| /*  C implementation for the date/time type documented at | 
 |  *  http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage | 
 |  */ | 
 |  | 
 | #include "Python.h" | 
 | #include "modsupport.h" | 
 | #include "structmember.h" | 
 |  | 
 | #include <time.h> | 
 |  | 
 | #include "timefuncs.h" | 
 |  | 
 | /* Differentiate between building the core module and building extension | 
 |  * modules. | 
 |  */ | 
 | #define Py_BUILD_CORE | 
 | #include "datetime.h" | 
 | #undef Py_BUILD_CORE | 
 |  | 
 | /* We require that C int be at least 32 bits, and use int virtually | 
 |  * everywhere.  In just a few cases we use a temp long, where a Python | 
 |  * API returns a C long.  In such cases, we have to ensure that the | 
 |  * final result fits in a C int (this can be an issue on 64-bit boxes). | 
 |  */ | 
 | #if SIZEOF_INT < 4 | 
 | #	error "datetime.c requires that C int have at least 32 bits" | 
 | #endif | 
 |  | 
 | #define MINYEAR 1 | 
 | #define MAXYEAR 9999 | 
 |  | 
 | /* Nine decimal digits is easy to communicate, and leaves enough room | 
 |  * so that two delta days can be added w/o fear of overflowing a signed | 
 |  * 32-bit int, and with plenty of room left over to absorb any possible | 
 |  * carries from adding seconds. | 
 |  */ | 
 | #define MAX_DELTA_DAYS 999999999 | 
 |  | 
 | /* Rename the long macros in datetime.h to more reasonable short names. */ | 
 | #define GET_YEAR		PyDateTime_GET_YEAR | 
 | #define GET_MONTH		PyDateTime_GET_MONTH | 
 | #define GET_DAY			PyDateTime_GET_DAY | 
 | #define DATE_GET_HOUR		PyDateTime_DATE_GET_HOUR | 
 | #define DATE_GET_MINUTE		PyDateTime_DATE_GET_MINUTE | 
 | #define DATE_GET_SECOND		PyDateTime_DATE_GET_SECOND | 
 | #define DATE_GET_MICROSECOND	PyDateTime_DATE_GET_MICROSECOND | 
 |  | 
 | /* Date accessors for date and datetime. */ | 
 | #define SET_YEAR(o, v)		(((o)->data[0] = ((v) & 0xff00) >> 8), \ | 
 |                                  ((o)->data[1] = ((v) & 0x00ff))) | 
 | #define SET_MONTH(o, v)		(PyDateTime_GET_MONTH(o) = (v)) | 
 | #define SET_DAY(o, v)		(PyDateTime_GET_DAY(o) = (v)) | 
 |  | 
 | /* Date/Time accessors for datetime. */ | 
 | #define DATE_SET_HOUR(o, v)	(PyDateTime_DATE_GET_HOUR(o) = (v)) | 
 | #define DATE_SET_MINUTE(o, v)	(PyDateTime_DATE_GET_MINUTE(o) = (v)) | 
 | #define DATE_SET_SECOND(o, v)	(PyDateTime_DATE_GET_SECOND(o) = (v)) | 
 | #define DATE_SET_MICROSECOND(o, v)	\ | 
 | 	(((o)->data[7] = ((v) & 0xff0000) >> 16), \ | 
 |          ((o)->data[8] = ((v) & 0x00ff00) >> 8), \ | 
 |          ((o)->data[9] = ((v) & 0x0000ff))) | 
 |  | 
 | /* Time accessors for time. */ | 
 | #define TIME_GET_HOUR		PyDateTime_TIME_GET_HOUR | 
 | #define TIME_GET_MINUTE		PyDateTime_TIME_GET_MINUTE | 
 | #define TIME_GET_SECOND		PyDateTime_TIME_GET_SECOND | 
 | #define TIME_GET_MICROSECOND	PyDateTime_TIME_GET_MICROSECOND | 
 | #define TIME_SET_HOUR(o, v)	(PyDateTime_TIME_GET_HOUR(o) = (v)) | 
 | #define TIME_SET_MINUTE(o, v)	(PyDateTime_TIME_GET_MINUTE(o) = (v)) | 
 | #define TIME_SET_SECOND(o, v)	(PyDateTime_TIME_GET_SECOND(o) = (v)) | 
 | #define TIME_SET_MICROSECOND(o, v)	\ | 
 | 	(((o)->data[3] = ((v) & 0xff0000) >> 16), \ | 
 |          ((o)->data[4] = ((v) & 0x00ff00) >> 8), \ | 
 |          ((o)->data[5] = ((v) & 0x0000ff))) | 
 |  | 
 | /* Delta accessors for timedelta. */ | 
 | #define GET_TD_DAYS(o)		(((PyDateTime_Delta *)(o))->days) | 
 | #define GET_TD_SECONDS(o)	(((PyDateTime_Delta *)(o))->seconds) | 
 | #define GET_TD_MICROSECONDS(o)	(((PyDateTime_Delta *)(o))->microseconds) | 
 |  | 
 | #define SET_TD_DAYS(o, v)	((o)->days = (v)) | 
 | #define SET_TD_SECONDS(o, v)	((o)->seconds = (v)) | 
 | #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v)) | 
 |  | 
 | /* p is a pointer to a time or a datetime object; HASTZINFO(p) returns | 
 |  * p->hastzinfo. | 
 |  */ | 
 | #define HASTZINFO(p)		(((_PyDateTime_BaseTZInfo *)(p))->hastzinfo) | 
 |  | 
 | /* M is a char or int claiming to be a valid month.  The macro is equivalent | 
 |  * to the two-sided Python test | 
 |  *	1 <= M <= 12 | 
 |  */ | 
 | #define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12) | 
 |  | 
 | /* Forward declarations. */ | 
 | static PyTypeObject PyDateTime_DateType; | 
 | static PyTypeObject PyDateTime_DateTimeType; | 
 | static PyTypeObject PyDateTime_DeltaType; | 
 | static PyTypeObject PyDateTime_TimeType; | 
 | static PyTypeObject PyDateTime_TZInfoType; | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Math utilities. | 
 |  */ | 
 |  | 
 | /* k = i+j overflows iff k differs in sign from both inputs, | 
 |  * iff k^i has sign bit set and k^j has sign bit set, | 
 |  * iff (k^i)&(k^j) has sign bit set. | 
 |  */ | 
 | #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \ | 
 | 	((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0) | 
 |  | 
 | /* Compute Python divmod(x, y), returning the quotient and storing the | 
 |  * remainder into *r.  The quotient is the floor of x/y, and that's | 
 |  * the real point of this.  C will probably truncate instead (C99 | 
 |  * requires truncation; C89 left it implementation-defined). | 
 |  * Simplification:  we *require* that y > 0 here.  That's appropriate | 
 |  * for all the uses made of it.  This simplifies the code and makes | 
 |  * the overflow case impossible (divmod(LONG_MIN, -1) is the only | 
 |  * overflow case). | 
 |  */ | 
 | static int | 
 | divmod(int x, int y, int *r) | 
 | { | 
 | 	int quo; | 
 |  | 
 | 	assert(y > 0); | 
 | 	quo = x / y; | 
 | 	*r = x - quo * y; | 
 | 	if (*r < 0) { | 
 | 		--quo; | 
 | 		*r += y; | 
 | 	} | 
 | 	assert(0 <= *r && *r < y); | 
 | 	return quo; | 
 | } | 
 |  | 
 | /* Round a double to the nearest long.  |x| must be small enough to fit | 
 |  * in a C long; this is not checked. | 
 |  */ | 
 | static long | 
 | round_to_long(double x) | 
 | { | 
 | 	if (x >= 0.0) | 
 | 		x = floor(x + 0.5); | 
 | 	else | 
 | 		x = ceil(x - 0.5); | 
 | 	return (long)x; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * General calendrical helper functions | 
 |  */ | 
 |  | 
 | /* For each month ordinal in 1..12, the number of days in that month, | 
 |  * and the number of days before that month in the same year.  These | 
 |  * are correct for non-leap years only. | 
 |  */ | 
 | static int _days_in_month[] = { | 
 | 	0, /* unused; this vector uses 1-based indexing */ | 
 | 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | 
 | }; | 
 |  | 
 | static int _days_before_month[] = { | 
 | 	0, /* unused; this vector uses 1-based indexing */ | 
 | 	0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 | 
 | }; | 
 |  | 
 | /* year -> 1 if leap year, else 0. */ | 
 | static int | 
 | is_leap(int year) | 
 | { | 
 | 	/* Cast year to unsigned.  The result is the same either way, but | 
 | 	 * C can generate faster code for unsigned mod than for signed | 
 | 	 * mod (especially for % 4 -- a good compiler should just grab | 
 | 	 * the last 2 bits when the LHS is unsigned). | 
 | 	 */ | 
 | 	const unsigned int ayear = (unsigned int)year; | 
 | 	return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0); | 
 | } | 
 |  | 
 | /* year, month -> number of days in that month in that year */ | 
 | static int | 
 | days_in_month(int year, int month) | 
 | { | 
 | 	assert(month >= 1); | 
 | 	assert(month <= 12); | 
 | 	if (month == 2 && is_leap(year)) | 
 | 		return 29; | 
 | 	else | 
 | 		return _days_in_month[month]; | 
 | } | 
 |  | 
 | /* year, month -> number of days in year preceeding first day of month */ | 
 | static int | 
 | days_before_month(int year, int month) | 
 | { | 
 | 	int days; | 
 |  | 
 | 	assert(month >= 1); | 
 | 	assert(month <= 12); | 
 | 	days = _days_before_month[month]; | 
 | 	if (month > 2 && is_leap(year)) | 
 | 		++days; | 
 | 	return days; | 
 | } | 
 |  | 
 | /* year -> number of days before January 1st of year.  Remember that we | 
 |  * start with year 1, so days_before_year(1) == 0. | 
 |  */ | 
 | static int | 
 | days_before_year(int year) | 
 | { | 
 | 	int y = year - 1; | 
 | 	/* This is incorrect if year <= 0; we really want the floor | 
 | 	 * here.  But so long as MINYEAR is 1, the smallest year this | 
 | 	 * can see is 0 (this can happen in some normalization endcases), | 
 | 	 * so we'll just special-case that. | 
 | 	 */ | 
 | 	assert (year >= 0); | 
 | 	if (y >= 0) | 
 | 		return y*365 + y/4 - y/100 + y/400; | 
 | 	else { | 
 | 		assert(y == -1); | 
 | 		return -366; | 
 | 	} | 
 | } | 
 |  | 
 | /* Number of days in 4, 100, and 400 year cycles.  That these have | 
 |  * the correct values is asserted in the module init function. | 
 |  */ | 
 | #define DI4Y	1461	/* days_before_year(5); days in 4 years */ | 
 | #define DI100Y	36524	/* days_before_year(101); days in 100 years */ | 
 | #define DI400Y	146097	/* days_before_year(401); days in 400 years  */ | 
 |  | 
 | /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */ | 
 | static void | 
 | ord_to_ymd(int ordinal, int *year, int *month, int *day) | 
 | { | 
 | 	int n, n1, n4, n100, n400, leapyear, preceding; | 
 |  | 
 | 	/* ordinal is a 1-based index, starting at 1-Jan-1.  The pattern of | 
 | 	 * leap years repeats exactly every 400 years.  The basic strategy is | 
 | 	 * to find the closest 400-year boundary at or before ordinal, then | 
 | 	 * work with the offset from that boundary to ordinal.  Life is much | 
 | 	 * clearer if we subtract 1 from ordinal first -- then the values | 
 | 	 * of ordinal at 400-year boundaries are exactly those divisible | 
 | 	 * by DI400Y: | 
 | 	 * | 
 | 	 *    D  M   Y            n              n-1 | 
 | 	 *    -- --- ----        ----------     ---------------- | 
 | 	 *    31 Dec -400        -DI400Y       -DI400Y -1 | 
 | 	 *     1 Jan -399         -DI400Y +1   -DI400Y      400-year boundary | 
 | 	 *    ... | 
 | 	 *    30 Dec  000        -1             -2 | 
 | 	 *    31 Dec  000         0             -1 | 
 | 	 *     1 Jan  001         1              0          400-year boundary | 
 | 	 *     2 Jan  001         2              1 | 
 | 	 *     3 Jan  001         3              2 | 
 | 	 *    ... | 
 | 	 *    31 Dec  400         DI400Y        DI400Y -1 | 
 | 	 *     1 Jan  401         DI400Y +1     DI400Y      400-year boundary | 
 | 	 */ | 
 | 	assert(ordinal >= 1); | 
 | 	--ordinal; | 
 | 	n400 = ordinal / DI400Y; | 
 | 	n = ordinal % DI400Y; | 
 | 	*year = n400 * 400 + 1; | 
 |  | 
 | 	/* Now n is the (non-negative) offset, in days, from January 1 of | 
 | 	 * year, to the desired date.  Now compute how many 100-year cycles | 
 | 	 * precede n. | 
 | 	 * Note that it's possible for n100 to equal 4!  In that case 4 full | 
 | 	 * 100-year cycles precede the desired day, which implies the | 
 | 	 * desired day is December 31 at the end of a 400-year cycle. | 
 | 	 */ | 
 | 	n100 = n / DI100Y; | 
 | 	n = n % DI100Y; | 
 |  | 
 | 	/* Now compute how many 4-year cycles precede it. */ | 
 | 	n4 = n / DI4Y; | 
 | 	n = n % DI4Y; | 
 |  | 
 | 	/* And now how many single years.  Again n1 can be 4, and again | 
 | 	 * meaning that the desired day is December 31 at the end of the | 
 | 	 * 4-year cycle. | 
 | 	 */ | 
 | 	n1 = n / 365; | 
 | 	n = n % 365; | 
 |  | 
 | 	*year += n100 * 100 + n4 * 4 + n1; | 
 | 	if (n1 == 4 || n100 == 4) { | 
 | 		assert(n == 0); | 
 | 		*year -= 1; | 
 | 		*month = 12; | 
 | 		*day = 31; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Now the year is correct, and n is the offset from January 1.  We | 
 | 	 * find the month via an estimate that's either exact or one too | 
 | 	 * large. | 
 | 	 */ | 
 | 	leapyear = n1 == 3 && (n4 != 24 || n100 == 3); | 
 | 	assert(leapyear == is_leap(*year)); | 
 | 	*month = (n + 50) >> 5; | 
 | 	preceding = (_days_before_month[*month] + (*month > 2 && leapyear)); | 
 | 	if (preceding > n) { | 
 | 		/* estimate is too large */ | 
 | 		*month -= 1; | 
 | 		preceding -= days_in_month(*year, *month); | 
 | 	} | 
 | 	n -= preceding; | 
 | 	assert(0 <= n); | 
 | 	assert(n < days_in_month(*year, *month)); | 
 |  | 
 | 	*day = n + 1; | 
 | } | 
 |  | 
 | /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */ | 
 | static int | 
 | ymd_to_ord(int year, int month, int day) | 
 | { | 
 | 	return days_before_year(year) + days_before_month(year, month) + day; | 
 | } | 
 |  | 
 | /* Day of week, where Monday==0, ..., Sunday==6.  1/1/1 was a Monday. */ | 
 | static int | 
 | weekday(int year, int month, int day) | 
 | { | 
 | 	return (ymd_to_ord(year, month, day) + 6) % 7; | 
 | } | 
 |  | 
 | /* Ordinal of the Monday starting week 1 of the ISO year.  Week 1 is the | 
 |  * first calendar week containing a Thursday. | 
 |  */ | 
 | static int | 
 | iso_week1_monday(int year) | 
 | { | 
 | 	int first_day = ymd_to_ord(year, 1, 1);	/* ord of 1/1 */ | 
 | 	/* 0 if 1/1 is a Monday, 1 if a Tue, etc. */ | 
 | 	int first_weekday = (first_day + 6) % 7; | 
 | 	/* ordinal of closest Monday at or before 1/1 */ | 
 | 	int week1_monday  = first_day - first_weekday; | 
 |  | 
 | 	if (first_weekday > 3)	/* if 1/1 was Fri, Sat, Sun */ | 
 | 		week1_monday += 7; | 
 | 	return week1_monday; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Range checkers. | 
 |  */ | 
 |  | 
 | /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS.  If so, return 0. | 
 |  * If not, raise OverflowError and return -1. | 
 |  */ | 
 | static int | 
 | check_delta_day_range(int days) | 
 | { | 
 | 	if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS) | 
 | 		return 0; | 
 | 	PyErr_Format(PyExc_OverflowError, | 
 | 		     "days=%d; must have magnitude <= %d", | 
 | 		     days, MAX_DELTA_DAYS); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Check that date arguments are in range.  Return 0 if they are.  If they | 
 |  * aren't, raise ValueError and return -1. | 
 |  */ | 
 | static int | 
 | check_date_args(int year, int month, int day) | 
 | { | 
 |  | 
 | 	if (year < MINYEAR || year > MAXYEAR) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"year is out of range"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (month < 1 || month > 12) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"month must be in 1..12"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (day < 1 || day > days_in_month(year, month)) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"day is out of range for month"); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Check that time arguments are in range.  Return 0 if they are.  If they | 
 |  * aren't, raise ValueError and return -1. | 
 |  */ | 
 | static int | 
 | check_time_args(int h, int m, int s, int us) | 
 | { | 
 | 	if (h < 0 || h > 23) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"hour must be in 0..23"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (m < 0 || m > 59) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"minute must be in 0..59"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (s < 0 || s > 59) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"second must be in 0..59"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (us < 0 || us > 999999) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"microsecond must be in 0..999999"); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Normalization utilities. | 
 |  */ | 
 |  | 
 | /* One step of a mixed-radix conversion.  A "hi" unit is equivalent to | 
 |  * factor "lo" units.  factor must be > 0.  If *lo is less than 0, or | 
 |  * at least factor, enough of *lo is converted into "hi" units so that | 
 |  * 0 <= *lo < factor.  The input values must be such that int overflow | 
 |  * is impossible. | 
 |  */ | 
 | static void | 
 | normalize_pair(int *hi, int *lo, int factor) | 
 | { | 
 | 	assert(factor > 0); | 
 | 	assert(lo != hi); | 
 | 	if (*lo < 0 || *lo >= factor) { | 
 | 		const int num_hi = divmod(*lo, factor, lo); | 
 | 		const int new_hi = *hi + num_hi; | 
 | 		assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi)); | 
 | 		*hi = new_hi; | 
 | 	} | 
 | 	assert(0 <= *lo && *lo < factor); | 
 | } | 
 |  | 
 | /* Fiddle days (d), seconds (s), and microseconds (us) so that | 
 |  * 	0 <= *s < 24*3600 | 
 |  * 	0 <= *us < 1000000 | 
 |  * The input values must be such that the internals don't overflow. | 
 |  * The way this routine is used, we don't get close. | 
 |  */ | 
 | static void | 
 | normalize_d_s_us(int *d, int *s, int *us) | 
 | { | 
 | 	if (*us < 0 || *us >= 1000000) { | 
 | 		normalize_pair(s, us, 1000000); | 
 | 		/* |s| can't be bigger than about | 
 | 		 * |original s| + |original us|/1000000 now. | 
 | 		 */ | 
 |  | 
 | 	} | 
 | 	if (*s < 0 || *s >= 24*3600) { | 
 | 		normalize_pair(d, s, 24*3600); | 
 | 		/* |d| can't be bigger than about | 
 | 		 * |original d| + | 
 | 		 * (|original s| + |original us|/1000000) / (24*3600) now. | 
 | 		 */ | 
 | 	} | 
 | 	assert(0 <= *s && *s < 24*3600); | 
 | 	assert(0 <= *us && *us < 1000000); | 
 | } | 
 |  | 
 | /* Fiddle years (y), months (m), and days (d) so that | 
 |  * 	1 <= *m <= 12 | 
 |  * 	1 <= *d <= days_in_month(*y, *m) | 
 |  * The input values must be such that the internals don't overflow. | 
 |  * The way this routine is used, we don't get close. | 
 |  */ | 
 | static void | 
 | normalize_y_m_d(int *y, int *m, int *d) | 
 | { | 
 | 	int dim;	/* # of days in month */ | 
 |  | 
 | 	/* This gets muddy:  the proper range for day can't be determined | 
 | 	 * without knowing the correct month and year, but if day is, e.g., | 
 | 	 * plus or minus a million, the current month and year values make | 
 | 	 * no sense (and may also be out of bounds themselves). | 
 | 	 * Saying 12 months == 1 year should be non-controversial. | 
 | 	 */ | 
 | 	if (*m < 1 || *m > 12) { | 
 | 		--*m; | 
 | 		normalize_pair(y, m, 12); | 
 | 		++*m; | 
 | 		/* |y| can't be bigger than about | 
 | 		 * |original y| + |original m|/12 now. | 
 | 		 */ | 
 | 	} | 
 | 	assert(1 <= *m && *m <= 12); | 
 |  | 
 | 	/* Now only day can be out of bounds (year may also be out of bounds | 
 | 	 * for a datetime object, but we don't care about that here). | 
 | 	 * If day is out of bounds, what to do is arguable, but at least the | 
 | 	 * method here is principled and explainable. | 
 | 	 */ | 
 | 	dim = days_in_month(*y, *m); | 
 | 	if (*d < 1 || *d > dim) { | 
 | 		/* Move day-1 days from the first of the month.  First try to | 
 | 		 * get off cheap if we're only one day out of range | 
 | 		 * (adjustments for timezone alone can't be worse than that). | 
 | 		 */ | 
 | 		if (*d == 0) { | 
 | 			--*m; | 
 | 			if (*m > 0) | 
 | 				*d = days_in_month(*y, *m); | 
 | 			else { | 
 | 				--*y; | 
 | 				*m = 12; | 
 | 				*d = 31; | 
 | 			} | 
 | 		} | 
 | 		else if (*d == dim + 1) { | 
 | 			/* move forward a day */ | 
 | 			++*m; | 
 | 			*d = 1; | 
 | 			if (*m > 12) { | 
 | 				*m = 1; | 
 | 				++*y; | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			int ordinal = ymd_to_ord(*y, *m, 1) + | 
 | 						  *d - 1; | 
 | 			ord_to_ymd(ordinal, y, m, d); | 
 | 		} | 
 | 	} | 
 | 	assert(*m > 0); | 
 | 	assert(*d > 0); | 
 | } | 
 |  | 
 | /* Fiddle out-of-bounds months and days so that the result makes some kind | 
 |  * of sense.  The parameters are both inputs and outputs.  Returns < 0 on | 
 |  * failure, where failure means the adjusted year is out of bounds. | 
 |  */ | 
 | static int | 
 | normalize_date(int *year, int *month, int *day) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	normalize_y_m_d(year, month, day); | 
 | 	if (MINYEAR <= *year && *year <= MAXYEAR) | 
 | 		result = 0; | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"date value out of range"); | 
 | 		result = -1; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Force all the datetime fields into range.  The parameters are both | 
 |  * inputs and outputs.  Returns < 0 on error. | 
 |  */ | 
 | static int | 
 | normalize_datetime(int *year, int *month, int *day, | 
 |                    int *hour, int *minute, int *second, | 
 |                    int *microsecond) | 
 | { | 
 | 	normalize_pair(second, microsecond, 1000000); | 
 | 	normalize_pair(minute, second, 60); | 
 | 	normalize_pair(hour, minute, 60); | 
 | 	normalize_pair(day, hour, 24); | 
 | 	return normalize_date(year, month, day); | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Basic object allocation:  tp_alloc implementations.  These allocate | 
 |  * Python objects of the right size and type, and do the Python object- | 
 |  * initialization bit.  If there's not enough memory, they return NULL after | 
 |  * setting MemoryError.  All data members remain uninitialized trash. | 
 |  * | 
 |  * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo | 
 |  * member is needed.  This is ugly, imprecise, and possibly insecure. | 
 |  * tp_basicsize for the time and datetime types is set to the size of the | 
 |  * struct that has room for the tzinfo member, so subclasses in Python will | 
 |  * allocate enough space for a tzinfo member whether or not one is actually | 
 |  * needed.  That's the "ugly and imprecise" parts.  The "possibly insecure" | 
 |  * part is that PyType_GenericAlloc() (which subclasses in Python end up | 
 |  * using) just happens today to effectively ignore the nitems argument | 
 |  * when tp_itemsize is 0, which it is for these type objects.  If that | 
 |  * changes, perhaps the callers of tp_alloc slots in this file should | 
 |  * be changed to force a 0 nitems argument unless the type being allocated | 
 |  * is a base type implemented in this file (so that tp_alloc is time_alloc | 
 |  * or datetime_alloc below, which know about the nitems abuse). | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | time_alloc(PyTypeObject *type, Py_ssize_t aware) | 
 | { | 
 | 	PyObject *self; | 
 |  | 
 | 	self = (PyObject *) | 
 | 		PyObject_MALLOC(aware ? | 
 | 				sizeof(PyDateTime_Time) : | 
 | 				sizeof(_PyDateTime_BaseTime)); | 
 | 	if (self == NULL) | 
 | 		return (PyObject *)PyErr_NoMemory(); | 
 | 	PyObject_INIT(self, type); | 
 | 	return self; | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_alloc(PyTypeObject *type, Py_ssize_t aware) | 
 | { | 
 | 	PyObject *self; | 
 |  | 
 | 	self = (PyObject *) | 
 | 		PyObject_MALLOC(aware ? | 
 | 				sizeof(PyDateTime_DateTime) : | 
 | 				sizeof(_PyDateTime_BaseDateTime)); | 
 | 	if (self == NULL) | 
 | 		return (PyObject *)PyErr_NoMemory(); | 
 | 	PyObject_INIT(self, type); | 
 | 	return self; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Helpers for setting object fields.  These work on pointers to the | 
 |  * appropriate base class. | 
 |  */ | 
 |  | 
 | /* For date and datetime. */ | 
 | static void | 
 | set_date_fields(PyDateTime_Date *self, int y, int m, int d) | 
 | { | 
 | 	self->hashcode = -1; | 
 | 	SET_YEAR(self, y); | 
 | 	SET_MONTH(self, m); | 
 | 	SET_DAY(self, d); | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Create various objects, mostly without range checking. | 
 |  */ | 
 |  | 
 | /* Create a date instance with no range checking. */ | 
 | static PyObject * | 
 | new_date_ex(int year, int month, int day, PyTypeObject *type) | 
 | { | 
 | 	PyDateTime_Date *self; | 
 |  | 
 | 	self = (PyDateTime_Date *) (type->tp_alloc(type, 0)); | 
 | 	if (self != NULL) | 
 | 		set_date_fields(self, year, month, day); | 
 | 	return (PyObject *) self; | 
 | } | 
 |  | 
 | #define new_date(year, month, day) \ | 
 | 	new_date_ex(year, month, day, &PyDateTime_DateType) | 
 |  | 
 | /* Create a datetime instance with no range checking. */ | 
 | static PyObject * | 
 | new_datetime_ex(int year, int month, int day, int hour, int minute, | 
 | 	     int second, int usecond, PyObject *tzinfo, PyTypeObject *type) | 
 | { | 
 | 	PyDateTime_DateTime *self; | 
 | 	char aware = tzinfo != Py_None; | 
 |  | 
 | 	self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware)); | 
 | 	if (self != NULL) { | 
 | 		self->hastzinfo = aware; | 
 | 		set_date_fields((PyDateTime_Date *)self, year, month, day); | 
 | 		DATE_SET_HOUR(self, hour); | 
 | 		DATE_SET_MINUTE(self, minute); | 
 | 		DATE_SET_SECOND(self, second); | 
 | 		DATE_SET_MICROSECOND(self, usecond); | 
 | 		if (aware) { | 
 | 			Py_INCREF(tzinfo); | 
 | 			self->tzinfo = tzinfo; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)self; | 
 | } | 
 |  | 
 | #define new_datetime(y, m, d, hh, mm, ss, us, tzinfo)		\ | 
 | 	new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo,	\ | 
 | 			&PyDateTime_DateTimeType) | 
 |  | 
 | /* Create a time instance with no range checking. */ | 
 | static PyObject * | 
 | new_time_ex(int hour, int minute, int second, int usecond, | 
 | 	    PyObject *tzinfo, PyTypeObject *type) | 
 | { | 
 | 	PyDateTime_Time *self; | 
 | 	char aware = tzinfo != Py_None; | 
 |  | 
 | 	self = (PyDateTime_Time *) (type->tp_alloc(type, aware)); | 
 | 	if (self != NULL) { | 
 | 		self->hastzinfo = aware; | 
 | 		self->hashcode = -1; | 
 | 		TIME_SET_HOUR(self, hour); | 
 | 		TIME_SET_MINUTE(self, minute); | 
 | 		TIME_SET_SECOND(self, second); | 
 | 		TIME_SET_MICROSECOND(self, usecond); | 
 | 		if (aware) { | 
 | 			Py_INCREF(tzinfo); | 
 | 			self->tzinfo = tzinfo; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)self; | 
 | } | 
 |  | 
 | #define new_time(hh, mm, ss, us, tzinfo)		\ | 
 | 	new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType) | 
 |  | 
 | /* Create a timedelta instance.  Normalize the members iff normalize is | 
 |  * true.  Passing false is a speed optimization, if you know for sure | 
 |  * that seconds and microseconds are already in their proper ranges.  In any | 
 |  * case, raises OverflowError and returns NULL if the normalized days is out | 
 |  * of range). | 
 |  */ | 
 | static PyObject * | 
 | new_delta_ex(int days, int seconds, int microseconds, int normalize, | 
 | 	     PyTypeObject *type) | 
 | { | 
 | 	PyDateTime_Delta *self; | 
 |  | 
 | 	if (normalize) | 
 | 		normalize_d_s_us(&days, &seconds, µseconds); | 
 | 	assert(0 <= seconds && seconds < 24*3600); | 
 | 	assert(0 <= microseconds && microseconds < 1000000); | 
 |  | 
 |  	if (check_delta_day_range(days) < 0) | 
 |  		return NULL; | 
 |  | 
 | 	self = (PyDateTime_Delta *) (type->tp_alloc(type, 0)); | 
 | 	if (self != NULL) { | 
 | 		self->hashcode = -1; | 
 | 		SET_TD_DAYS(self, days); | 
 | 		SET_TD_SECONDS(self, seconds); | 
 | 		SET_TD_MICROSECONDS(self, microseconds); | 
 | 	} | 
 | 	return (PyObject *) self; | 
 | } | 
 |  | 
 | #define new_delta(d, s, us, normalize)	\ | 
 | 	new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType) | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * tzinfo helpers. | 
 |  */ | 
 |  | 
 | /* Ensure that p is None or of a tzinfo subclass.  Return 0 if OK; if not | 
 |  * raise TypeError and return -1. | 
 |  */ | 
 | static int | 
 | check_tzinfo_subclass(PyObject *p) | 
 | { | 
 | 	if (p == Py_None || PyTZInfo_Check(p)) | 
 | 		return 0; | 
 | 	PyErr_Format(PyExc_TypeError, | 
 | 		     "tzinfo argument must be None or of a tzinfo subclass, " | 
 | 		     "not type '%s'", | 
 | 		     p->ob_type->tp_name); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Return tzinfo.methname(tzinfoarg), without any checking of results. | 
 |  * If tzinfo is None, returns None. | 
 |  */ | 
 | static PyObject * | 
 | call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg) | 
 | { | 
 | 	PyObject *result; | 
 |  | 
 | 	assert(tzinfo && methname && tzinfoarg); | 
 | 	assert(check_tzinfo_subclass(tzinfo) >= 0); | 
 | 	if (tzinfo == Py_None) { | 
 | 		result = Py_None; | 
 | 		Py_INCREF(result); | 
 | 	} | 
 | 	else | 
 | 		result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* If self has a tzinfo member, return a BORROWED reference to it.  Else | 
 |  * return NULL, which is NOT AN ERROR.  There are no error returns here, | 
 |  * and the caller must not decref the result. | 
 |  */ | 
 | static PyObject * | 
 | get_tzinfo_member(PyObject *self) | 
 | { | 
 | 	PyObject *tzinfo = NULL; | 
 |  | 
 | 	if (PyDateTime_Check(self) && HASTZINFO(self)) | 
 | 		tzinfo = ((PyDateTime_DateTime *)self)->tzinfo; | 
 | 	else if (PyTime_Check(self) && HASTZINFO(self)) | 
 | 		tzinfo = ((PyDateTime_Time *)self)->tzinfo; | 
 |  | 
 | 	return tzinfo; | 
 | } | 
 |  | 
 | /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the | 
 |  * result.  tzinfo must be an instance of the tzinfo class.  If the method | 
 |  * returns None, this returns 0 and sets *none to 1.  If the method doesn't | 
 |  * return None or timedelta, TypeError is raised and this returns -1.  If it | 
 |  * returnsa timedelta and the value is out of range or isn't a whole number | 
 |  * of minutes, ValueError is raised and this returns -1. | 
 |  * Else *none is set to 0 and the integer method result is returned. | 
 |  */ | 
 | static int | 
 | call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg, | 
 | 		       int *none) | 
 | { | 
 | 	PyObject *u; | 
 | 	int result = -1; | 
 |  | 
 | 	assert(tzinfo != NULL); | 
 | 	assert(PyTZInfo_Check(tzinfo)); | 
 | 	assert(tzinfoarg != NULL); | 
 |  | 
 | 	*none = 0; | 
 | 	u = call_tzinfo_method(tzinfo, name, tzinfoarg); | 
 | 	if (u == NULL) | 
 | 		return -1; | 
 |  | 
 | 	else if (u == Py_None) { | 
 | 		result = 0; | 
 | 		*none = 1; | 
 | 	} | 
 | 	else if (PyDelta_Check(u)) { | 
 | 		const int days = GET_TD_DAYS(u); | 
 | 		if (days < -1 || days > 0) | 
 | 			result = 24*60;	/* trigger ValueError below */ | 
 | 		else { | 
 | 			/* next line can't overflow because we know days | 
 | 			 * is -1 or 0 now | 
 | 			 */ | 
 | 			int ss = days * 24 * 3600 + GET_TD_SECONDS(u); | 
 | 			result = divmod(ss, 60, &ss); | 
 | 			if (ss || GET_TD_MICROSECONDS(u)) { | 
 | 				PyErr_Format(PyExc_ValueError, | 
 | 					     "tzinfo.%s() must return a " | 
 | 					     "whole number of minutes", | 
 | 					     name); | 
 | 				result = -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		PyErr_Format(PyExc_TypeError, | 
 | 			     "tzinfo.%s() must return None or " | 
 | 			     "timedelta, not '%s'", | 
 | 			     name, u->ob_type->tp_name); | 
 | 	} | 
 |  | 
 | 	Py_DECREF(u); | 
 | 	if (result < -1439 || result > 1439) { | 
 | 		PyErr_Format(PyExc_ValueError, | 
 | 			     "tzinfo.%s() returned %d; must be in " | 
 | 			     "-1439 .. 1439", | 
 | 			     name, result); | 
 | 		result = -1; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the | 
 |  * result.  tzinfo must be an instance of the tzinfo class.  If utcoffset() | 
 |  * returns None, call_utcoffset returns 0 and sets *none to 1.  If uctoffset() | 
 |  * doesn't return None or timedelta, TypeError is raised and this returns -1. | 
 |  * If utcoffset() returns an invalid timedelta (out of range, or not a whole | 
 |  * # of minutes), ValueError is raised and this returns -1.  Else *none is | 
 |  * set to 0 and the offset is returned (as int # of minutes east of UTC). | 
 |  */ | 
 | static int | 
 | call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none) | 
 | { | 
 | 	return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none); | 
 | } | 
 |  | 
 | /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None. | 
 |  */ | 
 | static PyObject * | 
 | offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) { | 
 | 	PyObject *result; | 
 |  | 
 | 	assert(tzinfo && name && tzinfoarg); | 
 | 	if (tzinfo == Py_None) { | 
 | 		result = Py_None; | 
 | 		Py_INCREF(result); | 
 | 	} | 
 | 	else { | 
 | 		int none; | 
 | 		int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg, | 
 | 						    &none); | 
 | 		if (offset < 0 && PyErr_Occurred()) | 
 | 			return NULL; | 
 | 		if (none) { | 
 | 			result = Py_None; | 
 | 			Py_INCREF(result); | 
 | 		} | 
 | 		else | 
 | 			result = new_delta(0, offset * 60, 0, 1); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Call tzinfo.dst(tzinfoarg), and extract an integer from the | 
 |  * result.  tzinfo must be an instance of the tzinfo class.  If dst() | 
 |  * returns None, call_dst returns 0 and sets *none to 1.  If dst() | 
 |  & doesn't return None or timedelta, TypeError is raised and this | 
 |  * returns -1.  If dst() returns an invalid timedelta for a UTC offset, | 
 |  * ValueError is raised and this returns -1.  Else *none is set to 0 and | 
 |  * the offset is returned (as an int # of minutes east of UTC). | 
 |  */ | 
 | static int | 
 | call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none) | 
 | { | 
 | 	return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none); | 
 | } | 
 |  | 
 | /* Call tzinfo.tzname(tzinfoarg), and return the result.  tzinfo must be | 
 |  * an instance of the tzinfo class or None.  If tzinfo isn't None, and | 
 |  * tzname() doesn't return None or a string, TypeError is raised and this | 
 |  * returns NULL. | 
 |  */ | 
 | static PyObject * | 
 | call_tzname(PyObject *tzinfo, PyObject *tzinfoarg) | 
 | { | 
 | 	PyObject *result; | 
 |  | 
 | 	assert(tzinfo != NULL); | 
 | 	assert(check_tzinfo_subclass(tzinfo) >= 0); | 
 | 	assert(tzinfoarg != NULL); | 
 |  | 
 | 	if (tzinfo == Py_None) { | 
 | 		result = Py_None; | 
 | 		Py_INCREF(result); | 
 | 	} | 
 | 	else | 
 | 		result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg); | 
 |  | 
 | 	if (result != NULL && result != Py_None && ! PyString_Check(result)) { | 
 | 		PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must " | 
 | 			     "return None or a string, not '%s'", | 
 | 			     result->ob_type->tp_name); | 
 | 		Py_DECREF(result); | 
 | 		result = NULL; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | typedef enum { | 
 | 	      /* an exception has been set; the caller should pass it on */ | 
 | 	      OFFSET_ERROR, | 
 |  | 
 | 	      /* type isn't date, datetime, or time subclass */ | 
 | 	      OFFSET_UNKNOWN, | 
 |  | 
 | 	      /* date, | 
 | 	       * datetime with !hastzinfo | 
 | 	       * datetime with None tzinfo, | 
 | 	       * datetime where utcoffset() returns None | 
 | 	       * time with !hastzinfo | 
 | 	       * time with None tzinfo, | 
 | 	       * time where utcoffset() returns None | 
 | 	       */ | 
 | 	      OFFSET_NAIVE, | 
 |  | 
 | 	      /* time or datetime where utcoffset() doesn't return None */ | 
 | 	      OFFSET_AWARE | 
 | } naivety; | 
 |  | 
 | /* Classify an object as to whether it's naive or offset-aware.  See | 
 |  * the "naivety" typedef for details.  If the type is aware, *offset is set | 
 |  * to minutes east of UTC (as returned by the tzinfo.utcoffset() method). | 
 |  * If the type is offset-naive (or unknown, or error), *offset is set to 0. | 
 |  * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method. | 
 |  */ | 
 | static naivety | 
 | classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset) | 
 | { | 
 | 	int none; | 
 | 	PyObject *tzinfo; | 
 |  | 
 | 	assert(tzinfoarg != NULL); | 
 | 	*offset = 0; | 
 | 	tzinfo = get_tzinfo_member(op);	/* NULL means no tzinfo, not error */ | 
 | 	if (tzinfo == Py_None) | 
 | 		return OFFSET_NAIVE; | 
 | 	if (tzinfo == NULL) { | 
 | 		/* note that a datetime passes the PyDate_Check test */ | 
 | 		return (PyTime_Check(op) || PyDate_Check(op)) ? | 
 | 		       OFFSET_NAIVE : OFFSET_UNKNOWN; | 
 | 	} | 
 | 	*offset = call_utcoffset(tzinfo, tzinfoarg, &none); | 
 | 	if (*offset == -1 && PyErr_Occurred()) | 
 | 		return OFFSET_ERROR; | 
 | 	return none ? OFFSET_NAIVE : OFFSET_AWARE; | 
 | } | 
 |  | 
 | /* Classify two objects as to whether they're naive or offset-aware. | 
 |  * This isn't quite the same as calling classify_utcoffset() twice:  for | 
 |  * binary operations (comparison and subtraction), we generally want to | 
 |  * ignore the tzinfo members if they're identical.  This is by design, | 
 |  * so that results match "naive" expectations when mixing objects from a | 
 |  * single timezone.  So in that case, this sets both offsets to 0 and | 
 |  * both naiveties to OFFSET_NAIVE. | 
 |  * The function returns 0 if everything's OK, and -1 on error. | 
 |  */ | 
 | static int | 
 | classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1, | 
 | 			PyObject *tzinfoarg1, | 
 | 			PyObject *o2, int *offset2, naivety *n2, | 
 | 			PyObject *tzinfoarg2) | 
 | { | 
 | 	if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) { | 
 | 		*offset1 = *offset2 = 0; | 
 | 		*n1 = *n2 = OFFSET_NAIVE; | 
 | 	} | 
 | 	else { | 
 | 		*n1 = classify_utcoffset(o1, tzinfoarg1, offset1); | 
 | 		if (*n1 == OFFSET_ERROR) | 
 | 			return -1; | 
 | 		*n2 = classify_utcoffset(o2, tzinfoarg2, offset2); | 
 | 		if (*n2 == OFFSET_ERROR) | 
 | 			return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* repr is like "someclass(arg1, arg2)".  If tzinfo isn't None, | 
 |  * stuff | 
 |  *     ", tzinfo=" + repr(tzinfo) | 
 |  * before the closing ")". | 
 |  */ | 
 | static PyObject * | 
 | append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo) | 
 | { | 
 | 	PyObject *temp; | 
 |  | 
 | 	assert(PyString_Check(repr)); | 
 | 	assert(tzinfo); | 
 | 	if (tzinfo == Py_None) | 
 | 		return repr; | 
 | 	/* Get rid of the trailing ')'. */ | 
 | 	assert(PyString_AsString(repr)[PyString_Size(repr)-1] == ')'); | 
 | 	temp = PyString_FromStringAndSize(PyString_AsString(repr), | 
 | 					  PyString_Size(repr) - 1); | 
 | 	Py_DECREF(repr); | 
 | 	if (temp == NULL) | 
 | 		return NULL; | 
 | 	repr = temp; | 
 |  | 
 | 	/* Append ", tzinfo=". */ | 
 | 	PyString_ConcatAndDel(&repr, PyString_FromString(", tzinfo=")); | 
 |  | 
 | 	/* Append repr(tzinfo). */ | 
 | 	PyString_ConcatAndDel(&repr, PyObject_Repr(tzinfo)); | 
 |  | 
 | 	/* Add a closing paren. */ | 
 | 	PyString_ConcatAndDel(&repr, PyString_FromString(")")); | 
 | 	return repr; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * String format helpers. | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds) | 
 | { | 
 | 	static const char *DayNames[] = { | 
 | 		"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" | 
 | 	}; | 
 | 	static const char *MonthNames[] = { | 
 | 		"Jan", "Feb", "Mar", "Apr", "May", "Jun", | 
 | 		"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" | 
 | 	}; | 
 |  | 
 | 	char buffer[128]; | 
 | 	int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date)); | 
 |  | 
 | 	PyOS_snprintf(buffer, sizeof(buffer), "%s %s %2d %02d:%02d:%02d %04d", | 
 | 		      DayNames[wday], MonthNames[GET_MONTH(date) - 1], | 
 | 		      GET_DAY(date), hours, minutes, seconds, | 
 | 		      GET_YEAR(date)); | 
 | 	return PyString_FromString(buffer); | 
 | } | 
 |  | 
 | /* Add an hours & minutes UTC offset string to buf.  buf has no more than | 
 |  * buflen bytes remaining.  The UTC offset is gotten by calling | 
 |  * tzinfo.uctoffset(tzinfoarg).  If that returns None, \0 is stored into | 
 |  * *buf, and that's all.  Else the returned value is checked for sanity (an | 
 |  * integer in range), and if that's OK it's converted to an hours & minutes | 
 |  * string of the form | 
 |  *   sign HH sep MM | 
 |  * Returns 0 if everything is OK.  If the return value from utcoffset() is | 
 |  * bogus, an appropriate exception is set and -1 is returned. | 
 |  */ | 
 | static int | 
 | format_utcoffset(char *buf, size_t buflen, const char *sep, | 
 | 		PyObject *tzinfo, PyObject *tzinfoarg) | 
 | { | 
 | 	int offset; | 
 | 	int hours; | 
 | 	int minutes; | 
 | 	char sign; | 
 | 	int none; | 
 |  | 
 | 	offset = call_utcoffset(tzinfo, tzinfoarg, &none); | 
 | 	if (offset == -1 && PyErr_Occurred()) | 
 | 		return -1; | 
 | 	if (none) { | 
 | 		*buf = '\0'; | 
 | 		return 0; | 
 | 	} | 
 | 	sign = '+'; | 
 | 	if (offset < 0) { | 
 | 		sign = '-'; | 
 | 		offset = - offset; | 
 | 	} | 
 | 	hours = divmod(offset, 60, &minutes); | 
 | 	PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* I sure don't want to reproduce the strftime code from the time module, | 
 |  * so this imports the module and calls it.  All the hair is due to | 
 |  * giving special meanings to the %z and %Z format codes via a preprocessing | 
 |  * step on the format string. | 
 |  * tzinfoarg is the argument to pass to the object's tzinfo method, if | 
 |  * needed. | 
 |  */ | 
 | static PyObject * | 
 | wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple, | 
 | 	      PyObject *tzinfoarg) | 
 | { | 
 | 	PyObject *result = NULL;	/* guilty until proved innocent */ | 
 |  | 
 | 	PyObject *zreplacement = NULL;	/* py string, replacement for %z */ | 
 | 	PyObject *Zreplacement = NULL;	/* py string, replacement for %Z */ | 
 |  | 
 | 	char *pin;	/* pointer to next char in input format */ | 
 | 	char ch;	/* next char in input format */ | 
 |  | 
 | 	PyObject *newfmt = NULL;	/* py string, the output format */ | 
 | 	char *pnew;	/* pointer to available byte in output format */ | 
 | 	int totalnew;	/* number bytes total in output format buffer, | 
 | 			   exclusive of trailing \0 */ | 
 | 	int usednew;	/* number bytes used so far in output format buffer */ | 
 |  | 
 | 	char *ptoappend; /* pointer to string to append to output buffer */ | 
 | 	int ntoappend;	/* # of bytes to append to output buffer */ | 
 |  | 
 | 	assert(object && format && timetuple); | 
 | 	assert(PyString_Check(format)); | 
 |  | 
 | 	/* Give up if the year is before 1900. | 
 | 	 * Python strftime() plays games with the year, and different | 
 | 	 * games depending on whether envar PYTHON2K is set.  This makes | 
 | 	 * years before 1900 a nightmare, even if the platform strftime | 
 | 	 * supports them (and not all do). | 
 | 	 * We could get a lot farther here by avoiding Python's strftime | 
 | 	 * wrapper and calling the C strftime() directly, but that isn't | 
 | 	 * an option in the Python implementation of this module. | 
 | 	 */ | 
 | 	{ | 
 | 		long year; | 
 | 		PyObject *pyyear = PySequence_GetItem(timetuple, 0); | 
 | 		if (pyyear == NULL) return NULL; | 
 | 		assert(PyInt_Check(pyyear)); | 
 | 		year = PyInt_AsLong(pyyear); | 
 | 		Py_DECREF(pyyear); | 
 | 		if (year < 1900) { | 
 | 			PyErr_Format(PyExc_ValueError, "year=%ld is before " | 
 | 				     "1900; the datetime strftime() " | 
 | 	                             "methods require year >= 1900", | 
 | 	                             year); | 
 | 	                return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Scan the input format, looking for %z and %Z escapes, building | 
 | 	 * a new format.  Since computing the replacements for those codes | 
 | 	 * is expensive, don't unless they're actually used. | 
 | 	 */ | 
 | 	totalnew = PyString_Size(format) + 1;	/* realistic if no %z/%Z */ | 
 | 	newfmt = PyString_FromStringAndSize(NULL, totalnew); | 
 | 	if (newfmt == NULL) goto Done; | 
 | 	pnew = PyString_AsString(newfmt); | 
 | 	usednew = 0; | 
 |  | 
 | 	pin = PyString_AsString(format); | 
 | 	while ((ch = *pin++) != '\0') { | 
 | 		if (ch != '%') { | 
 | 			ptoappend = pin - 1; | 
 | 			ntoappend = 1; | 
 | 		} | 
 | 		else if ((ch = *pin++) == '\0') { | 
 | 			/* There's a lone trailing %; doesn't make sense. */ | 
 | 			PyErr_SetString(PyExc_ValueError, "strftime format " | 
 | 					"ends with raw %"); | 
 | 			goto Done; | 
 | 		} | 
 | 		/* A % has been seen and ch is the character after it. */ | 
 | 		else if (ch == 'z') { | 
 | 			if (zreplacement == NULL) { | 
 | 				/* format utcoffset */ | 
 | 				char buf[100]; | 
 | 				PyObject *tzinfo = get_tzinfo_member(object); | 
 | 				zreplacement = PyString_FromString(""); | 
 | 				if (zreplacement == NULL) goto Done; | 
 | 				if (tzinfo != Py_None && tzinfo != NULL) { | 
 | 					assert(tzinfoarg != NULL); | 
 | 					if (format_utcoffset(buf, | 
 | 							     sizeof(buf), | 
 | 							     "", | 
 | 							     tzinfo, | 
 | 							     tzinfoarg) < 0) | 
 | 						goto Done; | 
 | 					Py_DECREF(zreplacement); | 
 | 					zreplacement = PyString_FromString(buf); | 
 | 					if (zreplacement == NULL) goto Done; | 
 | 				} | 
 | 			} | 
 | 			assert(zreplacement != NULL); | 
 | 			ptoappend = PyString_AS_STRING(zreplacement); | 
 | 			ntoappend = PyString_GET_SIZE(zreplacement); | 
 | 		} | 
 | 		else if (ch == 'Z') { | 
 | 			/* format tzname */ | 
 | 			if (Zreplacement == NULL) { | 
 | 				PyObject *tzinfo = get_tzinfo_member(object); | 
 | 				Zreplacement = PyString_FromString(""); | 
 | 				if (Zreplacement == NULL) goto Done; | 
 | 				if (tzinfo != Py_None && tzinfo != NULL) { | 
 | 					PyObject *temp; | 
 | 					assert(tzinfoarg != NULL); | 
 | 					temp = call_tzname(tzinfo, tzinfoarg); | 
 | 					if (temp == NULL) goto Done; | 
 | 					if (temp != Py_None) { | 
 | 						assert(PyString_Check(temp)); | 
 | 						/* Since the tzname is getting | 
 | 						 * stuffed into the format, we | 
 | 						 * have to double any % signs | 
 | 						 * so that strftime doesn't | 
 | 						 * treat them as format codes. | 
 | 						 */ | 
 | 						Py_DECREF(Zreplacement); | 
 | 						Zreplacement = PyObject_CallMethod( | 
 | 							temp, "replace", | 
 | 							"ss", "%", "%%"); | 
 | 						Py_DECREF(temp); | 
 | 						if (Zreplacement == NULL) | 
 | 							goto Done; | 
 | 						if (!PyString_Check(Zreplacement)) { | 
 | 							PyErr_SetString(PyExc_TypeError, "tzname.replace() did not return a string"); | 
 | 							goto Done; | 
 | 						} | 
 | 					} | 
 | 					else | 
 | 						Py_DECREF(temp); | 
 | 				} | 
 | 			} | 
 | 			assert(Zreplacement != NULL); | 
 | 			ptoappend = PyString_AS_STRING(Zreplacement); | 
 | 			ntoappend = PyString_GET_SIZE(Zreplacement); | 
 | 		} | 
 | 		else { | 
 | 			/* percent followed by neither z nor Z */ | 
 | 			ptoappend = pin - 2; | 
 | 			ntoappend = 2; | 
 | 		} | 
 |  | 
 |  		/* Append the ntoappend chars starting at ptoappend to | 
 |  		 * the new format. | 
 |  		 */ | 
 |  		assert(ptoappend != NULL); | 
 |  		assert(ntoappend >= 0); | 
 |  		if (ntoappend == 0) | 
 |  			continue; | 
 |  		while (usednew + ntoappend > totalnew) { | 
 |  			int bigger = totalnew << 1; | 
 |  			if ((bigger >> 1) != totalnew) { /* overflow */ | 
 |  				PyErr_NoMemory(); | 
 |  				goto Done; | 
 |  			} | 
 |  			if (_PyString_Resize(&newfmt, bigger) < 0) | 
 |  				goto Done; | 
 |  			totalnew = bigger; | 
 |  			pnew = PyString_AsString(newfmt) + usednew; | 
 |  		} | 
 | 		memcpy(pnew, ptoappend, ntoappend); | 
 | 		pnew += ntoappend; | 
 | 		usednew += ntoappend; | 
 | 		assert(usednew <= totalnew); | 
 | 	}  /* end while() */ | 
 |  | 
 | 	if (_PyString_Resize(&newfmt, usednew) < 0) | 
 | 		goto Done; | 
 | 	{ | 
 | 		PyObject *time = PyImport_ImportModule("time"); | 
 | 		if (time == NULL) | 
 | 			goto Done; | 
 | 		result = PyObject_CallMethod(time, "strftime", "OO", | 
 | 					     newfmt, timetuple); | 
 | 		Py_DECREF(time); | 
 |     	} | 
 |  Done: | 
 | 	Py_XDECREF(zreplacement); | 
 | 	Py_XDECREF(Zreplacement); | 
 | 	Py_XDECREF(newfmt); | 
 |     	return result; | 
 | } | 
 |  | 
 | static char * | 
 | isoformat_date(PyDateTime_Date *dt, char buffer[], int bufflen) | 
 | { | 
 | 	int x; | 
 | 	x = PyOS_snprintf(buffer, bufflen, | 
 | 			  "%04d-%02d-%02d", | 
 | 			  GET_YEAR(dt), GET_MONTH(dt), GET_DAY(dt)); | 
 | 	return buffer + x; | 
 | } | 
 |  | 
 | static void | 
 | isoformat_time(PyDateTime_DateTime *dt, char buffer[], int bufflen) | 
 | { | 
 | 	int us = DATE_GET_MICROSECOND(dt); | 
 |  | 
 | 	PyOS_snprintf(buffer, bufflen, | 
 | 		      "%02d:%02d:%02d",	/* 8 characters */ | 
 | 		      DATE_GET_HOUR(dt), | 
 | 		      DATE_GET_MINUTE(dt), | 
 | 		      DATE_GET_SECOND(dt)); | 
 | 	if (us) | 
 | 		PyOS_snprintf(buffer + 8, bufflen - 8, ".%06d", us); | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Wrap functions from the time module.  These aren't directly available | 
 |  * from C.  Perhaps they should be. | 
 |  */ | 
 |  | 
 | /* Call time.time() and return its result (a Python float). */ | 
 | static PyObject * | 
 | time_time(void) | 
 | { | 
 | 	PyObject *result = NULL; | 
 | 	PyObject *time = PyImport_ImportModule("time"); | 
 |  | 
 | 	if (time != NULL) { | 
 | 		result = PyObject_CallMethod(time, "time", "()"); | 
 | 		Py_DECREF(time); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Build a time.struct_time.  The weekday and day number are automatically | 
 |  * computed from the y,m,d args. | 
 |  */ | 
 | static PyObject * | 
 | build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag) | 
 | { | 
 | 	PyObject *time; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	time = PyImport_ImportModule("time"); | 
 | 	if (time != NULL) { | 
 | 		result = PyObject_CallMethod(time, "struct_time", | 
 | 					     "((iiiiiiiii))", | 
 | 					     y, m, d, | 
 | 					     hh, mm, ss, | 
 | 				 	     weekday(y, m, d), | 
 | 				 	     days_before_month(y, m) + d, | 
 | 				 	     dstflag); | 
 | 		Py_DECREF(time); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Miscellaneous helpers. | 
 |  */ | 
 |  | 
 | /* For various reasons, we need to use tp_richcompare instead of tp_compare. | 
 |  * The comparisons here all most naturally compute a cmp()-like result. | 
 |  * This little helper turns that into a bool result for rich comparisons. | 
 |  */ | 
 | static PyObject * | 
 | diff_to_bool(int diff, int op) | 
 | { | 
 | 	PyObject *result; | 
 | 	int istrue; | 
 |  | 
 | 	switch (op) { | 
 | 		case Py_EQ: istrue = diff == 0; break; | 
 | 		case Py_NE: istrue = diff != 0; break; | 
 | 		case Py_LE: istrue = diff <= 0; break; | 
 | 		case Py_GE: istrue = diff >= 0; break; | 
 | 		case Py_LT: istrue = diff < 0; break; | 
 | 		case Py_GT: istrue = diff > 0; break; | 
 | 		default: | 
 | 			assert(! "op unknown"); | 
 | 			istrue = 0; /* To shut up compiler */ | 
 | 	} | 
 | 	result = istrue ? Py_True : Py_False; | 
 | 	Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Raises a "can't compare" TypeError and returns NULL. */ | 
 | static PyObject * | 
 | cmperror(PyObject *a, PyObject *b) | 
 | { | 
 | 	PyErr_Format(PyExc_TypeError, | 
 | 		     "can't compare %s to %s", | 
 | 		     a->ob_type->tp_name, b->ob_type->tp_name); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Cached Python objects; these are set by the module init function. | 
 |  */ | 
 |  | 
 | /* Conversion factors. */ | 
 | static PyObject *us_per_us = NULL;	/* 1 */ | 
 | static PyObject *us_per_ms = NULL;	/* 1000 */ | 
 | static PyObject *us_per_second = NULL;	/* 1000000 */ | 
 | static PyObject *us_per_minute = NULL;	/* 1e6 * 60 as Python int */ | 
 | static PyObject *us_per_hour = NULL;	/* 1e6 * 3600 as Python long */ | 
 | static PyObject *us_per_day = NULL;	/* 1e6 * 3600 * 24 as Python long */ | 
 | static PyObject *us_per_week = NULL;	/* 1e6*3600*24*7 as Python long */ | 
 | static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */ | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Class implementations. | 
 |  */ | 
 |  | 
 | /* | 
 |  * PyDateTime_Delta implementation. | 
 |  */ | 
 |  | 
 | /* Convert a timedelta to a number of us, | 
 |  * 	(24*3600*self.days + self.seconds)*1000000 + self.microseconds | 
 |  * as a Python int or long. | 
 |  * Doing mixed-radix arithmetic by hand instead is excruciating in C, | 
 |  * due to ubiquitous overflow possibilities. | 
 |  */ | 
 | static PyObject * | 
 | delta_to_microseconds(PyDateTime_Delta *self) | 
 | { | 
 | 	PyObject *x1 = NULL; | 
 | 	PyObject *x2 = NULL; | 
 | 	PyObject *x3 = NULL; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	x1 = PyInt_FromLong(GET_TD_DAYS(self)); | 
 | 	if (x1 == NULL) | 
 | 		goto Done; | 
 | 	x2 = PyNumber_Multiply(x1, seconds_per_day);	/* days in seconds */ | 
 | 	if (x2 == NULL) | 
 | 		goto Done; | 
 | 	Py_DECREF(x1); | 
 | 	x1 = NULL; | 
 |  | 
 | 	/* x2 has days in seconds */ | 
 | 	x1 = PyInt_FromLong(GET_TD_SECONDS(self));	/* seconds */ | 
 | 	if (x1 == NULL) | 
 | 		goto Done; | 
 | 	x3 = PyNumber_Add(x1, x2);	/* days and seconds in seconds */ | 
 | 	if (x3 == NULL) | 
 | 		goto Done; | 
 | 	Py_DECREF(x1); | 
 | 	Py_DECREF(x2); | 
 | 	x1 = x2 = NULL; | 
 |  | 
 | 	/* x3 has days+seconds in seconds */ | 
 | 	x1 = PyNumber_Multiply(x3, us_per_second);	/* us */ | 
 | 	if (x1 == NULL) | 
 | 		goto Done; | 
 | 	Py_DECREF(x3); | 
 | 	x3 = NULL; | 
 |  | 
 | 	/* x1 has days+seconds in us */ | 
 | 	x2 = PyInt_FromLong(GET_TD_MICROSECONDS(self)); | 
 | 	if (x2 == NULL) | 
 | 		goto Done; | 
 | 	result = PyNumber_Add(x1, x2); | 
 |  | 
 | Done: | 
 | 	Py_XDECREF(x1); | 
 | 	Py_XDECREF(x2); | 
 | 	Py_XDECREF(x3); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Convert a number of us (as a Python int or long) to a timedelta. | 
 |  */ | 
 | static PyObject * | 
 | microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type) | 
 | { | 
 | 	int us; | 
 | 	int s; | 
 | 	int d; | 
 | 	long temp; | 
 |  | 
 | 	PyObject *tuple = NULL; | 
 | 	PyObject *num = NULL; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	tuple = PyNumber_Divmod(pyus, us_per_second); | 
 | 	if (tuple == NULL) | 
 | 		goto Done; | 
 |  | 
 | 	num = PyTuple_GetItem(tuple, 1);	/* us */ | 
 | 	if (num == NULL) | 
 | 		goto Done; | 
 | 	temp = PyLong_AsLong(num); | 
 | 	num = NULL; | 
 | 	if (temp == -1 && PyErr_Occurred()) | 
 | 		goto Done; | 
 | 	assert(0 <= temp && temp < 1000000); | 
 | 	us = (int)temp; | 
 | 	if (us < 0) { | 
 | 		/* The divisor was positive, so this must be an error. */ | 
 | 		assert(PyErr_Occurred()); | 
 | 		goto Done; | 
 | 	} | 
 |  | 
 | 	num = PyTuple_GetItem(tuple, 0);	/* leftover seconds */ | 
 | 	if (num == NULL) | 
 | 		goto Done; | 
 | 	Py_INCREF(num); | 
 | 	Py_DECREF(tuple); | 
 |  | 
 | 	tuple = PyNumber_Divmod(num, seconds_per_day); | 
 | 	if (tuple == NULL) | 
 | 		goto Done; | 
 | 	Py_DECREF(num); | 
 |  | 
 | 	num = PyTuple_GetItem(tuple, 1); 	/* seconds */ | 
 | 	if (num == NULL) | 
 | 		goto Done; | 
 | 	temp = PyLong_AsLong(num); | 
 | 	num = NULL; | 
 | 	if (temp == -1 && PyErr_Occurred()) | 
 | 		goto Done; | 
 | 	assert(0 <= temp && temp < 24*3600); | 
 | 	s = (int)temp; | 
 |  | 
 | 	if (s < 0) { | 
 | 		/* The divisor was positive, so this must be an error. */ | 
 | 		assert(PyErr_Occurred()); | 
 | 		goto Done; | 
 | 	} | 
 |  | 
 | 	num = PyTuple_GetItem(tuple, 0);	/* leftover days */ | 
 | 	if (num == NULL) | 
 | 		goto Done; | 
 | 	Py_INCREF(num); | 
 | 	temp = PyLong_AsLong(num); | 
 | 	if (temp == -1 && PyErr_Occurred()) | 
 | 		goto Done; | 
 | 	d = (int)temp; | 
 | 	if ((long)d != temp) { | 
 | 		PyErr_SetString(PyExc_OverflowError, "normalized days too " | 
 | 				"large to fit in a C int"); | 
 | 		goto Done; | 
 | 	} | 
 | 	result = new_delta_ex(d, s, us, 0, type); | 
 |  | 
 | Done: | 
 | 	Py_XDECREF(tuple); | 
 | 	Py_XDECREF(num); | 
 | 	return result; | 
 | } | 
 |  | 
 | #define microseconds_to_delta(pymicros)	\ | 
 | 	microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType) | 
 |  | 
 | static PyObject * | 
 | multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta) | 
 | { | 
 | 	PyObject *pyus_in; | 
 | 	PyObject *pyus_out; | 
 | 	PyObject *result; | 
 |  | 
 | 	pyus_in = delta_to_microseconds(delta); | 
 | 	if (pyus_in == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	pyus_out = PyNumber_Multiply(pyus_in, intobj); | 
 | 	Py_DECREF(pyus_in); | 
 | 	if (pyus_out == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	result = microseconds_to_delta(pyus_out); | 
 | 	Py_DECREF(pyus_out); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj) | 
 | { | 
 | 	PyObject *pyus_in; | 
 | 	PyObject *pyus_out; | 
 | 	PyObject *result; | 
 |  | 
 | 	pyus_in = delta_to_microseconds(delta); | 
 | 	if (pyus_in == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	pyus_out = PyNumber_FloorDivide(pyus_in, intobj); | 
 | 	Py_DECREF(pyus_in); | 
 | 	if (pyus_out == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	result = microseconds_to_delta(pyus_out); | 
 | 	Py_DECREF(pyus_out); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_add(PyObject *left, PyObject *right) | 
 | { | 
 | 	PyObject *result = Py_NotImplemented; | 
 |  | 
 | 	if (PyDelta_Check(left) && PyDelta_Check(right)) { | 
 | 		/* delta + delta */ | 
 | 		/* The C-level additions can't overflow because of the | 
 | 		 * invariant bounds. | 
 | 		 */ | 
 | 		int days = GET_TD_DAYS(left) + GET_TD_DAYS(right); | 
 | 		int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right); | 
 | 		int microseconds = GET_TD_MICROSECONDS(left) + | 
 | 				   GET_TD_MICROSECONDS(right); | 
 | 		result = new_delta(days, seconds, microseconds, 1); | 
 | 	} | 
 |  | 
 | 	if (result == Py_NotImplemented) | 
 | 		Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_negative(PyDateTime_Delta *self) | 
 | { | 
 | 	return new_delta(-GET_TD_DAYS(self), | 
 | 			 -GET_TD_SECONDS(self), | 
 | 			 -GET_TD_MICROSECONDS(self), | 
 | 			 1); | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_positive(PyDateTime_Delta *self) | 
 | { | 
 | 	/* Could optimize this (by returning self) if this isn't a | 
 | 	 * subclass -- but who uses unary + ?  Approximately nobody. | 
 | 	 */ | 
 | 	return new_delta(GET_TD_DAYS(self), | 
 | 			 GET_TD_SECONDS(self), | 
 | 			 GET_TD_MICROSECONDS(self), | 
 | 			 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_abs(PyDateTime_Delta *self) | 
 | { | 
 | 	PyObject *result; | 
 |  | 
 | 	assert(GET_TD_MICROSECONDS(self) >= 0); | 
 | 	assert(GET_TD_SECONDS(self) >= 0); | 
 |  | 
 | 	if (GET_TD_DAYS(self) < 0) | 
 | 		result = delta_negative(self); | 
 | 	else | 
 | 		result = delta_positive(self); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_subtract(PyObject *left, PyObject *right) | 
 | { | 
 | 	PyObject *result = Py_NotImplemented; | 
 |  | 
 | 	if (PyDelta_Check(left) && PyDelta_Check(right)) { | 
 | 	    	/* delta - delta */ | 
 | 	    	PyObject *minus_right = PyNumber_Negative(right); | 
 | 	    	if (minus_right) { | 
 | 	    		result = delta_add(left, minus_right); | 
 | 	    		Py_DECREF(minus_right); | 
 | 	    	} | 
 | 	    	else | 
 | 	    		result = NULL; | 
 | 	} | 
 |  | 
 | 	if (result == Py_NotImplemented) | 
 | 		Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_richcompare(PyObject *self, PyObject *other, int op) | 
 | { | 
 | 	if (PyDelta_Check(other)) { | 
 | 		int diff = GET_TD_DAYS(self) - GET_TD_DAYS(other); | 
 | 		if (diff == 0) { | 
 | 			diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other); | 
 | 			if (diff == 0) | 
 | 				diff = GET_TD_MICROSECONDS(self) - | 
 | 				       GET_TD_MICROSECONDS(other); | 
 | 		} | 
 | 		return diff_to_bool(diff, op); | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 | } | 
 |  | 
 | static PyObject *delta_getstate(PyDateTime_Delta *self); | 
 |  | 
 | static long | 
 | delta_hash(PyDateTime_Delta *self) | 
 | { | 
 | 	if (self->hashcode == -1) { | 
 | 		PyObject *temp = delta_getstate(self); | 
 | 		if (temp != NULL) { | 
 | 			self->hashcode = PyObject_Hash(temp); | 
 | 			Py_DECREF(temp); | 
 | 		} | 
 | 	} | 
 | 	return self->hashcode; | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_multiply(PyObject *left, PyObject *right) | 
 | { | 
 | 	PyObject *result = Py_NotImplemented; | 
 |  | 
 | 	if (PyDelta_Check(left)) { | 
 | 		/* delta * ??? */ | 
 | 		if (PyInt_Check(right) || PyLong_Check(right)) | 
 | 			result = multiply_int_timedelta(right, | 
 | 					(PyDateTime_Delta *) left); | 
 | 	} | 
 | 	else if (PyInt_Check(left) || PyLong_Check(left)) | 
 | 		result = multiply_int_timedelta(left, | 
 | 						(PyDateTime_Delta *) right); | 
 |  | 
 | 	if (result == Py_NotImplemented) | 
 | 		Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_divide(PyObject *left, PyObject *right) | 
 | { | 
 | 	PyObject *result = Py_NotImplemented; | 
 |  | 
 | 	if (PyDelta_Check(left)) { | 
 | 		/* delta * ??? */ | 
 | 		if (PyInt_Check(right) || PyLong_Check(right)) | 
 | 			result = divide_timedelta_int( | 
 | 					(PyDateTime_Delta *)left, | 
 | 					right); | 
 | 	} | 
 |  | 
 | 	if (result == Py_NotImplemented) | 
 | 		Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Fold in the value of the tag ("seconds", "weeks", etc) component of a | 
 |  * timedelta constructor.  sofar is the # of microseconds accounted for | 
 |  * so far, and there are factor microseconds per current unit, the number | 
 |  * of which is given by num.  num * factor is added to sofar in a | 
 |  * numerically careful way, and that's the result.  Any fractional | 
 |  * microseconds left over (this can happen if num is a float type) are | 
 |  * added into *leftover. | 
 |  * Note that there are many ways this can give an error (NULL) return. | 
 |  */ | 
 | static PyObject * | 
 | accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor, | 
 |       double *leftover) | 
 | { | 
 | 	PyObject *prod; | 
 | 	PyObject *sum; | 
 |  | 
 | 	assert(num != NULL); | 
 |  | 
 | 	if (PyInt_Check(num) || PyLong_Check(num)) { | 
 | 		prod = PyNumber_Multiply(num, factor); | 
 | 		if (prod == NULL) | 
 | 			return NULL; | 
 | 		sum = PyNumber_Add(sofar, prod); | 
 | 		Py_DECREF(prod); | 
 | 		return sum; | 
 | 	} | 
 |  | 
 | 	if (PyFloat_Check(num)) { | 
 | 		double dnum; | 
 | 		double fracpart; | 
 | 		double intpart; | 
 | 		PyObject *x; | 
 | 		PyObject *y; | 
 |  | 
 | 		/* The Plan:  decompose num into an integer part and a | 
 | 		 * fractional part, num = intpart + fracpart. | 
 | 		 * Then num * factor == | 
 | 		 *      intpart * factor + fracpart * factor | 
 | 		 * and the LHS can be computed exactly in long arithmetic. | 
 | 		 * The RHS is again broken into an int part and frac part. | 
 | 		 * and the frac part is added into *leftover. | 
 | 		 */ | 
 | 		dnum = PyFloat_AsDouble(num); | 
 | 		if (dnum == -1.0 && PyErr_Occurred()) | 
 | 			return NULL; | 
 | 		fracpart = modf(dnum, &intpart); | 
 | 		x = PyLong_FromDouble(intpart); | 
 | 		if (x == NULL) | 
 | 			return NULL; | 
 |  | 
 | 		prod = PyNumber_Multiply(x, factor); | 
 | 		Py_DECREF(x); | 
 | 		if (prod == NULL) | 
 | 			return NULL; | 
 |  | 
 | 		sum = PyNumber_Add(sofar, prod); | 
 | 		Py_DECREF(prod); | 
 | 		if (sum == NULL) | 
 | 			return NULL; | 
 |  | 
 | 		if (fracpart == 0.0) | 
 | 			return sum; | 
 | 		/* So far we've lost no information.  Dealing with the | 
 | 		 * fractional part requires float arithmetic, and may | 
 | 		 * lose a little info. | 
 | 		 */ | 
 | 		assert(PyInt_Check(factor) || PyLong_Check(factor)); | 
 | 		dnum = PyLong_AsDouble(factor); | 
 |  | 
 | 		dnum *= fracpart; | 
 | 		fracpart = modf(dnum, &intpart); | 
 | 		x = PyLong_FromDouble(intpart); | 
 | 		if (x == NULL) { | 
 | 			Py_DECREF(sum); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		y = PyNumber_Add(sum, x); | 
 | 		Py_DECREF(sum); | 
 | 		Py_DECREF(x); | 
 | 		*leftover += fracpart; | 
 | 		return y; | 
 | 	} | 
 |  | 
 | 	PyErr_Format(PyExc_TypeError, | 
 | 		     "unsupported type for timedelta %s component: %s", | 
 | 		     tag, num->ob_type->tp_name); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_new(PyTypeObject *type, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *self = NULL; | 
 |  | 
 | 	/* Argument objects. */ | 
 | 	PyObject *day = NULL; | 
 | 	PyObject *second = NULL; | 
 | 	PyObject *us = NULL; | 
 | 	PyObject *ms = NULL; | 
 | 	PyObject *minute = NULL; | 
 | 	PyObject *hour = NULL; | 
 | 	PyObject *week = NULL; | 
 |  | 
 | 	PyObject *x = NULL;	/* running sum of microseconds */ | 
 | 	PyObject *y = NULL;	/* temp sum of microseconds */ | 
 | 	double leftover_us = 0.0; | 
 |  | 
 | 	static char *keywords[] = { | 
 | 		"days", "seconds", "microseconds", "milliseconds", | 
 | 		"minutes", "hours", "weeks", NULL | 
 | 	}; | 
 |  | 
 | 	if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__", | 
 | 					keywords, | 
 | 					&day, &second, &us, | 
 | 					&ms, &minute, &hour, &week) == 0) | 
 | 		goto Done; | 
 |  | 
 | 	x = PyInt_FromLong(0); | 
 | 	if (x == NULL) | 
 | 		goto Done; | 
 |  | 
 | #define CLEANUP 	\ | 
 | 	Py_DECREF(x);	\ | 
 | 	x = y;		\ | 
 | 	if (x == NULL)	\ | 
 | 		goto Done | 
 |  | 
 | 	if (us) { | 
 | 		y = accum("microseconds", x, us, us_per_us, &leftover_us); | 
 | 		CLEANUP; | 
 | 	} | 
 | 	if (ms) { | 
 | 		y = accum("milliseconds", x, ms, us_per_ms, &leftover_us); | 
 | 		CLEANUP; | 
 | 	} | 
 | 	if (second) { | 
 | 		y = accum("seconds", x, second, us_per_second, &leftover_us); | 
 | 		CLEANUP; | 
 | 	} | 
 | 	if (minute) { | 
 | 		y = accum("minutes", x, minute, us_per_minute, &leftover_us); | 
 | 		CLEANUP; | 
 | 	} | 
 | 	if (hour) { | 
 | 		y = accum("hours", x, hour, us_per_hour, &leftover_us); | 
 | 		CLEANUP; | 
 | 	} | 
 | 	if (day) { | 
 | 		y = accum("days", x, day, us_per_day, &leftover_us); | 
 | 		CLEANUP; | 
 | 	} | 
 | 	if (week) { | 
 | 		y = accum("weeks", x, week, us_per_week, &leftover_us); | 
 | 		CLEANUP; | 
 | 	} | 
 | 	if (leftover_us) { | 
 | 		/* Round to nearest whole # of us, and add into x. */ | 
 | 		PyObject *temp = PyLong_FromLong(round_to_long(leftover_us)); | 
 | 		if (temp == NULL) { | 
 | 			Py_DECREF(x); | 
 | 			goto Done; | 
 | 		} | 
 | 		y = PyNumber_Add(x, temp); | 
 | 		Py_DECREF(temp); | 
 | 		CLEANUP; | 
 | 	} | 
 |  | 
 | 	self = microseconds_to_delta_ex(x, type); | 
 | 	Py_DECREF(x); | 
 | Done: | 
 | 	return self; | 
 |  | 
 | #undef CLEANUP | 
 | } | 
 |  | 
 | static int | 
 | delta_bool(PyDateTime_Delta *self) | 
 | { | 
 | 	return (GET_TD_DAYS(self) != 0 | 
 | 		|| GET_TD_SECONDS(self) != 0 | 
 | 		|| GET_TD_MICROSECONDS(self) != 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_repr(PyDateTime_Delta *self) | 
 | { | 
 | 	if (GET_TD_MICROSECONDS(self) != 0) | 
 | 		return PyString_FromFormat("%s(%d, %d, %d)", | 
 | 					   self->ob_type->tp_name, | 
 | 					   GET_TD_DAYS(self), | 
 | 					   GET_TD_SECONDS(self), | 
 | 					   GET_TD_MICROSECONDS(self)); | 
 | 	if (GET_TD_SECONDS(self) != 0) | 
 | 		return PyString_FromFormat("%s(%d, %d)", | 
 | 					   self->ob_type->tp_name, | 
 | 					   GET_TD_DAYS(self), | 
 | 					   GET_TD_SECONDS(self)); | 
 |  | 
 | 	return PyString_FromFormat("%s(%d)", | 
 | 				   self->ob_type->tp_name, | 
 | 				   GET_TD_DAYS(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_str(PyDateTime_Delta *self) | 
 | { | 
 | 	int days = GET_TD_DAYS(self); | 
 | 	int seconds = GET_TD_SECONDS(self); | 
 | 	int us = GET_TD_MICROSECONDS(self); | 
 | 	int hours; | 
 | 	int minutes; | 
 | 	char buf[100]; | 
 | 	char *pbuf = buf; | 
 | 	size_t buflen = sizeof(buf); | 
 | 	int n; | 
 |  | 
 | 	minutes = divmod(seconds, 60, &seconds); | 
 | 	hours = divmod(minutes, 60, &minutes); | 
 |  | 
 | 	if (days) { | 
 | 		n = PyOS_snprintf(pbuf, buflen, "%d day%s, ", days, | 
 | 				  (days == 1 || days == -1) ? "" : "s"); | 
 | 		if (n < 0 || (size_t)n >= buflen) | 
 | 			goto Fail; | 
 | 		pbuf += n; | 
 | 		buflen -= (size_t)n; | 
 | 	} | 
 |  | 
 | 	n = PyOS_snprintf(pbuf, buflen, "%d:%02d:%02d", | 
 | 			  hours, minutes, seconds); | 
 | 	if (n < 0 || (size_t)n >= buflen) | 
 | 		goto Fail; | 
 | 	pbuf += n; | 
 | 	buflen -= (size_t)n; | 
 |  | 
 | 	if (us) { | 
 | 		n = PyOS_snprintf(pbuf, buflen, ".%06d", us); | 
 | 		if (n < 0 || (size_t)n >= buflen) | 
 | 			goto Fail; | 
 | 		pbuf += n; | 
 | 	} | 
 |  | 
 | 	return PyString_FromStringAndSize(buf, pbuf - buf); | 
 |  | 
 |  Fail: | 
 | 	PyErr_SetString(PyExc_SystemError, "goofy result from PyOS_snprintf"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Pickle support, a simple use of __reduce__. */ | 
 |  | 
 | /* __getstate__ isn't exposed */ | 
 | static PyObject * | 
 | delta_getstate(PyDateTime_Delta *self) | 
 | { | 
 | 	return Py_BuildValue("iii", GET_TD_DAYS(self), | 
 | 				    GET_TD_SECONDS(self), | 
 | 				    GET_TD_MICROSECONDS(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | delta_reduce(PyDateTime_Delta* self) | 
 | { | 
 | 	return Py_BuildValue("ON", self->ob_type, delta_getstate(self)); | 
 | } | 
 |  | 
 | #define OFFSET(field)  offsetof(PyDateTime_Delta, field) | 
 |  | 
 | static PyMemberDef delta_members[] = { | 
 |  | 
 | 	{"days",         T_INT, OFFSET(days),         READONLY, | 
 | 	 PyDoc_STR("Number of days.")}, | 
 |  | 
 | 	{"seconds",      T_INT, OFFSET(seconds),      READONLY, | 
 | 	 PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")}, | 
 |  | 
 | 	{"microseconds", T_INT, OFFSET(microseconds), READONLY, | 
 | 	 PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")}, | 
 | 	{NULL} | 
 | }; | 
 |  | 
 | static PyMethodDef delta_methods[] = { | 
 | 	{"__reduce__", (PyCFunction)delta_reduce,     METH_NOARGS, | 
 | 	 PyDoc_STR("__reduce__() -> (cls, state)")}, | 
 |  | 
 | 	{NULL,	NULL}, | 
 | }; | 
 |  | 
 | static char delta_doc[] = | 
 | PyDoc_STR("Difference between two datetime values."); | 
 |  | 
 | static PyNumberMethods delta_as_number = { | 
 | 	delta_add,				/* nb_add */ | 
 | 	delta_subtract,				/* nb_subtract */ | 
 | 	delta_multiply,				/* nb_multiply */ | 
 | 	0,					/* nb_remainder */ | 
 | 	0,					/* nb_divmod */ | 
 | 	0,					/* nb_power */ | 
 | 	(unaryfunc)delta_negative,		/* nb_negative */ | 
 | 	(unaryfunc)delta_positive,		/* nb_positive */ | 
 | 	(unaryfunc)delta_abs,			/* nb_absolute */ | 
 | 	(inquiry)delta_bool,			/* nb_bool */ | 
 | 	0,					/*nb_invert*/ | 
 | 	0,					/*nb_lshift*/ | 
 | 	0,					/*nb_rshift*/ | 
 | 	0,					/*nb_and*/ | 
 | 	0,					/*nb_xor*/ | 
 | 	0,					/*nb_or*/ | 
 | 	0,					/*nb_coerce*/ | 
 | 	0,					/*nb_int*/ | 
 | 	0,					/*nb_long*/ | 
 | 	0,					/*nb_float*/ | 
 | 	0,					/*nb_oct*/ | 
 | 	0, 					/*nb_hex*/ | 
 | 	0,					/*nb_inplace_add*/ | 
 | 	0,					/*nb_inplace_subtract*/ | 
 | 	0,					/*nb_inplace_multiply*/ | 
 | 	0,					/*nb_inplace_remainder*/ | 
 | 	0,					/*nb_inplace_power*/ | 
 | 	0,					/*nb_inplace_lshift*/ | 
 | 	0,					/*nb_inplace_rshift*/ | 
 | 	0,					/*nb_inplace_and*/ | 
 | 	0,					/*nb_inplace_xor*/ | 
 | 	0,					/*nb_inplace_or*/ | 
 | 	delta_divide,				/* nb_floor_divide */ | 
 | 	0,					/* nb_true_divide */ | 
 | 	0,					/* nb_inplace_floor_divide */ | 
 | 	0,					/* nb_inplace_true_divide */ | 
 | }; | 
 |  | 
 | static PyTypeObject PyDateTime_DeltaType = { | 
 | 	PyObject_HEAD_INIT(NULL) | 
 | 	0,						/* ob_size */ | 
 | 	"datetime.timedelta",				/* tp_name */ | 
 | 	sizeof(PyDateTime_Delta),			/* tp_basicsize */ | 
 | 	0,						/* tp_itemsize */ | 
 | 	0,						/* tp_dealloc */ | 
 | 	0,						/* tp_print */ | 
 | 	0,						/* tp_getattr */ | 
 | 	0,						/* tp_setattr */ | 
 | 	0,						/* tp_compare */ | 
 | 	(reprfunc)delta_repr,				/* tp_repr */ | 
 | 	&delta_as_number,				/* tp_as_number */ | 
 | 	0,						/* tp_as_sequence */ | 
 | 	0,						/* tp_as_mapping */ | 
 | 	(hashfunc)delta_hash,				/* tp_hash */ | 
 | 	0,              				/* tp_call */ | 
 | 	(reprfunc)delta_str,				/* tp_str */ | 
 | 	PyObject_GenericGetAttr,			/* tp_getattro */ | 
 | 	0,						/* tp_setattro */ | 
 | 	0,						/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,	/* tp_flags */ | 
 | 	delta_doc,					/* tp_doc */ | 
 | 	0,						/* tp_traverse */ | 
 | 	0,						/* tp_clear */ | 
 | 	delta_richcompare,				/* tp_richcompare */ | 
 | 	0,						/* tp_weaklistoffset */ | 
 | 	0,						/* tp_iter */ | 
 | 	0,						/* tp_iternext */ | 
 | 	delta_methods,					/* tp_methods */ | 
 | 	delta_members,					/* tp_members */ | 
 | 	0,						/* tp_getset */ | 
 | 	0,						/* tp_base */ | 
 | 	0,						/* tp_dict */ | 
 | 	0,						/* tp_descr_get */ | 
 | 	0,						/* tp_descr_set */ | 
 | 	0,						/* tp_dictoffset */ | 
 | 	0,						/* tp_init */ | 
 | 	0,						/* tp_alloc */ | 
 | 	delta_new,					/* tp_new */ | 
 | 	0,						/* tp_free */ | 
 | }; | 
 |  | 
 | /* | 
 |  * PyDateTime_Date implementation. | 
 |  */ | 
 |  | 
 | /* Accessor properties. */ | 
 |  | 
 | static PyObject * | 
 | date_year(PyDateTime_Date *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(GET_YEAR(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_month(PyDateTime_Date *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(GET_MONTH(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_day(PyDateTime_Date *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(GET_DAY(self)); | 
 | } | 
 |  | 
 | static PyGetSetDef date_getset[] = { | 
 | 	{"year",        (getter)date_year}, | 
 | 	{"month",       (getter)date_month}, | 
 | 	{"day",         (getter)date_day}, | 
 | 	{NULL} | 
 | }; | 
 |  | 
 | /* Constructors. */ | 
 |  | 
 | static char *date_kws[] = {"year", "month", "day", NULL}; | 
 |  | 
 | static PyObject * | 
 | date_new(PyTypeObject *type, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *self = NULL; | 
 | 	PyObject *state; | 
 | 	int year; | 
 | 	int month; | 
 | 	int day; | 
 |  | 
 | 	/* Check for invocation from pickle with __getstate__ state */ | 
 | 	if (PyTuple_GET_SIZE(args) == 1 && | 
 | 	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) && | 
 | 	    PyString_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE && | 
 | 	    MONTH_IS_SANE(PyString_AS_STRING(state)[2])) | 
 | 	{ | 
 | 	    	PyDateTime_Date *me; | 
 |  | 
 | 		me = (PyDateTime_Date *) (type->tp_alloc(type, 0)); | 
 | 		if (me != NULL) { | 
 | 			char *pdata = PyString_AS_STRING(state); | 
 | 			memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE); | 
 | 			me->hashcode = -1; | 
 | 		} | 
 | 		return (PyObject *)me; | 
 | 	} | 
 |  | 
 | 	if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws, | 
 | 					&year, &month, &day)) { | 
 | 		if (check_date_args(year, month, day) < 0) | 
 | 			return NULL; | 
 | 		self = new_date_ex(year, month, day, type); | 
 | 	} | 
 | 	return self; | 
 | } | 
 |  | 
 | /* Return new date from localtime(t). */ | 
 | static PyObject * | 
 | date_local_from_time_t(PyObject *cls, double ts) | 
 | { | 
 | 	struct tm *tm; | 
 | 	time_t t; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	t = _PyTime_DoubleToTimet(ts); | 
 | 	if (t == (time_t)-1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	tm = localtime(&t); | 
 | 	if (tm) | 
 | 		result = PyObject_CallFunction(cls, "iii", | 
 | 					       tm->tm_year + 1900, | 
 | 					       tm->tm_mon + 1, | 
 | 					       tm->tm_mday); | 
 | 	else | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"timestamp out of range for " | 
 | 				"platform localtime() function"); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Return new date from current time. | 
 |  * We say this is equivalent to fromtimestamp(time.time()), and the | 
 |  * only way to be sure of that is to *call* time.time().  That's not | 
 |  * generally the same as calling C's time. | 
 |  */ | 
 | static PyObject * | 
 | date_today(PyObject *cls, PyObject *dummy) | 
 | { | 
 | 	PyObject *time; | 
 | 	PyObject *result; | 
 |  | 
 | 	time = time_time(); | 
 | 	if (time == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	/* Note well:  today() is a class method, so this may not call | 
 | 	 * date.fromtimestamp.  For example, it may call | 
 | 	 * datetime.fromtimestamp.  That's why we need all the accuracy | 
 | 	 * time.time() delivers; if someone were gonzo about optimization, | 
 | 	 * date.today() could get away with plain C time(). | 
 | 	 */ | 
 | 	result = PyObject_CallMethod(cls, "fromtimestamp", "O", time); | 
 | 	Py_DECREF(time); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Return new date from given timestamp (Python timestamp -- a double). */ | 
 | static PyObject * | 
 | date_fromtimestamp(PyObject *cls, PyObject *args) | 
 | { | 
 | 	double timestamp; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	if (PyArg_ParseTuple(args, "d:fromtimestamp", ×tamp)) | 
 | 		result = date_local_from_time_t(cls, timestamp); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Return new date from proleptic Gregorian ordinal.  Raises ValueError if | 
 |  * the ordinal is out of range. | 
 |  */ | 
 | static PyObject * | 
 | date_fromordinal(PyObject *cls, PyObject *args) | 
 | { | 
 | 	PyObject *result = NULL; | 
 | 	int ordinal; | 
 |  | 
 | 	if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) { | 
 | 		int year; | 
 | 		int month; | 
 | 		int day; | 
 |  | 
 | 		if (ordinal < 1) | 
 | 			PyErr_SetString(PyExc_ValueError, "ordinal must be " | 
 | 							  ">= 1"); | 
 | 		else { | 
 | 			ord_to_ymd(ordinal, &year, &month, &day); | 
 | 			result = PyObject_CallFunction(cls, "iii", | 
 | 						       year, month, day); | 
 | 		} | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * Date arithmetic. | 
 |  */ | 
 |  | 
 | /* date + timedelta -> date.  If arg negate is true, subtract the timedelta | 
 |  * instead. | 
 |  */ | 
 | static PyObject * | 
 | add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate) | 
 | { | 
 | 	PyObject *result = NULL; | 
 | 	int year = GET_YEAR(date); | 
 | 	int month = GET_MONTH(date); | 
 | 	int deltadays = GET_TD_DAYS(delta); | 
 | 	/* C-level overflow is impossible because |deltadays| < 1e9. */ | 
 | 	int day = GET_DAY(date) + (negate ? -deltadays : deltadays); | 
 |  | 
 | 	if (normalize_date(&year, &month, &day) >= 0) | 
 | 		result = new_date(year, month, day); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_add(PyObject *left, PyObject *right) | 
 | { | 
 | 	if (PyDateTime_Check(left) || PyDateTime_Check(right)) { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 | 	if (PyDate_Check(left)) { | 
 | 		/* date + ??? */ | 
 | 		if (PyDelta_Check(right)) | 
 | 			/* date + delta */ | 
 | 			return add_date_timedelta((PyDateTime_Date *) left, | 
 | 						  (PyDateTime_Delta *) right, | 
 | 						  0); | 
 | 	} | 
 | 	else { | 
 | 		/* ??? + date | 
 | 		 * 'right' must be one of us, or we wouldn't have been called | 
 | 		 */ | 
 | 		if (PyDelta_Check(left)) | 
 | 			/* delta + date */ | 
 | 			return add_date_timedelta((PyDateTime_Date *) right, | 
 | 						  (PyDateTime_Delta *) left, | 
 | 						  0); | 
 | 	} | 
 | 	Py_INCREF(Py_NotImplemented); | 
 | 	return Py_NotImplemented; | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_subtract(PyObject *left, PyObject *right) | 
 | { | 
 | 	if (PyDateTime_Check(left) || PyDateTime_Check(right)) { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 | 	if (PyDate_Check(left)) { | 
 | 		if (PyDate_Check(right)) { | 
 | 			/* date - date */ | 
 | 			int left_ord = ymd_to_ord(GET_YEAR(left), | 
 | 						  GET_MONTH(left), | 
 | 						  GET_DAY(left)); | 
 | 			int right_ord = ymd_to_ord(GET_YEAR(right), | 
 | 						   GET_MONTH(right), | 
 | 						   GET_DAY(right)); | 
 | 			return new_delta(left_ord - right_ord, 0, 0, 0); | 
 | 		} | 
 | 		if (PyDelta_Check(right)) { | 
 | 			/* date - delta */ | 
 | 			return add_date_timedelta((PyDateTime_Date *) left, | 
 | 						  (PyDateTime_Delta *) right, | 
 | 						  1); | 
 | 		} | 
 | 	} | 
 | 	Py_INCREF(Py_NotImplemented); | 
 | 	return Py_NotImplemented; | 
 | } | 
 |  | 
 |  | 
 | /* Various ways to turn a date into a string. */ | 
 |  | 
 | static PyObject * | 
 | date_repr(PyDateTime_Date *self) | 
 | { | 
 | 	char buffer[1028]; | 
 | 	const char *type_name; | 
 |  | 
 | 	type_name = self->ob_type->tp_name; | 
 | 	PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)", | 
 | 		      type_name, | 
 | 		      GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); | 
 |  | 
 | 	return PyString_FromString(buffer); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_isoformat(PyDateTime_Date *self) | 
 | { | 
 | 	char buffer[128]; | 
 |  | 
 | 	isoformat_date(self, buffer, sizeof(buffer)); | 
 | 	return PyString_FromString(buffer); | 
 | } | 
 |  | 
 | /* str() calls the appropriate isoformat() method. */ | 
 | static PyObject * | 
 | date_str(PyDateTime_Date *self) | 
 | { | 
 | 	return PyObject_CallMethod((PyObject *)self, "isoformat", "()"); | 
 | } | 
 |  | 
 |  | 
 | static PyObject * | 
 | date_ctime(PyDateTime_Date *self) | 
 | { | 
 | 	return format_ctime(self, 0, 0, 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw) | 
 | { | 
 | 	/* This method can be inherited, and needs to call the | 
 | 	 * timetuple() method appropriate to self's class. | 
 | 	 */ | 
 | 	PyObject *result; | 
 | 	PyObject *format; | 
 | 	PyObject *tuple; | 
 | 	static char *keywords[] = {"format", NULL}; | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords, | 
 | 					  &PyString_Type, &format)) | 
 | 		return NULL; | 
 |  | 
 | 	tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()"); | 
 | 	if (tuple == NULL) | 
 | 		return NULL; | 
 | 	result = wrap_strftime((PyObject *)self, format, tuple, | 
 | 			       (PyObject *)self); | 
 | 	Py_DECREF(tuple); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* ISO methods. */ | 
 |  | 
 | static PyObject * | 
 | date_isoweekday(PyDateTime_Date *self) | 
 | { | 
 | 	int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); | 
 |  | 
 | 	return PyInt_FromLong(dow + 1); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_isocalendar(PyDateTime_Date *self) | 
 | { | 
 | 	int  year         = GET_YEAR(self); | 
 | 	int  week1_monday = iso_week1_monday(year); | 
 | 	int today         = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self)); | 
 | 	int  week; | 
 | 	int  day; | 
 |  | 
 | 	week = divmod(today - week1_monday, 7, &day); | 
 | 	if (week < 0) { | 
 | 		--year; | 
 | 		week1_monday = iso_week1_monday(year); | 
 | 		week = divmod(today - week1_monday, 7, &day); | 
 | 	} | 
 | 	else if (week >= 52 && today >= iso_week1_monday(year + 1)) { | 
 | 		++year; | 
 | 		week = 0; | 
 | 	} | 
 | 	return Py_BuildValue("iii", year, week + 1, day + 1); | 
 | } | 
 |  | 
 | /* Miscellaneous methods. */ | 
 |  | 
 | static PyObject * | 
 | date_richcompare(PyObject *self, PyObject *other, int op) | 
 | { | 
 | 	if (PyDate_Check(other)) { | 
 | 		int diff = memcmp(((PyDateTime_Date *)self)->data, | 
 | 				  ((PyDateTime_Date *)other)->data, | 
 | 				  _PyDateTime_DATE_DATASIZE); | 
 | 		return diff_to_bool(diff, op); | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_timetuple(PyDateTime_Date *self) | 
 | { | 
 | 	return build_struct_time(GET_YEAR(self), | 
 | 				 GET_MONTH(self), | 
 | 				 GET_DAY(self), | 
 | 				 0, 0, 0, -1); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *clone; | 
 | 	PyObject *tuple; | 
 | 	int year = GET_YEAR(self); | 
 | 	int month = GET_MONTH(self); | 
 | 	int day = GET_DAY(self); | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws, | 
 | 					  &year, &month, &day)) | 
 | 		return NULL; | 
 | 	tuple = Py_BuildValue("iii", year, month, day); | 
 | 	if (tuple == NULL) | 
 | 		return NULL; | 
 | 	clone = date_new(self->ob_type, tuple, NULL); | 
 | 	Py_DECREF(tuple); | 
 | 	return clone; | 
 | } | 
 |  | 
 | static PyObject *date_getstate(PyDateTime_Date *self); | 
 |  | 
 | static long | 
 | date_hash(PyDateTime_Date *self) | 
 | { | 
 | 	if (self->hashcode == -1) { | 
 | 		PyObject *temp = date_getstate(self); | 
 | 		if (temp != NULL) { | 
 | 			self->hashcode = PyObject_Hash(temp); | 
 | 			Py_DECREF(temp); | 
 | 		} | 
 | 	} | 
 | 	return self->hashcode; | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_toordinal(PyDateTime_Date *self) | 
 | { | 
 | 	return PyInt_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self), | 
 | 					 GET_DAY(self))); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_weekday(PyDateTime_Date *self) | 
 | { | 
 | 	int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); | 
 |  | 
 | 	return PyInt_FromLong(dow); | 
 | } | 
 |  | 
 | /* Pickle support, a simple use of __reduce__. */ | 
 |  | 
 | /* __getstate__ isn't exposed */ | 
 | static PyObject * | 
 | date_getstate(PyDateTime_Date *self) | 
 | { | 
 | 	return Py_BuildValue( | 
 | 		"(N)", | 
 | 		PyString_FromStringAndSize((char *)self->data, | 
 | 					   _PyDateTime_DATE_DATASIZE)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | date_reduce(PyDateTime_Date *self, PyObject *arg) | 
 | { | 
 | 	return Py_BuildValue("(ON)", self->ob_type, date_getstate(self)); | 
 | } | 
 |  | 
 | static PyMethodDef date_methods[] = { | 
 |  | 
 | 	/* Class methods: */ | 
 |  | 
 | 	{"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS | | 
 | 							   METH_CLASS, | 
 | 	 PyDoc_STR("timestamp -> local date from a POSIX timestamp (like " | 
 | 	 	   "time.time()).")}, | 
 |  | 
 | 	{"fromordinal", (PyCFunction)date_fromordinal,	METH_VARARGS | | 
 | 							METH_CLASS, | 
 | 	 PyDoc_STR("int -> date corresponding to a proleptic Gregorian " | 
 | 	 	   "ordinal.")}, | 
 |  | 
 | 	{"today",         (PyCFunction)date_today,   METH_NOARGS | METH_CLASS, | 
 | 	 PyDoc_STR("Current date or datetime:  same as " | 
 | 	 	   "self.__class__.fromtimestamp(time.time()).")}, | 
 |  | 
 | 	/* Instance methods: */ | 
 |  | 
 | 	{"ctime",       (PyCFunction)date_ctime,        METH_NOARGS, | 
 | 	 PyDoc_STR("Return ctime() style string.")}, | 
 |  | 
 | 	{"strftime",   	(PyCFunction)date_strftime,	METH_KEYWORDS, | 
 | 	 PyDoc_STR("format -> strftime() style string.")}, | 
 |  | 
 | 	{"timetuple",   (PyCFunction)date_timetuple,    METH_NOARGS, | 
 |          PyDoc_STR("Return time tuple, compatible with time.localtime().")}, | 
 |  | 
 | 	{"isocalendar", (PyCFunction)date_isocalendar,  METH_NOARGS, | 
 | 	 PyDoc_STR("Return a 3-tuple containing ISO year, week number, and " | 
 | 	 	   "weekday.")}, | 
 |  | 
 | 	{"isoformat",   (PyCFunction)date_isoformat,	METH_NOARGS, | 
 | 	 PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")}, | 
 |  | 
 | 	{"isoweekday",  (PyCFunction)date_isoweekday,   METH_NOARGS, | 
 | 	 PyDoc_STR("Return the day of the week represented by the date.\n" | 
 | 	 	   "Monday == 1 ... Sunday == 7")}, | 
 |  | 
 | 	{"toordinal",   (PyCFunction)date_toordinal,    METH_NOARGS, | 
 | 	 PyDoc_STR("Return proleptic Gregorian ordinal.  January 1 of year " | 
 | 	 	   "1 is day 1.")}, | 
 |  | 
 | 	{"weekday",     (PyCFunction)date_weekday,      METH_NOARGS, | 
 | 	 PyDoc_STR("Return the day of the week represented by the date.\n" | 
 | 		   "Monday == 0 ... Sunday == 6")}, | 
 |  | 
 | 	{"replace",     (PyCFunction)date_replace,      METH_KEYWORDS, | 
 | 	 PyDoc_STR("Return date with new specified fields.")}, | 
 |  | 
 | 	{"__reduce__", (PyCFunction)date_reduce,        METH_NOARGS, | 
 | 	 PyDoc_STR("__reduce__() -> (cls, state)")}, | 
 |  | 
 | 	{NULL,	NULL} | 
 | }; | 
 |  | 
 | static char date_doc[] = | 
 | PyDoc_STR("date(year, month, day) --> date object"); | 
 |  | 
 | static PyNumberMethods date_as_number = { | 
 | 	date_add,					/* nb_add */ | 
 | 	date_subtract,					/* nb_subtract */ | 
 | 	0,						/* nb_multiply */ | 
 | 	0,						/* nb_remainder */ | 
 | 	0,						/* nb_divmod */ | 
 | 	0,						/* nb_power */ | 
 | 	0,						/* nb_negative */ | 
 | 	0,						/* nb_positive */ | 
 | 	0,						/* nb_absolute */ | 
 | 	0,						/* nb_bool */ | 
 | }; | 
 |  | 
 | static PyTypeObject PyDateTime_DateType = { | 
 | 	PyObject_HEAD_INIT(NULL) | 
 | 	0,						/* ob_size */ | 
 | 	"datetime.date",				/* tp_name */ | 
 | 	sizeof(PyDateTime_Date),			/* tp_basicsize */ | 
 | 	0,						/* tp_itemsize */ | 
 | 	0,						/* tp_dealloc */ | 
 | 	0,						/* tp_print */ | 
 | 	0,						/* tp_getattr */ | 
 | 	0,						/* tp_setattr */ | 
 | 	0,						/* tp_compare */ | 
 | 	(reprfunc)date_repr,				/* tp_repr */ | 
 | 	&date_as_number,				/* tp_as_number */ | 
 | 	0,						/* tp_as_sequence */ | 
 | 	0,						/* tp_as_mapping */ | 
 | 	(hashfunc)date_hash,				/* tp_hash */ | 
 | 	0,              				/* tp_call */ | 
 | 	(reprfunc)date_str,				/* tp_str */ | 
 | 	PyObject_GenericGetAttr,			/* tp_getattro */ | 
 | 	0,						/* tp_setattro */ | 
 | 	0,						/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,	/* tp_flags */ | 
 | 	date_doc,					/* tp_doc */ | 
 | 	0,						/* tp_traverse */ | 
 | 	0,						/* tp_clear */ | 
 | 	date_richcompare,				/* tp_richcompare */ | 
 | 	0,						/* tp_weaklistoffset */ | 
 | 	0,						/* tp_iter */ | 
 | 	0,						/* tp_iternext */ | 
 | 	date_methods,					/* tp_methods */ | 
 | 	0,						/* tp_members */ | 
 | 	date_getset,					/* tp_getset */ | 
 | 	0,						/* tp_base */ | 
 | 	0,						/* tp_dict */ | 
 | 	0,						/* tp_descr_get */ | 
 | 	0,						/* tp_descr_set */ | 
 | 	0,						/* tp_dictoffset */ | 
 | 	0,						/* tp_init */ | 
 | 	0,						/* tp_alloc */ | 
 | 	date_new,					/* tp_new */ | 
 | 	0,						/* tp_free */ | 
 | }; | 
 |  | 
 | /* | 
 |  * PyDateTime_TZInfo implementation. | 
 |  */ | 
 |  | 
 | /* This is a pure abstract base class, so doesn't do anything beyond | 
 |  * raising NotImplemented exceptions.  Real tzinfo classes need | 
 |  * to derive from this.  This is mostly for clarity, and for efficiency in | 
 |  * datetime and time constructors (their tzinfo arguments need to | 
 |  * be subclasses of this tzinfo class, which is easy and quick to check). | 
 |  * | 
 |  * Note:  For reasons having to do with pickling of subclasses, we have | 
 |  * to allow tzinfo objects to be instantiated.  This wasn't an issue | 
 |  * in the Python implementation (__init__() could raise NotImplementedError | 
 |  * there without ill effect), but doing so in the C implementation hit a | 
 |  * brick wall. | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | tzinfo_nogo(const char* methodname) | 
 | { | 
 | 	PyErr_Format(PyExc_NotImplementedError, | 
 | 		     "a tzinfo subclass must implement %s()", | 
 | 		     methodname); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Methods.  A subclass must implement these. */ | 
 |  | 
 | static PyObject * | 
 | tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt) | 
 | { | 
 | 	return tzinfo_nogo("tzname"); | 
 | } | 
 |  | 
 | static PyObject * | 
 | tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt) | 
 | { | 
 | 	return tzinfo_nogo("utcoffset"); | 
 | } | 
 |  | 
 | static PyObject * | 
 | tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt) | 
 | { | 
 | 	return tzinfo_nogo("dst"); | 
 | } | 
 |  | 
 | static PyObject * | 
 | tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt) | 
 | { | 
 | 	int y, m, d, hh, mm, ss, us; | 
 |  | 
 | 	PyObject *result; | 
 | 	int off, dst; | 
 | 	int none; | 
 | 	int delta; | 
 |  | 
 | 	if (! PyDateTime_Check(dt)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"fromutc: argument must be a datetime"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) { | 
 | 	    	PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo " | 
 | 	    			"is not self"); | 
 | 	    	return NULL; | 
 | 	} | 
 |  | 
 | 	off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none); | 
 | 	if (off == -1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	if (none) { | 
 | 		PyErr_SetString(PyExc_ValueError, "fromutc: non-None " | 
 | 				"utcoffset() result required"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	dst = call_dst(dt->tzinfo, (PyObject *)dt, &none); | 
 | 	if (dst == -1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	if (none) { | 
 | 		PyErr_SetString(PyExc_ValueError, "fromutc: non-None " | 
 | 				"dst() result required"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	y = GET_YEAR(dt); | 
 | 	m = GET_MONTH(dt); | 
 | 	d = GET_DAY(dt); | 
 | 	hh = DATE_GET_HOUR(dt); | 
 | 	mm = DATE_GET_MINUTE(dt); | 
 | 	ss = DATE_GET_SECOND(dt); | 
 | 	us = DATE_GET_MICROSECOND(dt); | 
 |  | 
 | 	delta = off - dst; | 
 | 	mm += delta; | 
 | 	if ((mm < 0 || mm >= 60) && | 
 | 	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) | 
 | 		return NULL; | 
 | 	result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo); | 
 | 	if (result == NULL) | 
 | 		return result; | 
 |  | 
 | 	dst = call_dst(dt->tzinfo, result, &none); | 
 | 	if (dst == -1 && PyErr_Occurred()) | 
 | 		goto Fail; | 
 | 	if (none) | 
 | 		goto Inconsistent; | 
 | 	if (dst == 0) | 
 | 		return result; | 
 |  | 
 | 	mm += dst; | 
 | 	if ((mm < 0 || mm >= 60) && | 
 | 	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) | 
 | 		goto Fail; | 
 | 	Py_DECREF(result); | 
 | 	result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo); | 
 | 	return result; | 
 |  | 
 | Inconsistent: | 
 | 	PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave" | 
 | 			"inconsistent results; cannot convert"); | 
 |  | 
 | 	/* fall thru to failure */ | 
 | Fail: | 
 | 	Py_DECREF(result); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Pickle support.  This is solely so that tzinfo subclasses can use | 
 |  * pickling -- tzinfo itself is supposed to be uninstantiable. | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | tzinfo_reduce(PyObject *self) | 
 | { | 
 | 	PyObject *args, *state, *tmp; | 
 | 	PyObject *getinitargs, *getstate; | 
 |  | 
 | 	tmp = PyTuple_New(0); | 
 | 	if (tmp == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	getinitargs = PyObject_GetAttrString(self, "__getinitargs__"); | 
 | 	if (getinitargs != NULL) { | 
 | 		args = PyObject_CallObject(getinitargs, tmp); | 
 | 		Py_DECREF(getinitargs); | 
 | 		if (args == NULL) { | 
 | 			Py_DECREF(tmp); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		PyErr_Clear(); | 
 | 		args = tmp; | 
 | 		Py_INCREF(args); | 
 | 	} | 
 |  | 
 | 	getstate = PyObject_GetAttrString(self, "__getstate__"); | 
 | 	if (getstate != NULL) { | 
 | 		state = PyObject_CallObject(getstate, tmp); | 
 | 		Py_DECREF(getstate); | 
 | 		if (state == NULL) { | 
 | 			Py_DECREF(args); | 
 | 			Py_DECREF(tmp); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		PyObject **dictptr; | 
 | 		PyErr_Clear(); | 
 | 		state = Py_None; | 
 | 		dictptr = _PyObject_GetDictPtr(self); | 
 | 		if (dictptr && *dictptr && PyDict_Size(*dictptr)) | 
 | 			state = *dictptr; | 
 | 		Py_INCREF(state); | 
 | 	} | 
 |  | 
 | 	Py_DECREF(tmp); | 
 |  | 
 | 	if (state == Py_None) { | 
 | 		Py_DECREF(state); | 
 | 		return Py_BuildValue("(ON)", self->ob_type, args); | 
 | 	} | 
 | 	else | 
 | 		return Py_BuildValue("(ONN)", self->ob_type, args, state); | 
 | } | 
 |  | 
 | static PyMethodDef tzinfo_methods[] = { | 
 |  | 
 | 	{"tzname",	(PyCFunction)tzinfo_tzname,		METH_O, | 
 | 	 PyDoc_STR("datetime -> string name of time zone.")}, | 
 |  | 
 | 	{"utcoffset",	(PyCFunction)tzinfo_utcoffset,		METH_O, | 
 | 	 PyDoc_STR("datetime -> minutes east of UTC (negative for " | 
 | 	 	   "west of UTC).")}, | 
 |  | 
 | 	{"dst",		(PyCFunction)tzinfo_dst,		METH_O, | 
 | 	 PyDoc_STR("datetime -> DST offset in minutes east of UTC.")}, | 
 |  | 
 | 	{"fromutc",	(PyCFunction)tzinfo_fromutc,		METH_O, | 
 | 	 PyDoc_STR("datetime in UTC -> datetime in local time.")}, | 
 |  | 
 | 	{"__reduce__",  (PyCFunction)tzinfo_reduce,             METH_NOARGS, | 
 | 	 PyDoc_STR("-> (cls, state)")}, | 
 |  | 
 | 	{NULL, NULL} | 
 | }; | 
 |  | 
 | static char tzinfo_doc[] = | 
 | PyDoc_STR("Abstract base class for time zone info objects."); | 
 |  | 
 | static PyTypeObject PyDateTime_TZInfoType = { | 
 | 	PyObject_HEAD_INIT(NULL) | 
 | 	0,					/* ob_size */ | 
 | 	"datetime.tzinfo",			/* tp_name */ | 
 | 	sizeof(PyDateTime_TZInfo),		/* tp_basicsize */ | 
 | 	0,					/* tp_itemsize */ | 
 | 	0,					/* tp_dealloc */ | 
 | 	0,					/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,					/* tp_compare */ | 
 | 	0,					/* tp_repr */ | 
 | 	0,					/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	0,					/* tp_hash */ | 
 | 	0,              			/* tp_call */ | 
 | 	0,					/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ | 
 | 	tzinfo_doc,				/* tp_doc */ | 
 | 	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	0,					/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	tzinfo_methods,				/* tp_methods */ | 
 | 	0,					/* tp_members */ | 
 | 	0,					/* tp_getset */ | 
 | 	0,					/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	0,					/* tp_alloc */ | 
 | 	PyType_GenericNew,			/* tp_new */ | 
 | 	0,					/* tp_free */ | 
 | }; | 
 |  | 
 | /* | 
 |  * PyDateTime_Time implementation. | 
 |  */ | 
 |  | 
 | /* Accessor properties. | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | time_hour(PyDateTime_Time *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(TIME_GET_HOUR(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_minute(PyDateTime_Time *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(TIME_GET_MINUTE(self)); | 
 | } | 
 |  | 
 | /* The name time_second conflicted with some platform header file. */ | 
 | static PyObject * | 
 | py_time_second(PyDateTime_Time *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(TIME_GET_SECOND(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_microsecond(PyDateTime_Time *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(TIME_GET_MICROSECOND(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_tzinfo(PyDateTime_Time *self, void *unused) | 
 | { | 
 | 	PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None; | 
 | 	Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyGetSetDef time_getset[] = { | 
 | 	{"hour",        (getter)time_hour}, | 
 | 	{"minute",      (getter)time_minute}, | 
 | 	{"second",      (getter)py_time_second}, | 
 | 	{"microsecond", (getter)time_microsecond}, | 
 | 	{"tzinfo",	(getter)time_tzinfo}, | 
 | 	{NULL} | 
 | }; | 
 |  | 
 | /* | 
 |  * Constructors. | 
 |  */ | 
 |  | 
 | static char *time_kws[] = {"hour", "minute", "second", "microsecond", | 
 | 			   "tzinfo", NULL}; | 
 |  | 
 | static PyObject * | 
 | time_new(PyTypeObject *type, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *self = NULL; | 
 | 	PyObject *state; | 
 | 	int hour = 0; | 
 | 	int minute = 0; | 
 | 	int second = 0; | 
 | 	int usecond = 0; | 
 | 	PyObject *tzinfo = Py_None; | 
 |  | 
 | 	/* Check for invocation from pickle with __getstate__ state */ | 
 | 	if (PyTuple_GET_SIZE(args) >= 1 && | 
 | 	    PyTuple_GET_SIZE(args) <= 2 && | 
 | 	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) && | 
 | 	    PyString_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE && | 
 | 	    ((unsigned char) (PyString_AS_STRING(state)[0])) < 24) | 
 | 	{ | 
 | 		PyDateTime_Time *me; | 
 | 		char aware; | 
 |  | 
 | 		if (PyTuple_GET_SIZE(args) == 2) { | 
 | 			tzinfo = PyTuple_GET_ITEM(args, 1); | 
 | 			if (check_tzinfo_subclass(tzinfo) < 0) { | 
 | 				PyErr_SetString(PyExc_TypeError, "bad " | 
 | 					"tzinfo state arg"); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 		aware = (char)(tzinfo != Py_None); | 
 | 		me = (PyDateTime_Time *) (type->tp_alloc(type, aware)); | 
 | 		if (me != NULL) { | 
 | 			char *pdata = PyString_AS_STRING(state); | 
 |  | 
 | 			memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE); | 
 | 			me->hashcode = -1; | 
 | 			me->hastzinfo = aware; | 
 | 			if (aware) { | 
 | 				Py_INCREF(tzinfo); | 
 | 				me->tzinfo = tzinfo; | 
 | 			} | 
 | 		} | 
 | 		return (PyObject *)me; | 
 | 	} | 
 |  | 
 | 	if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws, | 
 | 					&hour, &minute, &second, &usecond, | 
 | 					&tzinfo)) { | 
 | 		if (check_time_args(hour, minute, second, usecond) < 0) | 
 | 			return NULL; | 
 | 		if (check_tzinfo_subclass(tzinfo) < 0) | 
 | 			return NULL; | 
 | 		self = new_time_ex(hour, minute, second, usecond, tzinfo, | 
 | 				   type); | 
 | 	} | 
 | 	return self; | 
 | } | 
 |  | 
 | /* | 
 |  * Destructor. | 
 |  */ | 
 |  | 
 | static void | 
 | time_dealloc(PyDateTime_Time *self) | 
 | { | 
 | 	if (HASTZINFO(self)) { | 
 | 		Py_XDECREF(self->tzinfo); | 
 | 	} | 
 | 	self->ob_type->tp_free((PyObject *)self); | 
 | } | 
 |  | 
 | /* | 
 |  * Indirect access to tzinfo methods. | 
 |  */ | 
 |  | 
 | /* These are all METH_NOARGS, so don't need to check the arglist. */ | 
 | static PyObject * | 
 | time_utcoffset(PyDateTime_Time *self, PyObject *unused) { | 
 | 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, | 
 | 				   "utcoffset", Py_None); | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_dst(PyDateTime_Time *self, PyObject *unused) { | 
 | 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, | 
 | 				   "dst", Py_None); | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_tzname(PyDateTime_Time *self, PyObject *unused) { | 
 | 	return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None, | 
 | 			   Py_None); | 
 | } | 
 |  | 
 | /* | 
 |  * Various ways to turn a time into a string. | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | time_repr(PyDateTime_Time *self) | 
 | { | 
 | 	char buffer[100]; | 
 | 	const char *type_name = self->ob_type->tp_name; | 
 | 	int h = TIME_GET_HOUR(self); | 
 | 	int m = TIME_GET_MINUTE(self); | 
 | 	int s = TIME_GET_SECOND(self); | 
 | 	int us = TIME_GET_MICROSECOND(self); | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	if (us) | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "%s(%d, %d, %d, %d)", type_name, h, m, s, us); | 
 | 	else if (s) | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "%s(%d, %d, %d)", type_name, h, m, s); | 
 | 	else | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "%s(%d, %d)", type_name, h, m); | 
 | 	result = PyString_FromString(buffer); | 
 | 	if (result != NULL && HASTZINFO(self)) | 
 | 		result = append_keyword_tzinfo(result, self->tzinfo); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_str(PyDateTime_Time *self) | 
 | { | 
 | 	return PyObject_CallMethod((PyObject *)self, "isoformat", "()"); | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_isoformat(PyDateTime_Time *self) | 
 | { | 
 | 	char buf[100]; | 
 | 	PyObject *result; | 
 | 	/* Reuse the time format code from the datetime type. */ | 
 | 	PyDateTime_DateTime datetime; | 
 | 	PyDateTime_DateTime *pdatetime = &datetime; | 
 |  | 
 | 	/* Copy over just the time bytes. */ | 
 | 	memcpy(pdatetime->data + _PyDateTime_DATE_DATASIZE, | 
 | 	       self->data, | 
 | 	       _PyDateTime_TIME_DATASIZE); | 
 |  | 
 | 	isoformat_time(pdatetime, buf, sizeof(buf)); | 
 | 	result = PyString_FromString(buf); | 
 | 	if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None) | 
 | 		return result; | 
 |  | 
 | 	/* We need to append the UTC offset. */ | 
 | 	if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo, | 
 | 			     Py_None) < 0) { | 
 | 		Py_DECREF(result); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyString_ConcatAndDel(&result, PyString_FromString(buf)); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *result; | 
 | 	PyObject *format; | 
 | 	PyObject *tuple; | 
 | 	static char *keywords[] = {"format", NULL}; | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords, | 
 | 					  &PyString_Type, &format)) | 
 | 		return NULL; | 
 |  | 
 | 	/* Python's strftime does insane things with the year part of the | 
 | 	 * timetuple.  The year is forced to (the otherwise nonsensical) | 
 | 	 * 1900 to worm around that. | 
 | 	 */ | 
 | 	tuple = Py_BuildValue("iiiiiiiii", | 
 | 		              1900, 1, 1, /* year, month, day */ | 
 | 			      TIME_GET_HOUR(self), | 
 | 			      TIME_GET_MINUTE(self), | 
 | 			      TIME_GET_SECOND(self), | 
 | 			      0, 1, -1); /* weekday, daynum, dst */ | 
 | 	if (tuple == NULL) | 
 | 		return NULL; | 
 | 	assert(PyTuple_Size(tuple) == 9); | 
 | 	result = wrap_strftime((PyObject *)self, format, tuple, Py_None); | 
 | 	Py_DECREF(tuple); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * Miscellaneous methods. | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | time_richcompare(PyObject *self, PyObject *other, int op) | 
 | { | 
 | 	int diff; | 
 | 	naivety n1, n2; | 
 | 	int offset1, offset2; | 
 |  | 
 | 	if (! PyTime_Check(other)) { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 | 	if (classify_two_utcoffsets(self, &offset1, &n1, Py_None, | 
 | 				    other, &offset2, &n2, Py_None) < 0) | 
 | 		return NULL; | 
 | 	assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); | 
 | 	/* If they're both naive, or both aware and have the same offsets, | 
 | 	 * we get off cheap.  Note that if they're both naive, offset1 == | 
 | 	 * offset2 == 0 at this point. | 
 | 	 */ | 
 | 	if (n1 == n2 && offset1 == offset2) { | 
 | 		diff = memcmp(((PyDateTime_Time *)self)->data, | 
 | 			      ((PyDateTime_Time *)other)->data, | 
 | 			      _PyDateTime_TIME_DATASIZE); | 
 | 		return diff_to_bool(diff, op); | 
 | 	} | 
 |  | 
 | 	if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) { | 
 | 		assert(offset1 != offset2);	/* else last "if" handled it */ | 
 | 		/* Convert everything except microseconds to seconds.  These | 
 | 		 * can't overflow (no more than the # of seconds in 2 days). | 
 | 		 */ | 
 | 		offset1 = TIME_GET_HOUR(self) * 3600 + | 
 | 			  (TIME_GET_MINUTE(self) - offset1) * 60 + | 
 | 			  TIME_GET_SECOND(self); | 
 | 		offset2 = TIME_GET_HOUR(other) * 3600 + | 
 | 			  (TIME_GET_MINUTE(other) - offset2) * 60 + | 
 | 			  TIME_GET_SECOND(other); | 
 | 		diff = offset1 - offset2; | 
 | 		if (diff == 0) | 
 | 			diff = TIME_GET_MICROSECOND(self) - | 
 | 			       TIME_GET_MICROSECOND(other); | 
 | 		return diff_to_bool(diff, op); | 
 | 	} | 
 |  | 
 | 	assert(n1 != n2); | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 			"can't compare offset-naive and " | 
 | 			"offset-aware times"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static long | 
 | time_hash(PyDateTime_Time *self) | 
 | { | 
 | 	if (self->hashcode == -1) { | 
 | 		naivety n; | 
 | 		int offset; | 
 | 		PyObject *temp; | 
 |  | 
 | 		n = classify_utcoffset((PyObject *)self, Py_None, &offset); | 
 | 		assert(n != OFFSET_UNKNOWN); | 
 | 		if (n == OFFSET_ERROR) | 
 | 			return -1; | 
 |  | 
 | 		/* Reduce this to a hash of another object. */ | 
 | 		if (offset == 0) | 
 | 			temp = PyString_FromStringAndSize((char *)self->data, | 
 | 						_PyDateTime_TIME_DATASIZE); | 
 | 		else { | 
 | 			int hour; | 
 | 			int minute; | 
 |  | 
 | 			assert(n == OFFSET_AWARE); | 
 | 			assert(HASTZINFO(self)); | 
 | 			hour = divmod(TIME_GET_HOUR(self) * 60 + | 
 | 					TIME_GET_MINUTE(self) - offset, | 
 | 				      60, | 
 | 				      &minute); | 
 | 			if (0 <= hour && hour < 24) | 
 | 				temp = new_time(hour, minute, | 
 | 						TIME_GET_SECOND(self), | 
 | 						TIME_GET_MICROSECOND(self), | 
 | 						Py_None); | 
 | 			else | 
 | 				temp = Py_BuildValue("iiii", | 
 | 					   hour, minute, | 
 | 					   TIME_GET_SECOND(self), | 
 | 					   TIME_GET_MICROSECOND(self)); | 
 | 		} | 
 | 		if (temp != NULL) { | 
 | 			self->hashcode = PyObject_Hash(temp); | 
 | 			Py_DECREF(temp); | 
 | 		} | 
 | 	} | 
 | 	return self->hashcode; | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *clone; | 
 | 	PyObject *tuple; | 
 | 	int hh = TIME_GET_HOUR(self); | 
 | 	int mm = TIME_GET_MINUTE(self); | 
 | 	int ss = TIME_GET_SECOND(self); | 
 | 	int us = TIME_GET_MICROSECOND(self); | 
 | 	PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None; | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace", | 
 | 					  time_kws, | 
 | 					  &hh, &mm, &ss, &us, &tzinfo)) | 
 | 		return NULL; | 
 | 	tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo); | 
 | 	if (tuple == NULL) | 
 | 		return NULL; | 
 | 	clone = time_new(self->ob_type, tuple, NULL); | 
 | 	Py_DECREF(tuple); | 
 | 	return clone; | 
 | } | 
 |  | 
 | static int | 
 | time_bool(PyDateTime_Time *self) | 
 | { | 
 | 	int offset; | 
 | 	int none; | 
 |  | 
 | 	if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) { | 
 | 		/* Since utcoffset is in whole minutes, nothing can | 
 | 		 * alter the conclusion that this is nonzero. | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 | 	offset = 0; | 
 | 	if (HASTZINFO(self) && self->tzinfo != Py_None) { | 
 | 		offset = call_utcoffset(self->tzinfo, Py_None, &none); | 
 | 		if (offset == -1 && PyErr_Occurred()) | 
 | 			return -1; | 
 | 	} | 
 | 	return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0; | 
 | } | 
 |  | 
 | /* Pickle support, a simple use of __reduce__. */ | 
 |  | 
 | /* Let basestate be the non-tzinfo data string. | 
 |  * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo). | 
 |  * So it's a tuple in any (non-error) case. | 
 |  * __getstate__ isn't exposed. | 
 |  */ | 
 | static PyObject * | 
 | time_getstate(PyDateTime_Time *self) | 
 | { | 
 | 	PyObject *basestate; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	basestate =  PyString_FromStringAndSize((char *)self->data, | 
 | 						_PyDateTime_TIME_DATASIZE); | 
 | 	if (basestate != NULL) { | 
 | 		if (! HASTZINFO(self) || self->tzinfo == Py_None) | 
 | 			result = PyTuple_Pack(1, basestate); | 
 | 		else | 
 | 			result = PyTuple_Pack(2, basestate, self->tzinfo); | 
 | 		Py_DECREF(basestate); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | time_reduce(PyDateTime_Time *self, PyObject *arg) | 
 | { | 
 | 	return Py_BuildValue("(ON)", self->ob_type, time_getstate(self)); | 
 | } | 
 |  | 
 | static PyMethodDef time_methods[] = { | 
 |  | 
 | 	{"isoformat",   (PyCFunction)time_isoformat,	METH_KEYWORDS, | 
 | 	 PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]" | 
 | 	 	   "[+HH:MM].")}, | 
 |  | 
 | 	{"strftime",   	(PyCFunction)time_strftime,	METH_KEYWORDS, | 
 | 	 PyDoc_STR("format -> strftime() style string.")}, | 
 |  | 
 | 	{"utcoffset",	(PyCFunction)time_utcoffset,	METH_NOARGS, | 
 | 	 PyDoc_STR("Return self.tzinfo.utcoffset(self).")}, | 
 |  | 
 | 	{"tzname",	(PyCFunction)time_tzname,	METH_NOARGS, | 
 | 	 PyDoc_STR("Return self.tzinfo.tzname(self).")}, | 
 |  | 
 | 	{"dst",		(PyCFunction)time_dst,		METH_NOARGS, | 
 | 	 PyDoc_STR("Return self.tzinfo.dst(self).")}, | 
 |  | 
 | 	{"replace",     (PyCFunction)time_replace,	METH_KEYWORDS, | 
 | 	 PyDoc_STR("Return time with new specified fields.")}, | 
 |  | 
 | 	{"__reduce__", (PyCFunction)time_reduce,        METH_NOARGS, | 
 | 	 PyDoc_STR("__reduce__() -> (cls, state)")}, | 
 |  | 
 | 	{NULL,	NULL} | 
 | }; | 
 |  | 
 | static char time_doc[] = | 
 | PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\ | 
 | \n\ | 
 | All arguments are optional. tzinfo may be None, or an instance of\n\ | 
 | a tzinfo subclass. The remaining arguments may be ints or longs.\n"); | 
 |  | 
 | static PyNumberMethods time_as_number = { | 
 | 	0,					/* nb_add */ | 
 | 	0,					/* nb_subtract */ | 
 | 	0,					/* nb_multiply */ | 
 | 	0,					/* nb_remainder */ | 
 | 	0,					/* nb_divmod */ | 
 | 	0,					/* nb_power */ | 
 | 	0,					/* nb_negative */ | 
 | 	0,					/* nb_positive */ | 
 | 	0,					/* nb_absolute */ | 
 | 	(inquiry)time_bool,			/* nb_bool */ | 
 | }; | 
 |  | 
 | static PyTypeObject PyDateTime_TimeType = { | 
 | 	PyObject_HEAD_INIT(NULL) | 
 | 	0,					/* ob_size */ | 
 | 	"datetime.time",			/* tp_name */ | 
 | 	sizeof(PyDateTime_Time),		/* tp_basicsize */ | 
 | 	0,					/* tp_itemsize */ | 
 | 	(destructor)time_dealloc,		/* tp_dealloc */ | 
 | 	0,					/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,					/* tp_compare */ | 
 | 	(reprfunc)time_repr,			/* tp_repr */ | 
 | 	&time_as_number,			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)time_hash,			/* tp_hash */ | 
 | 	0,              			/* tp_call */ | 
 | 	(reprfunc)time_str,			/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ | 
 | 	time_doc,				/* tp_doc */ | 
 | 	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	time_richcompare,			/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	time_methods,				/* tp_methods */ | 
 | 	0,					/* tp_members */ | 
 | 	time_getset,				/* tp_getset */ | 
 | 	0,					/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	time_alloc,				/* tp_alloc */ | 
 | 	time_new,				/* tp_new */ | 
 | 	0,					/* tp_free */ | 
 | }; | 
 |  | 
 | /* | 
 |  * PyDateTime_DateTime implementation. | 
 |  */ | 
 |  | 
 | /* Accessor properties.  Properties for day, month, and year are inherited | 
 |  * from date. | 
 |  */ | 
 |  | 
 | static PyObject * | 
 | datetime_hour(PyDateTime_DateTime *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(DATE_GET_HOUR(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_minute(PyDateTime_DateTime *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(DATE_GET_MINUTE(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_second(PyDateTime_DateTime *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(DATE_GET_SECOND(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_microsecond(PyDateTime_DateTime *self, void *unused) | 
 | { | 
 | 	return PyInt_FromLong(DATE_GET_MICROSECOND(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_tzinfo(PyDateTime_DateTime *self, void *unused) | 
 | { | 
 | 	PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None; | 
 | 	Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyGetSetDef datetime_getset[] = { | 
 | 	{"hour",        (getter)datetime_hour}, | 
 | 	{"minute",      (getter)datetime_minute}, | 
 | 	{"second",      (getter)datetime_second}, | 
 | 	{"microsecond", (getter)datetime_microsecond}, | 
 | 	{"tzinfo",	(getter)datetime_tzinfo}, | 
 | 	{NULL} | 
 | }; | 
 |  | 
 | /* | 
 |  * Constructors. | 
 |  */ | 
 |  | 
 | static char *datetime_kws[] = { | 
 | 	"year", "month", "day", "hour", "minute", "second", | 
 | 	"microsecond", "tzinfo", NULL | 
 | }; | 
 |  | 
 | static PyObject * | 
 | datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *self = NULL; | 
 | 	PyObject *state; | 
 | 	int year; | 
 | 	int month; | 
 | 	int day; | 
 | 	int hour = 0; | 
 | 	int minute = 0; | 
 | 	int second = 0; | 
 | 	int usecond = 0; | 
 | 	PyObject *tzinfo = Py_None; | 
 |  | 
 | 	/* Check for invocation from pickle with __getstate__ state */ | 
 | 	if (PyTuple_GET_SIZE(args) >= 1 && | 
 | 	    PyTuple_GET_SIZE(args) <= 2 && | 
 | 	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) && | 
 | 	    PyString_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE && | 
 | 	    MONTH_IS_SANE(PyString_AS_STRING(state)[2])) | 
 | 	{ | 
 | 		PyDateTime_DateTime *me; | 
 | 		char aware; | 
 |  | 
 | 		if (PyTuple_GET_SIZE(args) == 2) { | 
 | 			tzinfo = PyTuple_GET_ITEM(args, 1); | 
 | 			if (check_tzinfo_subclass(tzinfo) < 0) { | 
 | 				PyErr_SetString(PyExc_TypeError, "bad " | 
 | 					"tzinfo state arg"); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 		aware = (char)(tzinfo != Py_None); | 
 | 		me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware)); | 
 | 		if (me != NULL) { | 
 | 			char *pdata = PyString_AS_STRING(state); | 
 |  | 
 | 			memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE); | 
 | 			me->hashcode = -1; | 
 | 			me->hastzinfo = aware; | 
 | 			if (aware) { | 
 | 				Py_INCREF(tzinfo); | 
 | 				me->tzinfo = tzinfo; | 
 | 			} | 
 | 		} | 
 | 		return (PyObject *)me; | 
 | 	} | 
 |  | 
 | 	if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws, | 
 | 					&year, &month, &day, &hour, &minute, | 
 | 					&second, &usecond, &tzinfo)) { | 
 | 		if (check_date_args(year, month, day) < 0) | 
 | 			return NULL; | 
 | 		if (check_time_args(hour, minute, second, usecond) < 0) | 
 | 			return NULL; | 
 | 		if (check_tzinfo_subclass(tzinfo) < 0) | 
 | 			return NULL; | 
 | 		self = new_datetime_ex(year, month, day, | 
 | 				    	hour, minute, second, usecond, | 
 | 				    	tzinfo, type); | 
 | 	} | 
 | 	return self; | 
 | } | 
 |  | 
 | /* TM_FUNC is the shared type of localtime() and gmtime(). */ | 
 | typedef struct tm *(*TM_FUNC)(const time_t *timer); | 
 |  | 
 | /* Internal helper. | 
 |  * Build datetime from a time_t and a distinct count of microseconds. | 
 |  * Pass localtime or gmtime for f, to control the interpretation of timet. | 
 |  */ | 
 | static PyObject * | 
 | datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us, | 
 | 			   PyObject *tzinfo) | 
 | { | 
 | 	struct tm *tm; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	tm = f(&timet); | 
 | 	if (tm) { | 
 | 		/* The platform localtime/gmtime may insert leap seconds, | 
 | 		 * indicated by tm->tm_sec > 59.  We don't care about them, | 
 | 		 * except to the extent that passing them on to the datetime | 
 | 		 * constructor would raise ValueError for a reason that | 
 | 		 * made no sense to the user. | 
 | 		 */ | 
 | 		if (tm->tm_sec > 59) | 
 | 			tm->tm_sec = 59; | 
 | 		result = PyObject_CallFunction(cls, "iiiiiiiO", | 
 | 					       tm->tm_year + 1900, | 
 | 					       tm->tm_mon + 1, | 
 | 					       tm->tm_mday, | 
 | 					       tm->tm_hour, | 
 | 					       tm->tm_min, | 
 | 					       tm->tm_sec, | 
 | 					       us, | 
 | 					       tzinfo); | 
 | 	} | 
 | 	else | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"timestamp out of range for " | 
 | 				"platform localtime()/gmtime() function"); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Internal helper. | 
 |  * Build datetime from a Python timestamp.  Pass localtime or gmtime for f, | 
 |  * to control the interpretation of the timestamp.  Since a double doesn't | 
 |  * have enough bits to cover a datetime's full range of precision, it's | 
 |  * better to call datetime_from_timet_and_us provided you have a way | 
 |  * to get that much precision (e.g., C time() isn't good enough). | 
 |  */ | 
 | static PyObject * | 
 | datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp, | 
 | 			PyObject *tzinfo) | 
 | { | 
 | 	time_t timet; | 
 | 	double fraction; | 
 | 	int us; | 
 |  | 
 | 	timet = _PyTime_DoubleToTimet(timestamp); | 
 | 	if (timet == (time_t)-1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	fraction = timestamp - (double)timet; | 
 | 	us = (int)round_to_long(fraction * 1e6); | 
 | 	/* If timestamp is less than one microsecond smaller than a | 
 | 	 * full second, round up. Otherwise, ValueErrors are raised | 
 | 	 * for some floats. */ | 
 | 	if (us == 1000000) { | 
 | 		timet += 1; | 
 | 		us = 0; | 
 | 	} | 
 | 	return datetime_from_timet_and_us(cls, f, timet, us, tzinfo); | 
 | } | 
 |  | 
 | /* Internal helper. | 
 |  * Build most accurate possible datetime for current time.  Pass localtime or | 
 |  * gmtime for f as appropriate. | 
 |  */ | 
 | static PyObject * | 
 | datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo) | 
 | { | 
 | #ifdef HAVE_GETTIMEOFDAY | 
 | 	struct timeval t; | 
 |  | 
 | #ifdef GETTIMEOFDAY_NO_TZ | 
 | 	gettimeofday(&t); | 
 | #else | 
 | 	gettimeofday(&t, (struct timezone *)NULL); | 
 | #endif | 
 | 	return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec, | 
 | 					  tzinfo); | 
 |  | 
 | #else	/* ! HAVE_GETTIMEOFDAY */ | 
 | 	/* No flavor of gettimeofday exists on this platform.  Python's | 
 | 	 * time.time() does a lot of other platform tricks to get the | 
 | 	 * best time it can on the platform, and we're not going to do | 
 | 	 * better than that (if we could, the better code would belong | 
 | 	 * in time.time()!)  We're limited by the precision of a double, | 
 | 	 * though. | 
 | 	 */ | 
 | 	PyObject *time; | 
 | 	double dtime; | 
 |  | 
 | 	time = time_time(); | 
 |     	if (time == NULL) | 
 |     		return NULL; | 
 | 	dtime = PyFloat_AsDouble(time); | 
 | 	Py_DECREF(time); | 
 | 	if (dtime == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return datetime_from_timestamp(cls, f, dtime, tzinfo); | 
 | #endif	/* ! HAVE_GETTIMEOFDAY */ | 
 | } | 
 |  | 
 | /* Return best possible local time -- this isn't constrained by the | 
 |  * precision of a timestamp. | 
 |  */ | 
 | static PyObject * | 
 | datetime_now(PyObject *cls, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *self; | 
 | 	PyObject *tzinfo = Py_None; | 
 | 	static char *keywords[] = {"tz", NULL}; | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords, | 
 | 					  &tzinfo)) | 
 | 		return NULL; | 
 | 	if (check_tzinfo_subclass(tzinfo) < 0) | 
 | 		return NULL; | 
 |  | 
 | 	self = datetime_best_possible(cls, | 
 | 				      tzinfo == Py_None ? localtime : gmtime, | 
 | 				      tzinfo); | 
 | 	if (self != NULL && tzinfo != Py_None) { | 
 | 		/* Convert UTC to tzinfo's zone. */ | 
 | 		PyObject *temp = self; | 
 | 		self = PyObject_CallMethod(tzinfo, "fromutc", "O", self); | 
 | 		Py_DECREF(temp); | 
 | 	} | 
 | 	return self; | 
 | } | 
 |  | 
 | /* Return best possible UTC time -- this isn't constrained by the | 
 |  * precision of a timestamp. | 
 |  */ | 
 | static PyObject * | 
 | datetime_utcnow(PyObject *cls, PyObject *dummy) | 
 | { | 
 | 	return datetime_best_possible(cls, gmtime, Py_None); | 
 | } | 
 |  | 
 | /* Return new local datetime from timestamp (Python timestamp -- a double). */ | 
 | static PyObject * | 
 | datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *self; | 
 | 	double timestamp; | 
 | 	PyObject *tzinfo = Py_None; | 
 | 	static char *keywords[] = {"timestamp", "tz", NULL}; | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp", | 
 | 					  keywords, ×tamp, &tzinfo)) | 
 | 		return NULL; | 
 | 	if (check_tzinfo_subclass(tzinfo) < 0) | 
 | 		return NULL; | 
 |  | 
 | 	self = datetime_from_timestamp(cls, | 
 | 				       tzinfo == Py_None ? localtime : gmtime, | 
 | 				       timestamp, | 
 | 				       tzinfo); | 
 | 	if (self != NULL && tzinfo != Py_None) { | 
 | 		/* Convert UTC to tzinfo's zone. */ | 
 | 		PyObject *temp = self; | 
 | 		self = PyObject_CallMethod(tzinfo, "fromutc", "O", self); | 
 | 		Py_DECREF(temp); | 
 | 	} | 
 | 	return self; | 
 | } | 
 |  | 
 | /* Return new UTC datetime from timestamp (Python timestamp -- a double). */ | 
 | static PyObject * | 
 | datetime_utcfromtimestamp(PyObject *cls, PyObject *args) | 
 | { | 
 | 	double timestamp; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	if (PyArg_ParseTuple(args, "d:utcfromtimestamp", ×tamp)) | 
 | 		result = datetime_from_timestamp(cls, gmtime, timestamp, | 
 | 						 Py_None); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Return new datetime from time.strptime(). */ | 
 | static PyObject * | 
 | datetime_strptime(PyObject *cls, PyObject *args) | 
 | { | 
 | 	PyObject *result = NULL, *obj, *module; | 
 | 	const char *string, *format; | 
 |  | 
 | 	if (!PyArg_ParseTuple(args, "ss:strptime", &string, &format)) | 
 | 		return NULL; | 
 |  | 
 | 	if ((module = PyImport_ImportModule("time")) == NULL) | 
 | 		return NULL; | 
 | 	obj = PyObject_CallMethod(module, "strptime", "ss", string, format); | 
 | 	Py_DECREF(module); | 
 |  | 
 | 	if (obj != NULL) { | 
 | 		int i, good_timetuple = 1; | 
 | 		long int ia[6]; | 
 | 		if (PySequence_Check(obj) && PySequence_Size(obj) >= 6) | 
 | 			for (i=0; i < 6; i++) { | 
 | 				PyObject *p = PySequence_GetItem(obj, i); | 
 | 				if (p == NULL) { | 
 | 					Py_DECREF(obj); | 
 | 					return NULL; | 
 | 				} | 
 | 				if (PyInt_CheckExact(p)) | 
 | 					ia[i] = PyInt_AsLong(p); | 
 | 				else | 
 | 					good_timetuple = 0; | 
 | 				Py_DECREF(p); | 
 | 			} | 
 | 		else | 
 | 			good_timetuple = 0; | 
 | 		if (good_timetuple) | 
 | 			result = PyObject_CallFunction(cls, "iiiiii", | 
 | 				ia[0], ia[1], ia[2], ia[3], ia[4], ia[5]); | 
 | 		else | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 				"unexpected value from time.strptime"); | 
 | 		Py_DECREF(obj); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Return new datetime from date/datetime and time arguments. */ | 
 | static PyObject * | 
 | datetime_combine(PyObject *cls, PyObject *args, PyObject *kw) | 
 | { | 
 |  	static char *keywords[] = {"date", "time", NULL}; | 
 | 	PyObject *date; | 
 | 	PyObject *time; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords, | 
 | 					&PyDateTime_DateType, &date, | 
 | 					&PyDateTime_TimeType, &time)) { | 
 | 		PyObject *tzinfo = Py_None; | 
 |  | 
 | 		if (HASTZINFO(time)) | 
 | 			tzinfo = ((PyDateTime_Time *)time)->tzinfo; | 
 | 		result = PyObject_CallFunction(cls, "iiiiiiiO", | 
 | 						GET_YEAR(date), | 
 | 				    		GET_MONTH(date), | 
 | 						GET_DAY(date), | 
 | 				    		TIME_GET_HOUR(time), | 
 | 				    		TIME_GET_MINUTE(time), | 
 | 				    		TIME_GET_SECOND(time), | 
 | 				    		TIME_GET_MICROSECOND(time), | 
 | 				    		tzinfo); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * Destructor. | 
 |  */ | 
 |  | 
 | static void | 
 | datetime_dealloc(PyDateTime_DateTime *self) | 
 | { | 
 | 	if (HASTZINFO(self)) { | 
 | 		Py_XDECREF(self->tzinfo); | 
 | 	} | 
 | 	self->ob_type->tp_free((PyObject *)self); | 
 | } | 
 |  | 
 | /* | 
 |  * Indirect access to tzinfo methods. | 
 |  */ | 
 |  | 
 | /* These are all METH_NOARGS, so don't need to check the arglist. */ | 
 | static PyObject * | 
 | datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) { | 
 | 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, | 
 | 				   "utcoffset", (PyObject *)self); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_dst(PyDateTime_DateTime *self, PyObject *unused) { | 
 | 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, | 
 | 				   "dst", (PyObject *)self); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) { | 
 | 	return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None, | 
 | 			   (PyObject *)self); | 
 | } | 
 |  | 
 | /* | 
 |  * datetime arithmetic. | 
 |  */ | 
 |  | 
 | /* factor must be 1 (to add) or -1 (to subtract).  The result inherits | 
 |  * the tzinfo state of date. | 
 |  */ | 
 | static PyObject * | 
 | add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta, | 
 | 		       int factor) | 
 | { | 
 | 	/* Note that the C-level additions can't overflow, because of | 
 | 	 * invariant bounds on the member values. | 
 | 	 */ | 
 | 	int year = GET_YEAR(date); | 
 | 	int month = GET_MONTH(date); | 
 | 	int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor; | 
 | 	int hour = DATE_GET_HOUR(date); | 
 | 	int minute = DATE_GET_MINUTE(date); | 
 | 	int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor; | 
 | 	int microsecond = DATE_GET_MICROSECOND(date) + | 
 | 			  GET_TD_MICROSECONDS(delta) * factor; | 
 |  | 
 | 	assert(factor == 1 || factor == -1); | 
 | 	if (normalize_datetime(&year, &month, &day, | 
 | 			       &hour, &minute, &second, µsecond) < 0) | 
 | 		return NULL; | 
 | 	else | 
 | 		return new_datetime(year, month, day, | 
 | 				    hour, minute, second, microsecond, | 
 | 				    HASTZINFO(date) ? date->tzinfo : Py_None); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_add(PyObject *left, PyObject *right) | 
 | { | 
 | 	if (PyDateTime_Check(left)) { | 
 | 		/* datetime + ??? */ | 
 | 		if (PyDelta_Check(right)) | 
 | 			/* datetime + delta */ | 
 | 			return add_datetime_timedelta( | 
 | 					(PyDateTime_DateTime *)left, | 
 | 					(PyDateTime_Delta *)right, | 
 | 					1); | 
 | 	} | 
 | 	else if (PyDelta_Check(left)) { | 
 | 		/* delta + datetime */ | 
 | 		return add_datetime_timedelta((PyDateTime_DateTime *) right, | 
 | 					      (PyDateTime_Delta *) left, | 
 | 					      1); | 
 | 	} | 
 | 	Py_INCREF(Py_NotImplemented); | 
 | 	return Py_NotImplemented; | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_subtract(PyObject *left, PyObject *right) | 
 | { | 
 | 	PyObject *result = Py_NotImplemented; | 
 |  | 
 | 	if (PyDateTime_Check(left)) { | 
 | 		/* datetime - ??? */ | 
 | 		if (PyDateTime_Check(right)) { | 
 | 			/* datetime - datetime */ | 
 | 			naivety n1, n2; | 
 | 			int offset1, offset2; | 
 | 			int delta_d, delta_s, delta_us; | 
 |  | 
 | 			if (classify_two_utcoffsets(left, &offset1, &n1, left, | 
 | 						    right, &offset2, &n2, | 
 | 						    right) < 0) | 
 | 				return NULL; | 
 | 			assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); | 
 | 			if (n1 != n2) { | 
 | 				PyErr_SetString(PyExc_TypeError, | 
 | 					"can't subtract offset-naive and " | 
 | 					"offset-aware datetimes"); | 
 | 				return NULL; | 
 | 			} | 
 | 			delta_d = ymd_to_ord(GET_YEAR(left), | 
 | 					     GET_MONTH(left), | 
 | 					     GET_DAY(left)) - | 
 | 				  ymd_to_ord(GET_YEAR(right), | 
 | 					     GET_MONTH(right), | 
 | 					     GET_DAY(right)); | 
 | 			/* These can't overflow, since the values are | 
 | 			 * normalized.  At most this gives the number of | 
 | 			 * seconds in one day. | 
 | 			 */ | 
 | 			delta_s = (DATE_GET_HOUR(left) - | 
 | 				   DATE_GET_HOUR(right)) * 3600 + | 
 | 			          (DATE_GET_MINUTE(left) - | 
 | 			           DATE_GET_MINUTE(right)) * 60 + | 
 | 				  (DATE_GET_SECOND(left) - | 
 | 				   DATE_GET_SECOND(right)); | 
 | 			delta_us = DATE_GET_MICROSECOND(left) - | 
 | 				   DATE_GET_MICROSECOND(right); | 
 | 			/* (left - offset1) - (right - offset2) = | 
 | 			 * (left - right) + (offset2 - offset1) | 
 | 			 */ | 
 | 			delta_s += (offset2 - offset1) * 60; | 
 | 			result = new_delta(delta_d, delta_s, delta_us, 1); | 
 | 		} | 
 | 		else if (PyDelta_Check(right)) { | 
 | 			/* datetime - delta */ | 
 | 			result = add_datetime_timedelta( | 
 | 					(PyDateTime_DateTime *)left, | 
 | 					(PyDateTime_Delta *)right, | 
 | 					-1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (result == Py_NotImplemented) | 
 | 		Py_INCREF(result); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Various ways to turn a datetime into a string. */ | 
 |  | 
 | static PyObject * | 
 | datetime_repr(PyDateTime_DateTime *self) | 
 | { | 
 | 	char buffer[1000]; | 
 | 	const char *type_name = self->ob_type->tp_name; | 
 | 	PyObject *baserepr; | 
 |  | 
 | 	if (DATE_GET_MICROSECOND(self)) { | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "%s(%d, %d, %d, %d, %d, %d, %d)", | 
 | 			      type_name, | 
 | 			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self), | 
 | 			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self), | 
 | 			      DATE_GET_SECOND(self), | 
 | 			      DATE_GET_MICROSECOND(self)); | 
 | 	} | 
 | 	else if (DATE_GET_SECOND(self)) { | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "%s(%d, %d, %d, %d, %d, %d)", | 
 | 			      type_name, | 
 | 			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self), | 
 | 			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self), | 
 | 			      DATE_GET_SECOND(self)); | 
 | 	} | 
 | 	else { | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "%s(%d, %d, %d, %d, %d)", | 
 | 			      type_name, | 
 | 			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self), | 
 | 			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self)); | 
 | 	} | 
 | 	baserepr = PyString_FromString(buffer); | 
 | 	if (baserepr == NULL || ! HASTZINFO(self)) | 
 | 		return baserepr; | 
 | 	return append_keyword_tzinfo(baserepr, self->tzinfo); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_str(PyDateTime_DateTime *self) | 
 | { | 
 | 	return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " "); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) | 
 | { | 
 | 	char sep = 'T'; | 
 | 	static char *keywords[] = {"sep", NULL}; | 
 | 	char buffer[100]; | 
 | 	char *cp; | 
 | 	PyObject *result; | 
 |  | 
 | 	if (!PyArg_ParseTupleAndKeywords(args, kw, "|c:isoformat", keywords, | 
 | 					 &sep)) | 
 | 		return NULL; | 
 | 	cp = isoformat_date((PyDateTime_Date *)self, buffer, sizeof(buffer)); | 
 | 	assert(cp != NULL); | 
 | 	*cp++ = sep; | 
 | 	isoformat_time(self, cp, sizeof(buffer) - (cp - buffer)); | 
 | 	result = PyString_FromString(buffer); | 
 | 	if (result == NULL || ! HASTZINFO(self)) | 
 | 		return result; | 
 |  | 
 | 	/* We need to append the UTC offset. */ | 
 | 	if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo, | 
 | 			     (PyObject *)self) < 0) { | 
 | 		Py_DECREF(result); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyString_ConcatAndDel(&result, PyString_FromString(buffer)); | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_ctime(PyDateTime_DateTime *self) | 
 | { | 
 | 	return format_ctime((PyDateTime_Date *)self, | 
 | 			    DATE_GET_HOUR(self), | 
 | 			    DATE_GET_MINUTE(self), | 
 | 			    DATE_GET_SECOND(self)); | 
 | } | 
 |  | 
 | /* Miscellaneous methods. */ | 
 |  | 
 | static PyObject * | 
 | datetime_richcompare(PyObject *self, PyObject *other, int op) | 
 | { | 
 | 	int diff; | 
 | 	naivety n1, n2; | 
 | 	int offset1, offset2; | 
 |  | 
 | 	if (! PyDateTime_Check(other)) { | 
 | 		if (PyDate_Check(other)) { | 
 | 			/* Prevent invocation of date_richcompare.  We want to | 
 | 			   return NotImplemented here to give the other object | 
 | 			   a chance.  But since DateTime is a subclass of | 
 | 			   Date, if the other object is a Date, it would | 
 | 			   compute an ordering based on the date part alone, | 
 | 			   and we don't want that.  So force unequal or | 
 | 			   uncomparable here in that case. */ | 
 | 			if (op == Py_EQ) | 
 | 				Py_RETURN_FALSE; | 
 | 			if (op == Py_NE) | 
 | 				Py_RETURN_TRUE; | 
 | 			return cmperror(self, other); | 
 | 		} | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 |  | 
 | 	if (classify_two_utcoffsets(self, &offset1, &n1, self, | 
 | 				    other, &offset2, &n2, other) < 0) | 
 | 		return NULL; | 
 | 	assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); | 
 |  	/* If they're both naive, or both aware and have the same offsets, | 
 | 	 * we get off cheap.  Note that if they're both naive, offset1 == | 
 | 	 * offset2 == 0 at this point. | 
 | 	 */ | 
 | 	if (n1 == n2 && offset1 == offset2) { | 
 | 		diff = memcmp(((PyDateTime_DateTime *)self)->data, | 
 | 			      ((PyDateTime_DateTime *)other)->data, | 
 | 			      _PyDateTime_DATETIME_DATASIZE); | 
 | 		return diff_to_bool(diff, op); | 
 | 	} | 
 |  | 
 | 	if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) { | 
 | 		PyDateTime_Delta *delta; | 
 |  | 
 | 		assert(offset1 != offset2);	/* else last "if" handled it */ | 
 | 		delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self, | 
 | 							       other); | 
 | 		if (delta == NULL) | 
 | 			return NULL; | 
 | 		diff = GET_TD_DAYS(delta); | 
 | 		if (diff == 0) | 
 | 			diff = GET_TD_SECONDS(delta) | | 
 | 			       GET_TD_MICROSECONDS(delta); | 
 | 		Py_DECREF(delta); | 
 | 		return diff_to_bool(diff, op); | 
 | 	} | 
 |  | 
 | 	assert(n1 != n2); | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 			"can't compare offset-naive and " | 
 | 			"offset-aware datetimes"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static long | 
 | datetime_hash(PyDateTime_DateTime *self) | 
 | { | 
 | 	if (self->hashcode == -1) { | 
 | 		naivety n; | 
 | 		int offset; | 
 | 		PyObject *temp; | 
 |  | 
 | 		n = classify_utcoffset((PyObject *)self, (PyObject *)self, | 
 | 				       &offset); | 
 | 		assert(n != OFFSET_UNKNOWN); | 
 | 		if (n == OFFSET_ERROR) | 
 | 			return -1; | 
 |  | 
 | 		/* Reduce this to a hash of another object. */ | 
 | 		if (n == OFFSET_NAIVE) | 
 | 			temp = PyString_FromStringAndSize( | 
 | 					(char *)self->data, | 
 | 					_PyDateTime_DATETIME_DATASIZE); | 
 | 		else { | 
 | 			int days; | 
 | 			int seconds; | 
 |  | 
 | 			assert(n == OFFSET_AWARE); | 
 | 			assert(HASTZINFO(self)); | 
 | 			days = ymd_to_ord(GET_YEAR(self), | 
 | 					  GET_MONTH(self), | 
 | 					  GET_DAY(self)); | 
 | 			seconds = DATE_GET_HOUR(self) * 3600 + | 
 | 				  (DATE_GET_MINUTE(self) - offset) * 60 + | 
 | 				  DATE_GET_SECOND(self); | 
 | 			temp = new_delta(days, | 
 | 					 seconds, | 
 | 					 DATE_GET_MICROSECOND(self), | 
 | 					 1); | 
 | 		} | 
 | 		if (temp != NULL) { | 
 | 			self->hashcode = PyObject_Hash(temp); | 
 | 			Py_DECREF(temp); | 
 | 		} | 
 | 	} | 
 | 	return self->hashcode; | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) | 
 | { | 
 | 	PyObject *clone; | 
 | 	PyObject *tuple; | 
 | 	int y = GET_YEAR(self); | 
 | 	int m = GET_MONTH(self); | 
 | 	int d = GET_DAY(self); | 
 | 	int hh = DATE_GET_HOUR(self); | 
 | 	int mm = DATE_GET_MINUTE(self); | 
 | 	int ss = DATE_GET_SECOND(self); | 
 | 	int us = DATE_GET_MICROSECOND(self); | 
 | 	PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None; | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace", | 
 | 					  datetime_kws, | 
 | 					  &y, &m, &d, &hh, &mm, &ss, &us, | 
 | 					  &tzinfo)) | 
 | 		return NULL; | 
 | 	tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo); | 
 | 	if (tuple == NULL) | 
 | 		return NULL; | 
 | 	clone = datetime_new(self->ob_type, tuple, NULL); | 
 | 	Py_DECREF(tuple); | 
 | 	return clone; | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) | 
 | { | 
 | 	int y, m, d, hh, mm, ss, us; | 
 | 	PyObject *result; | 
 | 	int offset, none; | 
 |  | 
 | 	PyObject *tzinfo; | 
 | 	static char *keywords[] = {"tz", NULL}; | 
 |  | 
 | 	if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords, | 
 | 					  &PyDateTime_TZInfoType, &tzinfo)) | 
 | 		return NULL; | 
 |  | 
 |         if (!HASTZINFO(self) || self->tzinfo == Py_None) | 
 |         	goto NeedAware; | 
 |  | 
 |         /* Conversion to self's own time zone is a NOP. */ | 
 | 	if (self->tzinfo == tzinfo) { | 
 | 		Py_INCREF(self); | 
 | 		return (PyObject *)self; | 
 | 	} | 
 |  | 
 |         /* Convert self to UTC. */ | 
 |         offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none); | 
 |         if (offset == -1 && PyErr_Occurred()) | 
 |         	return NULL; | 
 |         if (none) | 
 |         	goto NeedAware; | 
 |  | 
 | 	y = GET_YEAR(self); | 
 | 	m = GET_MONTH(self); | 
 | 	d = GET_DAY(self); | 
 | 	hh = DATE_GET_HOUR(self); | 
 | 	mm = DATE_GET_MINUTE(self); | 
 | 	ss = DATE_GET_SECOND(self); | 
 | 	us = DATE_GET_MICROSECOND(self); | 
 |  | 
 | 	mm -= offset; | 
 | 	if ((mm < 0 || mm >= 60) && | 
 | 	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) | 
 | 		return NULL; | 
 |  | 
 | 	/* Attach new tzinfo and let fromutc() do the rest. */ | 
 | 	result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo); | 
 | 	if (result != NULL) { | 
 | 		PyObject *temp = result; | 
 |  | 
 | 		result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp); | 
 | 		Py_DECREF(temp); | 
 | 	} | 
 | 	return result; | 
 |  | 
 | NeedAware: | 
 | 	PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to " | 
 | 					  "a naive datetime"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_timetuple(PyDateTime_DateTime *self) | 
 | { | 
 | 	int dstflag = -1; | 
 |  | 
 | 	if (HASTZINFO(self) && self->tzinfo != Py_None) { | 
 | 		int none; | 
 |  | 
 | 		dstflag = call_dst(self->tzinfo, (PyObject *)self, &none); | 
 | 		if (dstflag == -1 && PyErr_Occurred()) | 
 | 			return NULL; | 
 |  | 
 | 		if (none) | 
 | 			dstflag = -1; | 
 | 		else if (dstflag != 0) | 
 | 			dstflag = 1; | 
 |  | 
 | 	} | 
 | 	return build_struct_time(GET_YEAR(self), | 
 | 				 GET_MONTH(self), | 
 | 				 GET_DAY(self), | 
 | 				 DATE_GET_HOUR(self), | 
 | 				 DATE_GET_MINUTE(self), | 
 | 				 DATE_GET_SECOND(self), | 
 | 				 dstflag); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_getdate(PyDateTime_DateTime *self) | 
 | { | 
 | 	return new_date(GET_YEAR(self), | 
 | 			GET_MONTH(self), | 
 | 			GET_DAY(self)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_gettime(PyDateTime_DateTime *self) | 
 | { | 
 | 	return new_time(DATE_GET_HOUR(self), | 
 | 			DATE_GET_MINUTE(self), | 
 | 			DATE_GET_SECOND(self), | 
 | 			DATE_GET_MICROSECOND(self), | 
 | 			Py_None); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_gettimetz(PyDateTime_DateTime *self) | 
 | { | 
 | 	return new_time(DATE_GET_HOUR(self), | 
 | 			DATE_GET_MINUTE(self), | 
 | 			DATE_GET_SECOND(self), | 
 | 			DATE_GET_MICROSECOND(self), | 
 | 			HASTZINFO(self) ? self->tzinfo : Py_None); | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_utctimetuple(PyDateTime_DateTime *self) | 
 | { | 
 | 	int y = GET_YEAR(self); | 
 | 	int m = GET_MONTH(self); | 
 | 	int d = GET_DAY(self); | 
 | 	int hh = DATE_GET_HOUR(self); | 
 | 	int mm = DATE_GET_MINUTE(self); | 
 | 	int ss = DATE_GET_SECOND(self); | 
 | 	int us = 0;	/* microseconds are ignored in a timetuple */ | 
 | 	int offset = 0; | 
 |  | 
 | 	if (HASTZINFO(self) && self->tzinfo != Py_None) { | 
 | 		int none; | 
 |  | 
 | 		offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none); | 
 | 		if (offset == -1 && PyErr_Occurred()) | 
 | 			return NULL; | 
 | 	} | 
 | 	/* Even if offset is 0, don't call timetuple() -- tm_isdst should be | 
 | 	 * 0 in a UTC timetuple regardless of what dst() says. | 
 | 	 */ | 
 | 	if (offset) { | 
 | 		/* Subtract offset minutes & normalize. */ | 
 | 		int stat; | 
 |  | 
 | 		mm -= offset; | 
 | 		stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us); | 
 | 		if (stat < 0) { | 
 | 			/* At the edges, it's possible we overflowed | 
 | 			 * beyond MINYEAR or MAXYEAR. | 
 | 			 */ | 
 | 			if (PyErr_ExceptionMatches(PyExc_OverflowError)) | 
 | 				PyErr_Clear(); | 
 | 			else | 
 | 				return NULL; | 
 | 		} | 
 | 	} | 
 | 	return build_struct_time(y, m, d, hh, mm, ss, 0); | 
 | } | 
 |  | 
 | /* Pickle support, a simple use of __reduce__. */ | 
 |  | 
 | /* Let basestate be the non-tzinfo data string. | 
 |  * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo). | 
 |  * So it's a tuple in any (non-error) case. | 
 |  * __getstate__ isn't exposed. | 
 |  */ | 
 | static PyObject * | 
 | datetime_getstate(PyDateTime_DateTime *self) | 
 | { | 
 | 	PyObject *basestate; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	basestate = PyString_FromStringAndSize((char *)self->data, | 
 | 					  _PyDateTime_DATETIME_DATASIZE); | 
 | 	if (basestate != NULL) { | 
 | 		if (! HASTZINFO(self) || self->tzinfo == Py_None) | 
 | 			result = PyTuple_Pack(1, basestate); | 
 | 		else | 
 | 			result = PyTuple_Pack(2, basestate, self->tzinfo); | 
 | 		Py_DECREF(basestate); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | datetime_reduce(PyDateTime_DateTime *self, PyObject *arg) | 
 | { | 
 | 	return Py_BuildValue("(ON)", self->ob_type, datetime_getstate(self)); | 
 | } | 
 |  | 
 | static PyMethodDef datetime_methods[] = { | 
 |  | 
 | 	/* Class methods: */ | 
 |  | 
 | 	{"now",         (PyCFunction)datetime_now, | 
 | 	 METH_KEYWORDS | METH_CLASS, | 
 | 	 PyDoc_STR("[tz] -> new datetime with tz's local day and time.")}, | 
 |  | 
 | 	{"utcnow",         (PyCFunction)datetime_utcnow, | 
 | 	 METH_NOARGS | METH_CLASS, | 
 | 	 PyDoc_STR("Return a new datetime representing UTC day and time.")}, | 
 |  | 
 | 	{"fromtimestamp", (PyCFunction)datetime_fromtimestamp, | 
 | 	 METH_KEYWORDS | METH_CLASS, | 
 | 	 PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")}, | 
 |  | 
 | 	{"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp, | 
 | 	 METH_VARARGS | METH_CLASS, | 
 | 	 PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp " | 
 | 	 	   "(like time.time()).")}, | 
 |  | 
 | 	{"strptime", (PyCFunction)datetime_strptime, | 
 | 	 METH_VARARGS | METH_CLASS, | 
 | 	 PyDoc_STR("string, format -> new datetime parsed from a string " | 
 | 	 	   "(like time.strptime()).")}, | 
 |  | 
 | 	{"combine", (PyCFunction)datetime_combine, | 
 | 	 METH_VARARGS | METH_KEYWORDS | METH_CLASS, | 
 | 	 PyDoc_STR("date, time -> datetime with same date and time fields")}, | 
 |  | 
 | 	/* Instance methods: */ | 
 |  | 
 | 	{"date",   (PyCFunction)datetime_getdate, METH_NOARGS, | 
 |          PyDoc_STR("Return date object with same year, month and day.")}, | 
 |  | 
 | 	{"time",   (PyCFunction)datetime_gettime, METH_NOARGS, | 
 |          PyDoc_STR("Return time object with same time but with tzinfo=None.")}, | 
 |  | 
 | 	{"timetz",   (PyCFunction)datetime_gettimetz, METH_NOARGS, | 
 |          PyDoc_STR("Return time object with same time and tzinfo.")}, | 
 |  | 
 | 	{"ctime",       (PyCFunction)datetime_ctime,	METH_NOARGS, | 
 | 	 PyDoc_STR("Return ctime() style string.")}, | 
 |  | 
 | 	{"timetuple",   (PyCFunction)datetime_timetuple, METH_NOARGS, | 
 |          PyDoc_STR("Return time tuple, compatible with time.localtime().")}, | 
 |  | 
 | 	{"utctimetuple",   (PyCFunction)datetime_utctimetuple, METH_NOARGS, | 
 |          PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")}, | 
 |  | 
 | 	{"isoformat",   (PyCFunction)datetime_isoformat, METH_KEYWORDS, | 
 | 	 PyDoc_STR("[sep] -> string in ISO 8601 format, " | 
 | 	 	   "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n" | 
 | 	 	   "sep is used to separate the year from the time, and " | 
 | 	 	   "defaults to 'T'.")}, | 
 |  | 
 | 	{"utcoffset",	(PyCFunction)datetime_utcoffset, METH_NOARGS, | 
 | 	 PyDoc_STR("Return self.tzinfo.utcoffset(self).")}, | 
 |  | 
 | 	{"tzname",	(PyCFunction)datetime_tzname,	METH_NOARGS, | 
 | 	 PyDoc_STR("Return self.tzinfo.tzname(self).")}, | 
 |  | 
 | 	{"dst",		(PyCFunction)datetime_dst, METH_NOARGS, | 
 | 	 PyDoc_STR("Return self.tzinfo.dst(self).")}, | 
 |  | 
 | 	{"replace",     (PyCFunction)datetime_replace,	METH_KEYWORDS, | 
 | 	 PyDoc_STR("Return datetime with new specified fields.")}, | 
 |  | 
 | 	{"astimezone",  (PyCFunction)datetime_astimezone, METH_KEYWORDS, | 
 | 	 PyDoc_STR("tz -> convert to local time in new timezone tz\n")}, | 
 |  | 
 | 	{"__reduce__", (PyCFunction)datetime_reduce,     METH_NOARGS, | 
 | 	 PyDoc_STR("__reduce__() -> (cls, state)")}, | 
 |  | 
 | 	{NULL,	NULL} | 
 | }; | 
 |  | 
 | static char datetime_doc[] = | 
 | PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\ | 
 | \n\ | 
 | The year, month and day arguments are required. tzinfo may be None, or an\n\ | 
 | instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n"); | 
 |  | 
 | static PyNumberMethods datetime_as_number = { | 
 | 	datetime_add,				/* nb_add */ | 
 | 	datetime_subtract,			/* nb_subtract */ | 
 | 	0,					/* nb_multiply */ | 
 | 	0,					/* nb_remainder */ | 
 | 	0,					/* nb_divmod */ | 
 | 	0,					/* nb_power */ | 
 | 	0,					/* nb_negative */ | 
 | 	0,					/* nb_positive */ | 
 | 	0,					/* nb_absolute */ | 
 | 	0,					/* nb_bool */ | 
 | }; | 
 |  | 
 | static PyTypeObject PyDateTime_DateTimeType = { | 
 | 	PyObject_HEAD_INIT(NULL) | 
 | 	0,					/* ob_size */ | 
 | 	"datetime.datetime",			/* tp_name */ | 
 | 	sizeof(PyDateTime_DateTime),		/* tp_basicsize */ | 
 | 	0,					/* tp_itemsize */ | 
 | 	(destructor)datetime_dealloc,		/* tp_dealloc */ | 
 | 	0,					/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,					/* tp_compare */ | 
 | 	(reprfunc)datetime_repr,		/* tp_repr */ | 
 | 	&datetime_as_number,			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)datetime_hash,		/* tp_hash */ | 
 | 	0,              			/* tp_call */ | 
 | 	(reprfunc)datetime_str,			/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ | 
 | 	datetime_doc,				/* tp_doc */ | 
 | 	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	datetime_richcompare,			/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	datetime_methods,			/* tp_methods */ | 
 | 	0,					/* tp_members */ | 
 | 	datetime_getset,			/* tp_getset */ | 
 | 	&PyDateTime_DateType,			/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	datetime_alloc,				/* tp_alloc */ | 
 | 	datetime_new,				/* tp_new */ | 
 | 	0,					/* tp_free */ | 
 | }; | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 |  * Module methods and initialization. | 
 |  */ | 
 |  | 
 | static PyMethodDef module_methods[] = { | 
 | 	{NULL, NULL} | 
 | }; | 
 |  | 
 | /* C API.  Clients get at this via PyDateTime_IMPORT, defined in | 
 |  * datetime.h. | 
 |  */ | 
 | static PyDateTime_CAPI CAPI = { | 
 |         &PyDateTime_DateType, | 
 |         &PyDateTime_DateTimeType, | 
 |         &PyDateTime_TimeType, | 
 |         &PyDateTime_DeltaType, | 
 |         &PyDateTime_TZInfoType, | 
 |         new_date_ex, | 
 |         new_datetime_ex, | 
 |         new_time_ex, | 
 |         new_delta_ex, | 
 |         datetime_fromtimestamp, | 
 |         date_fromtimestamp | 
 | }; | 
 |  | 
 |  | 
 | PyMODINIT_FUNC | 
 | initdatetime(void) | 
 | { | 
 | 	PyObject *m;	/* a module object */ | 
 | 	PyObject *d;	/* its dict */ | 
 | 	PyObject *x; | 
 |  | 
 | 	m = Py_InitModule3("datetime", module_methods, | 
 | 			   "Fast implementation of the datetime type."); | 
 | 	if (m == NULL) | 
 | 		return; | 
 |  | 
 | 	if (PyType_Ready(&PyDateTime_DateType) < 0) | 
 | 		return; | 
 | 	if (PyType_Ready(&PyDateTime_DateTimeType) < 0) | 
 | 		return; | 
 | 	if (PyType_Ready(&PyDateTime_DeltaType) < 0) | 
 | 		return; | 
 | 	if (PyType_Ready(&PyDateTime_TimeType) < 0) | 
 | 		return; | 
 | 	if (PyType_Ready(&PyDateTime_TZInfoType) < 0) | 
 | 		return; | 
 |  | 
 | 	/* timedelta values */ | 
 | 	d = PyDateTime_DeltaType.tp_dict; | 
 |  | 
 | 	x = new_delta(0, 0, 1, 0); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	/* date values */ | 
 | 	d = PyDateTime_DateType.tp_dict; | 
 |  | 
 | 	x = new_date(1, 1, 1); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_date(MAXYEAR, 12, 31); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_delta(1, 0, 0, 0); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	/* time values */ | 
 | 	d = PyDateTime_TimeType.tp_dict; | 
 |  | 
 | 	x = new_time(0, 0, 0, 0, Py_None); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_time(23, 59, 59, 999999, Py_None); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_delta(0, 0, 1, 0); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	/* datetime values */ | 
 | 	d = PyDateTime_DateTimeType.tp_dict; | 
 |  | 
 | 	x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	x = new_delta(0, 0, 1, 0); | 
 | 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) | 
 | 		return; | 
 | 	Py_DECREF(x); | 
 |  | 
 | 	/* module initialization */ | 
 | 	PyModule_AddIntConstant(m, "MINYEAR", MINYEAR); | 
 | 	PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR); | 
 |  | 
 | 	Py_INCREF(&PyDateTime_DateType); | 
 | 	PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType); | 
 |  | 
 | 	Py_INCREF(&PyDateTime_DateTimeType); | 
 | 	PyModule_AddObject(m, "datetime", | 
 | 			   (PyObject *)&PyDateTime_DateTimeType); | 
 |  | 
 | 	Py_INCREF(&PyDateTime_TimeType); | 
 | 	PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType); | 
 |  | 
 | 	Py_INCREF(&PyDateTime_DeltaType); | 
 | 	PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType); | 
 |  | 
 | 	Py_INCREF(&PyDateTime_TZInfoType); | 
 | 	PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType); | 
 |  | 
 |         x = PyCObject_FromVoidPtrAndDesc(&CAPI, (void*) DATETIME_API_MAGIC, | 
 |                 NULL); | 
 |         if (x == NULL) | 
 |             return; | 
 |         PyModule_AddObject(m, "datetime_CAPI", x); | 
 |  | 
 | 	/* A 4-year cycle has an extra leap day over what we'd get from | 
 | 	 * pasting together 4 single years. | 
 | 	 */ | 
 | 	assert(DI4Y == 4 * 365 + 1); | 
 | 	assert(DI4Y == days_before_year(4+1)); | 
 |  | 
 | 	/* Similarly, a 400-year cycle has an extra leap day over what we'd | 
 | 	 * get from pasting together 4 100-year cycles. | 
 | 	 */ | 
 | 	assert(DI400Y == 4 * DI100Y + 1); | 
 | 	assert(DI400Y == days_before_year(400+1)); | 
 |  | 
 | 	/* OTOH, a 100-year cycle has one fewer leap day than we'd get from | 
 | 	 * pasting together 25 4-year cycles. | 
 | 	 */ | 
 | 	assert(DI100Y == 25 * DI4Y - 1); | 
 | 	assert(DI100Y == days_before_year(100+1)); | 
 |  | 
 | 	us_per_us = PyInt_FromLong(1); | 
 | 	us_per_ms = PyInt_FromLong(1000); | 
 | 	us_per_second = PyInt_FromLong(1000000); | 
 | 	us_per_minute = PyInt_FromLong(60000000); | 
 | 	seconds_per_day = PyInt_FromLong(24 * 3600); | 
 | 	if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL || | 
 | 	    us_per_minute == NULL || seconds_per_day == NULL) | 
 | 		return; | 
 |  | 
 | 	/* The rest are too big for 32-bit ints, but even | 
 | 	 * us_per_week fits in 40 bits, so doubles should be exact. | 
 | 	 */ | 
 | 	us_per_hour = PyLong_FromDouble(3600000000.0); | 
 | 	us_per_day = PyLong_FromDouble(86400000000.0); | 
 | 	us_per_week = PyLong_FromDouble(604800000000.0); | 
 | 	if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL) | 
 | 		return; | 
 | } | 
 |  | 
 | /* --------------------------------------------------------------------------- | 
 | Some time zone algebra.  For a datetime x, let | 
 |     x.n = x stripped of its timezone -- its naive time. | 
 |     x.o = x.utcoffset(), and assuming that doesn't raise an exception or | 
 |           return None | 
 |     x.d = x.dst(), and assuming that doesn't raise an exception or | 
 |           return None | 
 |     x.s = x's standard offset, x.o - x.d | 
 |  | 
 | Now some derived rules, where k is a duration (timedelta). | 
 |  | 
 | 1. x.o = x.s + x.d | 
 |    This follows from the definition of x.s. | 
 |  | 
 | 2. If x and y have the same tzinfo member, x.s = y.s. | 
 |    This is actually a requirement, an assumption we need to make about | 
 |    sane tzinfo classes. | 
 |  | 
 | 3. The naive UTC time corresponding to x is x.n - x.o. | 
 |    This is again a requirement for a sane tzinfo class. | 
 |  | 
 | 4. (x+k).s = x.s | 
 |    This follows from #2, and that datimetimetz+timedelta preserves tzinfo. | 
 |  | 
 | 5. (x+k).n = x.n + k | 
 |    Again follows from how arithmetic is defined. | 
 |  | 
 | Now we can explain tz.fromutc(x).  Let's assume it's an interesting case | 
 | (meaning that the various tzinfo methods exist, and don't blow up or return | 
 | None when called). | 
 |  | 
 | The function wants to return a datetime y with timezone tz, equivalent to x. | 
 | x is already in UTC. | 
 |  | 
 | By #3, we want | 
 |  | 
 |     y.n - y.o = x.n                             [1] | 
 |  | 
 | The algorithm starts by attaching tz to x.n, and calling that y.  So | 
 | x.n = y.n at the start.  Then it wants to add a duration k to y, so that [1] | 
 | becomes true; in effect, we want to solve [2] for k: | 
 |  | 
 |    (y+k).n - (y+k).o = x.n                      [2] | 
 |  | 
 | By #1, this is the same as | 
 |  | 
 |    (y+k).n - ((y+k).s + (y+k).d) = x.n          [3] | 
 |  | 
 | By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start. | 
 | Substituting that into [3], | 
 |  | 
 |    x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving | 
 |    k - (y+k).s - (y+k).d = 0; rearranging, | 
 |    k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so | 
 |    k = y.s - (y+k).d | 
 |  | 
 | On the RHS, (y+k).d can't be computed directly, but y.s can be, and we | 
 | approximate k by ignoring the (y+k).d term at first.  Note that k can't be | 
 | very large, since all offset-returning methods return a duration of magnitude | 
 | less than 24 hours.  For that reason, if y is firmly in std time, (y+k).d must | 
 | be 0, so ignoring it has no consequence then. | 
 |  | 
 | In any case, the new value is | 
 |  | 
 |     z = y + y.s                                 [4] | 
 |  | 
 | It's helpful to step back at look at [4] from a higher level:  it's simply | 
 | mapping from UTC to tz's standard time. | 
 |  | 
 | At this point, if | 
 |  | 
 |     z.n - z.o = x.n                             [5] | 
 |  | 
 | we have an equivalent time, and are almost done.  The insecurity here is | 
 | at the start of daylight time.  Picture US Eastern for concreteness.  The wall | 
 | time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good | 
 | sense then.  The docs ask that an Eastern tzinfo class consider such a time to | 
 | be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST | 
 | on the day DST starts.  We want to return the 1:MM EST spelling because that's | 
 | the only spelling that makes sense on the local wall clock. | 
 |  | 
 | In fact, if [5] holds at this point, we do have the standard-time spelling, | 
 | but that takes a bit of proof.  We first prove a stronger result.  What's the | 
 | difference between the LHS and RHS of [5]?  Let | 
 |  | 
 |     diff = x.n - (z.n - z.o)                    [6] | 
 |  | 
 | Now | 
 |     z.n =                       by [4] | 
 |     (y + y.s).n =               by #5 | 
 |     y.n + y.s =                 since y.n = x.n | 
 |     x.n + y.s =                 since z and y are have the same tzinfo member, | 
 |                                     y.s = z.s by #2 | 
 |     x.n + z.s | 
 |  | 
 | Plugging that back into [6] gives | 
 |  | 
 |     diff = | 
 |     x.n - ((x.n + z.s) - z.o) =     expanding | 
 |     x.n - x.n - z.s + z.o =         cancelling | 
 |     - z.s + z.o =                   by #2 | 
 |     z.d | 
 |  | 
 | So diff = z.d. | 
 |  | 
 | If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time | 
 | spelling we wanted in the endcase described above.  We're done.  Contrarily, | 
 | if z.d = 0, then we have a UTC equivalent, and are also done. | 
 |  | 
 | If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to | 
 | add to z (in effect, z is in tz's standard time, and we need to shift the | 
 | local clock into tz's daylight time). | 
 |  | 
 | Let | 
 |  | 
 |     z' = z + z.d = z + diff                     [7] | 
 |  | 
 | and we can again ask whether | 
 |  | 
 |     z'.n - z'.o = x.n                           [8] | 
 |  | 
 | If so, we're done.  If not, the tzinfo class is insane, according to the | 
 | assumptions we've made.  This also requires a bit of proof.  As before, let's | 
 | compute the difference between the LHS and RHS of [8] (and skipping some of | 
 | the justifications for the kinds of substitutions we've done several times | 
 | already): | 
 |  | 
 |     diff' = x.n - (z'.n - z'.o) =           replacing z'.n via [7] | 
 |             x.n  - (z.n + diff - z'.o) =    replacing diff via [6] | 
 |             x.n - (z.n + x.n - (z.n - z.o) - z'.o) = | 
 |             x.n - z.n - x.n + z.n - z.o + z'.o =    cancel x.n | 
 |             - z.n + z.n - z.o + z'.o =              cancel z.n | 
 |             - z.o + z'.o =                      #1 twice | 
 |             -z.s - z.d + z'.s + z'.d =          z and z' have same tzinfo | 
 |             z'.d - z.d | 
 |  | 
 | So z' is UTC-equivalent to x iff z'.d = z.d at this point.  If they are equal, | 
 | we've found the UTC-equivalent so are done.  In fact, we stop with [7] and | 
 | return z', not bothering to compute z'.d. | 
 |  | 
 | How could z.d and z'd differ?  z' = z + z.d [7], so merely moving z' by | 
 | a dst() offset, and starting *from* a time already in DST (we know z.d != 0), | 
 | would have to change the result dst() returns:  we start in DST, and moving | 
 | a little further into it takes us out of DST. | 
 |  | 
 | There isn't a sane case where this can happen.  The closest it gets is at | 
 | the end of DST, where there's an hour in UTC with no spelling in a hybrid | 
 | tzinfo class.  In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT.  During | 
 | that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM | 
 | UTC) because the docs insist on that, but 0:MM is taken as being in daylight | 
 | time (4:MM UTC).  There is no local time mapping to 5:MM UTC.  The local | 
 | clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in | 
 | standard time.  Since that's what the local clock *does*, we want to map both | 
 | UTC hours 5:MM and 6:MM to 1:MM Eastern.  The result is ambiguous | 
 | in local time, but so it goes -- it's the way the local clock works. | 
 |  | 
 | When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0, | 
 | so z=0:MM.  z.d=60 (minutes) then, so [5] doesn't hold and we keep going. | 
 | z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8] | 
 | (correctly) concludes that z' is not UTC-equivalent to x. | 
 |  | 
 | Because we know z.d said z was in daylight time (else [5] would have held and | 
 | we would have stopped then), and we know z.d != z'.d (else [8] would have held | 
 | and we would have stopped then), and there are only 2 possible values dst() can | 
 | return in Eastern, it follows that z'.d must be 0 (which it is in the example, | 
 | but the reasoning doesn't depend on the example -- it depends on there being | 
 | two possible dst() outcomes, one zero and the other non-zero).  Therefore | 
 | z' must be in standard time, and is the spelling we want in this case. | 
 |  | 
 | Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is | 
 | concerned (because it takes z' as being in standard time rather than the | 
 | daylight time we intend here), but returning it gives the real-life "local | 
 | clock repeats an hour" behavior when mapping the "unspellable" UTC hour into | 
 | tz. | 
 |  | 
 | When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with | 
 | the 1:MM standard time spelling we want. | 
 |  | 
 | So how can this break?  One of the assumptions must be violated.  Two | 
 | possibilities: | 
 |  | 
 | 1) [2] effectively says that y.s is invariant across all y belong to a given | 
 |    time zone.  This isn't true if, for political reasons or continental drift, | 
 |    a region decides to change its base offset from UTC. | 
 |  | 
 | 2) There may be versions of "double daylight" time where the tail end of | 
 |    the analysis gives up a step too early.  I haven't thought about that | 
 |    enough to say. | 
 |  | 
 | In any case, it's clear that the default fromutc() is strong enough to handle | 
 | "almost all" time zones:  so long as the standard offset is invariant, it | 
 | doesn't matter if daylight time transition points change from year to year, or | 
 | if daylight time is skipped in some years; it doesn't matter how large or | 
 | small dst() may get within its bounds; and it doesn't even matter if some | 
 | perverse time zone returns a negative dst()).  So a breaking case must be | 
 | pretty bizarre, and a tzinfo subclass can override fromutc() if it is. | 
 | --------------------------------------------------------------------------- */ |