15, 16)]: | 
 |             for p in range(15): | 
 |                 self.assertEqual(int(float(2**p*(2**54+x))), 2**p*(2**54+y)) | 
 |  | 
 |         # behaviour near extremes of floating-point range | 
 |         int_dbl_max = int(DBL_MAX) | 
 |         top_power = 2**DBL_MAX_EXP | 
 |         halfway = (int_dbl_max + top_power)//2 | 
 |         self.assertEqual(float(int_dbl_max), DBL_MAX) | 
 |         self.assertEqual(float(int_dbl_max+1), DBL_MAX) | 
 |         self.assertEqual(float(halfway-1), DBL_MAX) | 
 |         self.assertRaises(OverflowError, float, halfway) | 
 |         self.assertEqual(float(1-halfway), -DBL_MAX) | 
 |         self.assertRaises(OverflowError, float, -halfway) | 
 |         self.assertRaises(OverflowError, float, top_power-1) | 
 |         self.assertRaises(OverflowError, float, top_power) | 
 |         self.assertRaises(OverflowError, float, top_power+1) | 
 |         self.assertRaises(OverflowError, float, 2*top_power-1) | 
 |         self.assertRaises(OverflowError, float, 2*top_power) | 
 |         self.assertRaises(OverflowError, float, top_power*top_power) | 
 |  | 
 |         for p in range(100): | 
 |             x = 2**p * (2**53 + 1) + 1 | 
 |             y = 2**p * (2**53 + 2) | 
 |             self.assertEqual(int(float(x)), y) | 
 |  | 
 |             x = 2**p * (2**53 + 1) | 
 |             y = 2**p * 2**53 | 
 |             self.assertEqual(int(float(x)), y) | 
 |  | 
 |         # Compare builtin float conversion with pure Python int_to_float | 
 |         # function above. | 
 |         test_values = [ | 
 |             int_dbl_max-1, int_dbl_max, int_dbl_max+1, | 
 |             halfway-1, halfway, halfway + 1, | 
 |             top_power-1, top_power, top_power+1, | 
 |             2*top_power-1, 2*top_power, top_power*top_power, | 
 |         ] | 
 |         test_values.extend(exact_values) | 
 |         for p in range(-4, 8): | 
 |             for x in range(-128, 128): | 
 |                 test_values.append(2**(p+53) + x) | 
 |         for value in test_values: | 
 |             self.check_float_conversion(value) | 
 |             self.check_float_conversion(-value) | 
 |  | 
 |     def test_float_overflow(self): | 
 |         for x in -2.0, -1.0, 0.0, 1.0, 2.0: | 
 |             self.assertEqual(float(int(x)), x) | 
 |  | 
 |         shuge = '12345' * 120 | 
 |         huge = 1 << 30000 | 
 |         mhuge = -huge | 
 |         namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math} | 
 |         for test in ["float(huge)", "float(mhuge)", | 
 |                      "complex(huge)", "complex(mhuge)", | 
 |                      "complex(huge, 1)", "complex(mhuge, 1)", | 
 |                      "complex(1, huge)", "complex(1, mhuge)", | 
 |                      "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.", | 
 |                      "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.", | 
 |                      "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.", | 
 |                      "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.", | 
 |                      "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.", | 
 |                      "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", | 
 |                      "math.sin(huge)", "math.sin(mhuge)", | 
 |                      "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better | 
 |                      # math.floor() of an int returns an int now | 
 |                      ##"math.floor(huge)", "math.floor(mhuge)", | 
 |                      ]: | 
 |  | 
 |             self.assertRaises(OverflowError, eval, test, namespace) | 
 |  | 
 |         # XXX Perhaps float(shuge) can raise OverflowError on some box? | 
 |         # The comparison should not. | 
 |         self.assertNotEqual(float(shuge), int(shuge), | 
 |             "float(shuge) should not equal int(shuge)") | 
 |  | 
 |     def test_logs(self): | 
 |         LOG10E = math.log10(math.e) | 
 |  | 
 |         for exp in list(range(10)) + [100, 1000, 10000]: | 
 |             value = 10 ** exp | 
 |             log10 = math.log10(value) | 
 |             self.assertAlmostEqual(log10, exp) | 
 |  | 
 |             # log10(value) == exp, so log(value) == log10(value)/log10(e) == | 
 |             # exp/LOG10E | 
 |             expected = exp / LOG10E | 
 |             log = math.log(value) | 
 |             self.assertAlmostEqual(log, expected) | 
 |  | 
 |         for bad in -(1 << 10000), -2, 0: | 
 |             self.assertRaises(ValueError, math.log, bad) | 
 |             self.assertRaises(ValueError, math.log10, bad) | 
 |  | 
 |     def test_mixed_compares(self): | 
 |         eq = self.assertEqual | 
 |  | 
 |         # We're mostly concerned with that mixing floats and longs does the | 
 |         # right stuff, even when longs are too large to fit in a float. | 
 |         # The safest way to check the results is to use an entirely different | 
 |         # method, which we do here via a skeletal rational class (which | 
 |         # represents all Python ints, longs and floats exactly). | 
 |         class Rat: | 
 |             def __init__(self, value): | 
 |                 if isinstance(value, int): | 
 |                     self.n = value | 
 |                     self.d = 1 | 
 |                 elif isinstance(value, float): | 
 |                     # Convert to exact rational equivalent. | 
 |                     f, e = math.frexp(abs(value)) | 
 |                     assert f == 0 or 0.5 <= f < 1.0 | 
 |                     # |value| = f * 2**e exactly | 
 |  | 
 |                     # Suck up CHUNK bits at a time; 28 is enough so that we suck | 
 |                     # up all bits in 2 iterations for all known binary double- | 
 |                     # precision formats, and small enough to fit in an int. | 
 |                     CHUNK = 28 | 
 |                     top = 0 | 
 |                     # invariant: |value| = (top + f) * 2**e exactly | 
 |                     while f: | 
 |                         f = math.ldexp(f, CHUNK) | 
 |                         digit = int(f) | 
 |                         assert digit >> CHUNK == 0 | 
 |                         top = (top << CHUNK) | digit | 
 |                         f -= digit | 
 |                         assert 0.0 <= f < 1.0 | 
 |                         e -= CHUNK | 
 |  | 
 |                     # Now |value| = top * 2**e exactly. | 
 |                     if e >= 0: | 
 |                         n = top << e | 
 |                         d = 1 | 
 |                     else: | 
 |                         n = top | 
 |                         d = 1 << -e | 
 |                     if value < 0: | 
 |                         n = -n | 
 |                     self.n = n | 
 |                     self.d = d | 
 |                     assert float(n) / float(d) == value | 
 |                 else: | 
 |                     raise TypeError("can't deal with %r" % value) | 
 |  | 
 |             def _cmp__(self, other): | 
 |                 if not isinstance(other, Rat): | 
 |                     other = Rat(other) | 
 |                 x, y = self.n * other.d, self.d * other.n | 
 |                 return (x > y) - (x < y) | 
 |             def __eq__(self, other): | 
 |                 return self._cmp__(other) == 0 | 
 |             def __ne__(self, other): | 
 |                 return self._cmp__(other) != 0 | 
 |             def __ge__(self, other): | 
 |                 return self._cmp__(other) >= 0 | 
 |             def __gt__(self, other): | 
 |                 return self._cmp__(other) > 0 | 
 |             def __le__(self, other): | 
 |                 return self._cmp__(other) <= 0 | 
 |             def __lt__(self, other): | 
 |                 return self._cmp__(other) < 0 | 
 |  | 
 |         cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200] | 
 |         # 2**48 is an important boundary in the internals.  2**53 is an | 
 |         # important boundary for IEEE double precision. | 
 |         for t in 2.0**48, 2.0**50, 2.0**53: | 
 |             cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0, | 
 |                           int(t-1), int(t), int(t+1)]) | 
 |         cases.extend([0, 1, 2, sys.maxsize, float(sys.maxsize)]) | 
 |         # 1 << 20000 should exceed all double formats.  int(1e200) is to | 
 |         # check that we get equality with 1e200 above. | 
 |         t = int(1e200) | 
 |         cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1]) | 
 |         cases.extend([-x for x in cases]) | 
 |         for x in cases: | 
 |             Rx = Rat(x) | 
 |             for y in cases: | 
 |                 Ry = Rat(y) | 
 |                 Rcmp = (Rx > Ry) - (Rx < Ry) | 
 |                 xycmp = (x > y) - (x < y) | 
 |                 eq(Rcmp, xycmp, Frm("%r %r %d %d", x, y, Rcmp, xycmp)) | 
 |                 eq(x == y, Rcmp == 0, Frm("%r == %r %d", x, y, Rcmp)) | 
 |                 eq(x != y, Rcmp != 0, Frm("%r != %r %d", x, y, Rcmp)) | 
 |                 eq(x < y, Rcmp < 0, Frm("%r < %r %d", x, y, Rcmp)) | 
 |                 eq(x <= y, Rcmp <= 0, Frm("%r <= %r %d", x, y, Rcmp)) | 
 |                 eq(x > y, Rcmp > 0, Frm("%r > %r %d", x, y, Rcmp)) | 
 |                 eq(x >= y, Rcmp >= 0, Frm("%r >= %r %d", x, y, Rcmp)) | 
 |  | 
 |     def test__format__(self): | 
 |         self.assertEqual(format(123456789, 'd'), '123456789') | 
 |         self.assertEqual(format(123456789, 'd'), '123456789') | 
 |  | 
 |         # sign and aligning are interdependent | 
 |         self.assertEqual(format(1, "-"), '1') | 
 |         self.assertEqual(format(-1, "-"), '-1') | 
 |         self.assertEqual(format(1, "-3"), '  1') | 
 |         self.assertEqual(format(-1, "-3"), ' -1') | 
 |         self.assertEqual(format(1, "+3"), ' +1') | 
 |         self.assertEqual(format(-1, "+3"), ' -1') | 
 |         self.assertEqual(format(1, " 3"), '  1') | 
 |         self.assertEqual(format(-1, " 3"), ' -1') | 
 |         self.assertEqual(format(1, " "), ' 1') | 
 |         self.assertEqual(format(-1, " "), '-1') | 
 |  | 
 |         # hex | 
 |         self.assertEqual(format(3, "x"), "3") | 
 |         self.assertEqual(format(3, "X"), "3") | 
 |         self.assertEqual(format(1234, "x"), "4d2") | 
 |         self.assertEqual(format(-1234, "x"), "-4d2") | 
 |         self.assertEqual(format(1234, "8x"), "     4d2") | 
 |         self.assertEqual(format(-1234, "8x"), "    -4d2") | 
 |         self.assertEqual(format(1234, "x"), "4d2") | 
 |         self.assertEqual(format(-1234, "x"), "-4d2") | 
 |         self.assertEqual(format(-3, "x"), "-3") | 
 |         self.assertEqual(format(-3, "X"), "-3") | 
 |         self.assertEqual(format(int('be', 16), "x"), "be") | 
 |         self.assertEqual(format(int('be', 16), "X"), "BE") | 
 |         self.assertEqual(format(-int('be', 16), "x"), "-be") | 
 |         self.assertEqual(format(-int('be', 16), "X"), "-BE") | 
 |  | 
 |         # octal | 
 |         self.assertEqual(format(3, "b"), "11") | 
 |         self.assertEqual(format(-3, "b"), "-11") | 
 |         self.assertEqual(format(1234, "b"), "10011010010") | 
 |         self.assertEqual(format(-1234, "b"), "-10011010010") | 
 |         self.assertEqual(format(1234, "-b"), "10011010010") | 
 |         self.assertEqual(format(-1234, "-b"), "-10011010010") | 
 |         self.assertEqual(format(1234, " b"), " 10011010010") | 
 |         self.assertEqual(format(-1234, " b"), "-10011010010") | 
 |         self.assertEqual(format(1234, "+b"), "+10011010010") | 
 |         self.assertEqual(format(-1234, "+b"), "-10011010010") | 
 |  | 
 |         # make sure these are errors | 
 |         self.assertRaises(ValueError, format, 3, "1.3")  # precision disallowed | 
 |         self.assertRaises(ValueError, format, 3, "+c")   # sign not allowed | 
 |                                                          # with 'c' | 
 |  | 
 |         # ensure that only int and float type specifiers work | 
 |         for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] + | 
 |                             [chr(x) for x in range(ord('A'), ord('Z')+1)]): | 
 |             if not format_spec in 'bcdoxXeEfFgGn%': | 
 |                 self.assertRaises(ValueError, format, 0, format_spec) | 
 |                 self.assertRaises(ValueError, format, 1, format_spec) | 
 |                 self.assertRaises(ValueError, format, -1, format_spec) | 
 |                 self.assertRaises(ValueError, format, 2**100, format_spec) | 
 |                 self.assertRaises(ValueError, format, -(2**100), format_spec) | 
 |  | 
 |         # ensure that float type specifiers work; format converts | 
 |         #  the int to a float | 
 |         for format_spec in 'eEfFgG%': | 
 |             for value in [0, 1, -1, 100, -100, 1234567890, -1234567890]: | 
 |                 self.assertEqual(format(value, format_spec), | 
 |                                  format(float(value), format_spec)) | 
 |  | 
 |     def test_nan_inf(self): | 
 |         self.assertRaises(OverflowError, int, float('inf')) | 
 |         self.assertRaises(OverflowError, int, float('-inf')) | 
 |         self.assertRaises(ValueError, int, float('nan')) | 
 |  | 
 |     def test_true_division(self): | 
 |         huge = 1 << 40000 | 
 |         mhuge = -huge | 
 |         self.assertEqual(huge / huge, 1.0) | 
 |         self.assertEqual(mhuge / mhuge, 1.0) | 
 |         self.assertEqual(huge / mhuge, -1.0) | 
 |         self.assertEqual(mhuge / huge, -1.0) | 
 |         self.assertEqual(1 / huge, 0.0) | 
 |         self.assertEqual(1 / huge, 0.0) | 
 |         self.assertEqual(1 / mhuge, 0.0) | 
 |         self.assertEqual(1 / mhuge, 0.0) | 
 |         self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5) | 
 |         self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5) | 
 |         self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5) | 
 |         self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5) | 
 |         self.assertEqual(huge / (huge << 1), 0.5) | 
 |         self.assertEqual((1000000 * huge) / huge, 1000000) | 
 |  | 
 |         namespace = {'huge': huge, 'mhuge': mhuge} | 
 |  | 
 |         for overflow in ["float(huge)", "float(mhuge)", | 
 |                          "huge / 1", "huge / 2", "huge / -1", "huge / -2", | 
 |                          "mhuge / 100", "mhuge / 200"]: | 
 |             self.assertRaises(OverflowError, eval, overflow, namespace) | 
 |  | 
 |         for underflow in ["1 / huge", "2 / huge", "-1 / huge", "-2 / huge", | 
 |                          "100 / mhuge", "200 / mhuge"]: | 
 |             result = eval(underflow, namespace) | 
 |             self.assertEqual(result, 0.0, | 
 |                              "expected underflow to 0 from %r" % underflow) | 
 |  | 
 |         for zero in ["huge / 0", "mhuge / 0"]: | 
 |             self.assertRaises(ZeroDivisionError, eval, zero, namespace) | 
 |  | 
 |     def check_truediv(self, a, b, skip_small=True): | 
 |         """Verify that the result of a/b is correctly rounded, by | 
 |         comparing it with a pure Python implementation of correctly | 
 |         rounded division.  b should be nonzero.""" | 
 |  | 
 |         # skip check for small a and b: in this case, the current | 
 |         # implementation converts the arguments to float directly and | 
 |         # then applies a float division.  This can give doubly-rounded | 
 |         # results on x87-using machines (particularly 32-bit Linux). | 
 |         if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG: | 
 |             return | 
 |  | 
 |         try: | 
 |             # use repr so that we can distinguish between -0.0 and 0.0 | 
 |             expected = repr(truediv(a, b)) | 
 |         except OverflowError: | 
 |             expected = 'overflow' | 
 |         except ZeroDivisionError: | 
 |             expected = 'zerodivision' | 
 |  | 
 |         try: | 
 |             got = repr(a / b) | 
 |         except OverflowError: | 
 |             got = 'overflow' | 
 |         except ZeroDivisionError: | 
 |             got = 'zerodivision' | 
 |  | 
 |         self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: " | 
 |                          "expected {}, got {}".format(a, b, expected, got)) | 
 |  | 
 |     @support.requires_IEEE_754 | 
 |     def test_correctly_rounded_true_division(self): | 
 |         # more stringent tests than those above, checking that the | 
 |         # result of true division of ints is always correctly rounded. | 
 |         # This test should probably be considered CPython-specific. | 
 |  | 
 |         # Exercise all the code paths not involving Gb-sized ints. | 
 |         # ... divisions involving zero | 
 |         self.check_truediv(123, 0) | 
 |         self.check_truediv(-456, 0) | 
 |         self.check_truediv(0, 3) | 
 |         self.check_truediv(0, -3) | 
 |         self.check_truediv(0, 0) | 
 |         # ... overflow or underflow by large margin | 
 |         self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345) | 
 |         self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP)) | 
 |         # ... a much larger or smaller than b | 
 |         self.check_truediv(12345*2**100, 98765) | 
 |         self.check_truediv(12345*2**30, 98765*7**81) | 
 |         # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP, | 
 |         #                 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG) | 
 |         bases = (0, DBL_MANT_DIG, DBL_MIN_EXP, | 
 |                  DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG) | 
 |         for base in bases: | 
 |             for exp in range(base - 15, base + 15): | 
 |                 self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0)) | 
 |                 self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0)) | 
 |  | 
 |         # overflow corner case | 
 |         for m in [1, 2, 7, 17, 12345, 7**100, | 
 |                   -1, -2, -5, -23, -67891, -41**50]: | 
 |             for n in range(-10, 10): | 
 |                 self.check_truediv(m*DBL_MIN_OVERFLOW + n, m) | 
 |                 self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m) | 
 |  | 
 |         # check detection of inexactness in shifting stage | 
 |         for n in range(250): | 
 |             # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway | 
 |             # between two representable floats, and would usually be | 
 |             # rounded down under round-half-to-even.  The tiniest of | 
 |             # additions to the numerator should cause it to be rounded | 
 |             # up instead. | 
 |             self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n, | 
 |                            2**DBL_MANT_DIG*12345) | 
 |  | 
 |         # 1/2731 is one of the smallest division cases that's subject | 
 |         # to double rounding on IEEE 754 machines working internally with | 
 |         # 64-bit precision.  On such machines, the next check would fail, | 
 |         # were it not explicitly skipped in check_truediv. | 
 |         self.check_truediv(1, 2731) | 
 |  | 
 |         # a particularly bad case for the old algorithm:  gives an | 
 |         # error of close to 3.5 ulps. | 
 |         self.check_truediv(295147931372582273023, 295147932265116303360) | 
 |         for i in range(1000): | 
 |             self.check_truediv(10**(i+1), 10**i) | 
 |             self.check_truediv(10**i, 10**(i+1)) | 
 |  | 
 |         # test round-half-to-even behaviour, normal result | 
 |         for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100, | 
 |                   -1, -2, -5, -23, -67891, -41**50]: | 
 |             for n in range(-10, 10): | 
 |                 self.check_truediv(2**DBL_MANT_DIG*m + n, m) | 
 |  | 
 |         # test round-half-to-even, subnormal result | 
 |         for n in range(-20, 20): | 
 |             self.check_truediv(n, 2**1076) | 
 |  | 
 |         # largeish random divisions: a/b where |a| <= |b| <= | 
 |         # 2*|a|; |ans| is between 0.5 and 1.0, so error should | 
 |         # always be bounded by 2**-54 with equality possible only | 
 |         # if the least significant bit of q=ans*2**53 is zero. | 
 |         for M in [10**10, 10**100, 10**1000]: | 
 |             for i in range(1000): | 
 |                 a = random.randrange(1, M) | 
 |                 b = random.randrange(a, 2*a+1) | 
 |                 self.check_truediv(a, b) | 
 |                 self.check_truediv(-a, b) | 
 |                 self.check_truediv(a, -b) | 
 |                 self.check_truediv(-a, -b) | 
 |  | 
 |         # and some (genuinely) random tests | 
 |         for _ in range(10000): | 
 |             a_bits = random.randrange(1000) | 
 |             b_bits = random.randrange(1, 1000) | 
 |             x = random.randrange(2**a_bits) | 
 |             y = random.randrange(1, 2**b_bits) | 
 |             self.check_truediv(x, y) | 
 |             self.check_truediv(x, -y) | 
 |             self.check_truediv(-x, y) | 
 |             self.check_truediv(-x, -y) | 
 |  | 
 |     def test_small_ints(self): | 
 |         for i in range(-5, 257): | 
 |             self.assertTrue(i is i + 0) | 
 |             self.assertTrue(i is i * 1) | 
 |             self.assertTrue(i is i - 0) | 
 |             self.assertTrue(i is i // 1) | 
 |             self.assertTrue(i is i & -1) | 
 |             self.assertTrue(i is i | 0) | 
 |             self.assertTrue(i is i ^ 0) | 
 |             self.assertTrue(i is ~~i) | 
 |             self.assertTrue(i is i**1) | 
 |             self.assertTrue(i is int(str(i))) | 
 |             self.assertTrue(i is i<<2>>2, str(i)) | 
 |         # corner cases | 
 |         i = 1 << 70 | 
 |         self.assertTrue(i - i is 0) | 
 |         self.assertTrue(0 * i is 0) | 
 |  | 
 |     def test_bit_length(self): | 
 |         tiny = 1e-10 | 
 |         for x in range(-65000, 65000): | 
 |             k = x.bit_length() | 
 |             # Check equivalence with Python version | 
 |             self.assertEqual(k, len(bin(x).lstrip('-0b'))) | 
 |             # Behaviour as specified in the docs | 
 |             if x != 0: | 
 |                 self.assertTrue(2**(k-1) <= abs(x) < 2**k) | 
 |             else: | 
 |                 self.assertEqual(k, 0) | 
 |             # Alternative definition: x.bit_length() == 1 + floor(log_2(x)) | 
 |             if x != 0: | 
 |                 # When x is an exact power of 2, numeric errors can | 
 |                 # cause floor(log(x)/log(2)) to be one too small; for | 
 |                 # small x this can be fixed by adding a small quantity | 
 |                 # to the quotient before taking the floor. | 
 |                 self.assertEqual(k, 1 + math.floor( | 
 |                         math.log(abs(x))/math.log(2) + tiny)) | 
 |  | 
 |         self.assertEqual((0).bit_length(), 0) | 
 |         self.assertEqual((1).bit_length(), 1) | 
 |         self.assertEqual((-1).bit_length(), 1) | 
 |         self.assertEqual((2).bit_length(), 2) | 
 |         self.assertEqual((-2).bit_length(), 2) | 
 |         for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]: | 
 |             a = 2**i | 
 |             self.assertEqual((a-1).bit_length(), i) | 
 |             self.assertEqual((1-a).bit_length(), i) | 
 |             self.assertEqual((a).bit_length(), i+1) | 
 |             self.assertEqual((-a).bit_length(), i+1) | 
 |             self.assertEqual((a+1).bit_length(), i+1) | 
 |             self.assertEqual((-a-1).bit_length(), i+1) | 
 |  | 
 |     def test_round(self): | 
 |         # check round-half-even algorithm. For round to nearest ten; | 
 |         # rounding map is invariant under adding multiples of 20 | 
 |         test_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0, | 
 |                      6:10, 7:10, 8:10, 9:10, 10:10, 11:10, 12:10, 13:10, 14:10, | 
 |                      15:20, 16:20, 17:20, 18:20, 19:20} | 
 |         for offset in range(-520, 520, 20): | 
 |             for k, v in test_dict.items(): | 
 |                 got = round(k+offset, -1) | 
 |                 expected = v+offset | 
 |                 self.assertEqual(got, expected) | 
 |                 self.assertTrue(type(got) is int) | 
 |  | 
 |         # larger second argument | 
 |         self.assertEqual(round(-150, -2), -200) | 
 |         self.assertEqual(round(-149, -2), -100) | 
 |         self.assertEqual(round(-51, -2), -100) | 
 |         self.assertEqual(round(-50, -2), 0) | 
 |         self.assertEqual(round(-49, -2), 0) | 
 |         self.assertEqual(round(-1, -2), 0) | 
 |         self.assertEqual(round(0, -2), 0) | 
 |         self.assertEqual(round(1, -2), 0) | 
 |         self.assertEqual(round(49, -2), 0) | 
 |         self.assertEqual(round(50, -2), 0) | 
 |         self.assertEqual(round(51, -2), 100) | 
 |         self.assertEqual(round(149, -2), 100) | 
 |         self.assertEqual(round(150, -2), 200) | 
 |         self.assertEqual(round(250, -2), 200) | 
 |         self.assertEqual(round(251, -2), 300) | 
 |         self.assertEqual(round(172500, -3), 172000) | 
 |         self.assertEqual(round(173500, -3), 174000) | 
 |         self.assertEqual(round(31415926535, -1), 31415926540) | 
 |         self.assertEqual(round(31415926535, -2), 31415926500) | 
 |         self.assertEqual(round(31415926535, -3), 31415927000) | 
 |         self.assertEqual(round(31415926535, -4), 31415930000) | 
 |         self.assertEqual(round(31415926535, -5), 31415900000) | 
 |         self.assertEqual(round(31415926535, -6), 31416000000) | 
 |         self.assertEqual(round(31415926535, -7), 31420000000) | 
 |         self.assertEqual(round(31415926535, -8), 31400000000) | 
 |         self.assertEqual(round(31415926535, -9), 31000000000) | 
 |         self.assertEqual(round(31415926535, -10), 30000000000) | 
 |         self.assertEqual(round(31415926535, -11), 0) | 
 |         self.assertEqual(round(31415926535, -12), 0) | 
 |         self.assertEqual(round(31415926535, -999), 0) | 
 |  | 
 |         # should get correct results even for huge inputs | 
 |         for k in range(10, 100): | 
 |             got = round(10**k + 324678, -3) | 
 |             expect = 10**k + 325000 | 
 |             self.assertEqual(got, expect) | 
 |             self.assertTrue(type(got) is int) | 
 |  | 
 |         # nonnegative second argument: round(x, n) should just return x | 
 |         for n in range(5): | 
 |             for i in range(100): | 
 |                 x = random.randrange(-10000, 10000) | 
 |                 got = round(x, n) | 
 |                 self.assertEqual(got, x) | 
 |                 self.assertTrue(type(got) is int) | 
 |         for huge_n in 2**31-1, 2**31, 2**63-1, 2**63, 2**100, 10**100: | 
 |             self.assertEqual(round(8979323, huge_n), 8979323) | 
 |  | 
 |         # omitted second argument | 
 |         for i in range(100): | 
 |             x = random.randrange(-10000, 10000) | 
 |             got = round(x) | 
 |             self.assertEqual(got, x) | 
 |             self.assertTrue(type(got) is int) | 
 |  | 
 |         # bad second argument | 
 |         bad_exponents = ('brian', 2.0, 0j, None) | 
 |         for e in bad_exponents: | 
 |             self.assertRaises(TypeError, round, 3, e) | 
 |  | 
 |     def test_to_bytes(self): | 
 |         def check(tests, byteorder, signed=False): | 
 |             for test, expected in tests.items(): | 
 |                 try: | 
 |                     self.assertEqual( | 
 |                         test.to_bytes(len(expected), byteorder, signed=signed), | 
 |                         expected) | 
 |                 except Exception as err: | 
 |                     raise AssertionError( | 
 |                         "failed to convert {0} with byteorder={1} and signed={2}" | 
 |                         .format(test, byteorder, signed)) from err | 
 |  | 
 |         # Convert integers to signed big-endian byte arrays. | 
 |         tests1 = { | 
 |             0: b'\x00', | 
 |             1: b'\x01', | 
 |             -1: b'\xff', | 
 |             -127: b'\x81', | 
 |             -128: b'\x80', | 
 |             -129: b'\xff\x7f', | 
 |             127: b'\x7f', | 
 |             129: b'\x00\x81', | 
 |             -255: b'\xff\x01', | 
 |             -256: b'\xff\x00', | 
 |             255: b'\x00\xff', | 
 |             256: b'\x01\x00', | 
 |             32767: b'\x7f\xff', | 
 |             -32768: b'\xff\x80\x00', | 
 |             65535: b'\x00\xff\xff', | 
 |             -65536: b'\xff\x00\x00', | 
 |             -8388608: b'\x80\x00\x00' | 
 |         } | 
 |         check(tests1, 'big', signed=True) | 
 |  | 
 |         # Convert integers to signed little-endian byte arrays. | 
 |         tests2 = { | 
 |             0: b'\x00', | 
 |             1: b'\x01', | 
 |             -1: b'\xff', | 
 |             -127: b'\x81', | 
 |             -128: b'\x80', | 
 |             -129: b'\x7f\xff', | 
 |             127: b'\x7f', | 
 |             129: b'\x81\x00', | 
 |             -255: b'\x01\xff', | 
 |             -256: b'\x00\xff', | 
 |             255: b'\xff\x00', | 
 |             256: b'\x00\x01', | 
 |             32767: b'\xff\x7f', | 
 |             -32768: b'\x00\x80', | 
 |             65535: b'\xff\xff\x00', | 
 |             -65536: b'\x00\x00\xff', | 
 |             -8388608: b'\x00\x00\x80' | 
 |         } | 
 |         check(tests2, 'little', signed=True) | 
 |  | 
 |         # Convert integers to unsigned big-endian byte arrays. | 
 |         tests3 = { | 
 |             0: b'\x00', | 
 |             1: b'\x01', | 
 |             127: b'\x7f', | 
 |             128: b'\x80', | 
 |             255: b'\xff', | 
 |             256: b'\x01\x00', | 
 |             32767: b'\x7f\xff', | 
 |             32768: b'\x80\x00', | 
 |             65535: b'\xff\xff', | 
 |             65536: b'\x01\x00\x00' | 
 |         } | 
 |         check(tests3, 'big', signed=False) | 
 |  | 
 |         # Convert integers to unsigned little-endian byte arrays. | 
 |         tests4 = { | 
 |             0: b'\x00', | 
 |             1: b'\x01', | 
 |             127: b'\x7f', | 
 |             128: b'\x80', | 
 |             255: b'\xff', | 
 |             256: b'\x00\x01', | 
 |             32767: b'\xff\x7f', | 
 |             32768: b'\x00\x80', | 
 |             65535: b'\xff\xff', | 
 |             65536: b'\x00\x00\x01' | 
 |         } | 
 |         check(tests4, 'little', signed=False) | 
 |  | 
 |         self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=False) | 
 |         self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=True) | 
 |         self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=False) | 
 |         self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=True) | 
 |         self.assertRaises(OverflowError, (-1).to_bytes, 2, 'big', signed=False), | 
 |         self.assertRaises(OverflowError, (-1).to_bytes, 2, 'little', signed=False) | 
 |         self.assertEqual((0).to_bytes(0, 'big'), b'') | 
 |         self.assertEqual((1).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x01') | 
 |         self.assertEqual((0).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x00') | 
 |         self.assertEqual((-1).to_bytes(5, 'big', signed=True), | 
 |                          b'\xff\xff\xff\xff\xff') | 
 |         self.assertRaises(OverflowError, (1).to_bytes, 0, 'big') | 
 |  | 
 |     def test_from_bytes(self): | 
 |         def check(tests, byteorder, signed=False): | 
 |             for test, expected in tests.items(): | 
 |                 try: | 
 |                     self.assertEqual( | 
 |                         int.from_bytes(test, byteorder, signed=signed), | 
 |                         expected) | 
 |                 except Exception as err: | 
 |                     raise AssertionError( | 
 |                         "failed to convert {0} with byteorder={1!r} and signed={2}" | 
 |                         .format(test, byteorder, signed)) from err | 
 |  | 
 |         # Convert signed big-endian byte arrays to integers. | 
 |         tests1 = { | 
 |             b'': 0, | 
 |             b'\x00': 0, | 
 |             b'\x00\x00': 0, | 
 |             b'\x01': 1, | 
 |             b'\x00\x01': 1, | 
 |             b'\xff': -1, | 
 |             b'\xff\xff': -1, | 
 |             b'\x81': -127, | 
 |             b'\x80': -128, | 
 |             b'\xff\x7f': -129, | 
 |             b'\x7f': 127, | 
 |             b'\x00\x81': 129, | 
 |             b'\xff\x01': -255, | 
 |             b'\xff\x00': -256, | 
 |             b'\x00\xff': 255, | 
 |             b'\x01\x00': 256, | 
 |             b'\x7f\xff': 32767, | 
 |             b'\x80\x00': -32768, | 
 |             b'\x00\xff\xff': 65535, | 
 |             b'\xff\x00\x00': -65536, | 
 |             b'\x80\x00\x00': -8388608 | 
 |         } | 
 |         check(tests1, 'big', signed=True) | 
 |  | 
 |         # Convert signed little-endian byte arrays to integers. | 
 |         tests2 = { | 
 |             b'': 0, | 
 |             b'\x00': 0, | 
 |             b'\x00\x00': 0, | 
 |             b'\x01': 1, | 
 |             b'\x00\x01': 256, | 
 |             b'\xff': -1, | 
 |             b'\xff\xff': -1, | 
 |             b'\x81': -127, | 
 |             b'\x80': -128, | 
 |             b'\x7f\xff': -129, | 
 |             b'\x7f': 127, | 
 |             b'\x81\x00': 129, | 
 |             b'\x01\xff': -255, | 
 |             b'\x00\xff': -256, | 
 |             b'\xff\x00': 255, | 
 |             b'\x00\x01': 256, | 
 |             b'\xff\x7f': 32767, | 
 |             b'\x00\x80': -32768, | 
 |             b'\xff\xff\x00': 65535, | 
 |             b'\x00\x00\xff': -65536, | 
 |             b'\x00\x00\x80': -8388608 | 
 |         } | 
 |         check(tests2, 'little', signed=True) | 
 |  | 
 |         # Convert unsigned big-endian byte arrays to integers. | 
 |         tests3 = { | 
 |             b'': 0, | 
 |             b'\x00': 0, | 
 |             b'\x01': 1, | 
 |             b'\x7f': 127, | 
 |             b'\x80': 128, | 
 |             b'\xff': 255, | 
 |             b'\x01\x00': 256, | 
 |             b'\x7f\xff': 32767, | 
 |             b'\x80\x00': 32768, | 
 |             b'\xff\xff': 65535, | 
 |             b'\x01\x00\x00': 65536, | 
 |         } | 
 |         check(tests3, 'big', signed=False) | 
 |  | 
 |         # Convert integers to unsigned little-endian byte arrays. | 
 |         tests4 = { | 
 |             b'': 0, | 
 |             b'\x00': 0, | 
 |             b'\x01': 1, | 
 |             b'\x7f': 127, | 
 |             b'\x80': 128, | 
 |             b'\xff': 255, | 
 |             b'\x00\x01': 256, | 
 |             b'\xff\x7f': 32767, | 
 |             b'\x00\x80': 32768, | 
 |             b'\xff\xff': 65535, | 
 |             b'\x00\x00\x01': 65536, | 
 |         } | 
 |         check(tests4, 'little', signed=False) | 
 |  | 
 |         class myint(int): | 
 |             pass | 
 |  | 
 |         self.assertTrue(type(myint.from_bytes(b'\x00', 'big')) is myint) | 
 |         self.assertEqual(myint.from_bytes(b'\x01', 'big'), 1) | 
 |         self.assertTrue( | 
 |             type(myint.from_bytes(b'\x00', 'big', signed=False)) is myint) | 
 |         self.assertEqual(myint.from_bytes(b'\x01', 'big', signed=False), 1) | 
 |         self.assertTrue(type(myint.from_bytes(b'\x00', 'little')) is myint) | 
 |         self.assertEqual(myint.from_bytes(b'\x01', 'little'), 1) | 
 |         self.assertTrue(type(myint.from_bytes( | 
 |             b'\x00', 'little', signed=False)) is myint) | 
 |         self.assertEqual(myint.from_bytes(b'\x01', 'little', signed=False), 1) | 
 |         self.assertEqual( | 
 |             int.from_bytes([255, 0, 0], 'big', signed=True), -65536) | 
 |         self.assertEqual( | 
 |             int.from_bytes((255, 0, 0), 'big', signed=True), -65536) | 
 |         self.assertEqual(int.from_bytes( | 
 |             bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536) | 
 |         self.assertEqual(int.from_bytes( | 
 |             bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536) | 
 |         self.assertEqual(int.from_bytes( | 
 |             array.array('B', b'\xff\x00\x00'), 'big', signed=True), -65536) | 
 |         self.assertEqual(int.from_bytes( | 
 |             memoryview(b'\xff\x00\x00'), 'big', signed=True), -65536) | 
 |         self.assertRaises(ValueError, int.from_bytes, [256], 'big') | 
 |         self.assertRaises(ValueError, int.from_bytes, [0], 'big\x00') | 
 |         self.assertRaises(ValueError, int.from_bytes, [0], 'little\x00') | 
 |         self.assertRaises(TypeError, int.from_bytes, "", 'big') | 
 |         self.assertRaises(TypeError, int.from_bytes, "\x00", 'big') | 
 |         self.assertRaises(TypeError, int.from_bytes, 0, 'big') | 
 |         self.assertRaises(TypeError, int.from_bytes, 0, 'big', True) | 
 |         self.assertRaises(TypeError, myint.from_bytes, "", 'big') | 
 |         self.assertRaises(TypeError, myint.from_bytes, "\x00", 'big') | 
 |         self.assertRaises(TypeError, myint.from_bytes, 0, 'big') | 
 |         self.assertRaises(TypeError, int.from_bytes, 0, 'big', True) | 
 |  | 
 |     def test_access_to_nonexistent_digit_0(self): | 
 |         # http://bugs.python.org/issue14630: A bug in _PyLong_Copy meant that | 
 |         # ob_digit[0] was being incorrectly accessed for instances of a | 
 |         # subclass of int, with value 0. | 
 |         class Integer(int): | 
 |             def __new__(cls, value=0): | 
 |                 self = int.__new__(cls, value) | 
 |                 self.foo = 'foo' | 
 |                 return self | 
 |  | 
 |         integers = [Integer(0) for i in range(1000)] | 
 |         for n in map(int, integers): | 
 |             self.assertEqual(n, 0) | 
 |  | 
 |  | 
 | def test_main(): | 
 |     support.run_unittest(LongTest) | 
 |  | 
 | if __name__ == "__main__": | 
 |     test_main() |