| \section{\module{operator} --- | 
 |          Standard operators as functions.} | 
 | \declaremodule{builtin}{operator} | 
 | \sectionauthor{Skip Montanaro}{skip@automatrix.com} | 
 |  | 
 | \modulesynopsis{All Python's standard operators as built-in functions.} | 
 |  | 
 |  | 
 | The \module{operator} module exports a set of functions implemented in C | 
 | corresponding to the intrinsic operators of Python.  For example, | 
 | \code{operator.add(x, y)} is equivalent to the expression \code{x+y}.  The | 
 | function names are those used for special class methods; variants without | 
 | leading and trailing \samp{__} are also provided for convenience. | 
 |  | 
 | The \module{operator} module defines the following functions: | 
 |  | 
 | \begin{funcdesc}{add}{a, b} | 
 | \funcline{__add__}{a, b} | 
 | Return \var{a} \code{+} \var{b}, for \var{a} and \var{b} numbers. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{sub}{a, b} | 
 | \funcline{__sub__}{a, b} | 
 | Return \var{a} \code{-} \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{mul}{a, b} | 
 | \funcline{__mul__}{a, b} | 
 | Return \var{a} \code{*} \var{b}, for \var{a} and \var{b} numbers. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{div}{a, b} | 
 | \funcline{__div__}{a, b} | 
 | Return \var{a} \code{/} \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{mod}{a, b} | 
 | \funcline{__mod__}{a, b} | 
 | Return \var{a} \code{\%} \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{neg}{o} | 
 | \funcline{__neg__}{o} | 
 | Return \var{o} negated. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{pos}{o} | 
 | \funcline{__pos__}{o} | 
 | Return \var{o} positive. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{abs}{o} | 
 | \funcline{__abs__}{o} | 
 | Return the absolute value of \var{o}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{inv}{o} | 
 | \funcline{invert}{o} | 
 | \funcline{__inv__}{o} | 
 | \funcline{__invert__}{o} | 
 | Return the bitwise inverse of the number \var{o}.  The names | 
 | \function{invert()} and \function{__invert__()} were added in Python | 
 | 2.0. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{lshift}{a, b} | 
 | \funcline{__lshift__}{a, b} | 
 | Return \var{a} shifted left by \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{rshift}{a, b} | 
 | \funcline{__rshift__}{a, b} | 
 | Return \var{a} shifted right by \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{and_}{a, b} | 
 | \funcline{__and__}{a, b} | 
 | Return the bitwise and of \var{a} and \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{or_}{a, b} | 
 | \funcline{__or__}{a, b} | 
 | Return the bitwise or of \var{a} and \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{xor}{a, b} | 
 | \funcline{__xor__}{a, b} | 
 | Return the bitwise exclusive or of \var{a} and \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{not_}{o} | 
 | \funcline{__not__}{o} | 
 | Return the outcome of \keyword{not} \var{o}.  (Note that there is no | 
 | \method{__not__()} method for object instances; only the interpreter | 
 | core defines this operation.) | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{truth}{o} | 
 | Return \code{1} if \var{o} is true, and 0 otherwise. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{concat}{a, b} | 
 | \funcline{__concat__}{a, b} | 
 | Return \var{a} \code{+} \var{b} for \var{a} and \var{b} sequences. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{repeat}{a, b} | 
 | \funcline{__repeat__}{a, b} | 
 | Return \var{a} \code{*} \var{b} where \var{a} is a sequence and | 
 | \var{b} is an integer. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{contains}{a, b} | 
 | \funcline{__contains__}{a, b} | 
 | Return the outcome of the test \var{b} \code{in} \var{a}. | 
 | Note the reversed operands.  The name \function{__contains__()} was | 
 | added in Python 2.0. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{sequenceIncludes}{\unspecified} | 
 | \deprecated{2.0}{Use \function{contains()} instead.} | 
 | Alias for \function{contains()}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{countOf}{a, b} | 
 | Return the number of occurrences of \var{b} in \var{a}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{indexOf}{a, b} | 
 | Return the index of the first of occurrence of \var{b} in \var{a}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{getitem}{a, b} | 
 | \funcline{__getitem__}{a, b} | 
 | Return the value of \var{a} at index \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{setitem}{a, b, c} | 
 | \funcline{__setitem__}{a, b, c} | 
 | Set the value of \var{a} at index \var{b} to \var{c}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{delitem}{a, b} | 
 | \funcline{__delitem__}{a, b} | 
 | Remove the value of \var{a} at index \var{b}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{getslice}{a, b, c} | 
 | \funcline{__getslice__}{a, b, c} | 
 | Return the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{setslice}{a, b, c, v} | 
 | \funcline{__setslice__}{a, b, c, v} | 
 | Set the slice of \var{a} from index \var{b} to index \var{c}\code{-1} to the | 
 | sequence \var{v}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{delslice}{a, b, c} | 
 | \funcline{__delslice__}{a, b, c} | 
 | Delete the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. | 
 | \end{funcdesc} | 
 |  | 
 | The \module{operator} also defines a few predicates to test the type | 
 | of objects.  \strong{Note:}  Be careful not to misinterpret the | 
 | results of these functions; only \function{isCallable()} has any | 
 | measure of reliability with instance objects.  For example: | 
 |  | 
 | \begin{verbatim} | 
 | >>> class C: | 
 | ...     pass | 
 | ...  | 
 | >>> import operator | 
 | >>> o = C() | 
 | >>> operator.isMappingType(o) | 
 | 1 | 
 | \end{verbatim} | 
 |  | 
 | \begin{funcdesc}{isCallable}{o} | 
 | \deprecated{2.0}{Use the \function{callable()} built-in function instead.} | 
 | Returns true if the object \var{o} can be called like a function, | 
 | otherwise it returns false.  True is returned for functions, bound and | 
 | unbound methods, class objects, and instance objects which support the | 
 | \method{__call__()} method. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{isMappingType}{o} | 
 | Returns true if the object \var{o} supports the mapping interface. | 
 | This is true for dictionaries and all instance objects. | 
 | \strong{Warning:} There is no reliable way to test if an instance | 
 | supports the complete mapping protocol since the interface itself is | 
 | ill-defined.  This makes this test less useful than it otherwise might | 
 | be. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{isNumberType}{o} | 
 | Returns true if the object \var{o} represents a number.  This is true | 
 | for all numeric types implemented in C, and for all instance objects. | 
 | \strong{Warning:}  There is no reliable way to test if an instance | 
 | supports the complete numeric interface since the interface itself is | 
 | ill-defined.  This makes this test less useful than it otherwise might | 
 | be. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{isSequenceType}{o} | 
 | Returns true if the object \var{o} supports the sequence protocol. | 
 | This returns true for all objects which define sequence methods in C, | 
 | and for all instance objects.  \strong{Warning:} There is no reliable | 
 | way to test if an instance supports the complete sequence interface | 
 | since the interface itself is ill-defined.  This makes this test less | 
 | useful than it otherwise might be. | 
 | \end{funcdesc} | 
 |  | 
 |  | 
 | Example: Build a dictionary that maps the ordinals from \code{0} to | 
 | \code{256} to their character equivalents. | 
 |  | 
 | \begin{verbatim} | 
 | >>> import operator | 
 | >>> d = {} | 
 | >>> keys = range(256) | 
 | >>> vals = map(chr, keys) | 
 | >>> map(operator.setitem, [d]*len(keys), keys, vals) | 
 | \end{verbatim} | 
 |  | 
 |  | 
 | \subsection{Mapping Operators to Functions \label{operator-map}} | 
 |  | 
 | This table shows how abstract operations correspond to operator | 
 | symbols in the Python syntax and the functions in the | 
 | \refmodule{operator} module. | 
 |  | 
 |  | 
 | \begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function} | 
 |   \lineiii{Addition}{\code{\var{a} + \var{b}}} | 
 |           {\code{add(\var{a}, \var{b})}} | 
 |   \lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}} | 
 |           {\code{concat(\var{seq1}, \var{seq2})}} | 
 |   \lineiii{Containment Test}{\code{\var{o} in \var{seq}}} | 
 |           {\code{contains(\var{seq}, \var{o})}} | 
 |   \lineiii{Division}{\code{\var{a} / \var{b}}} | 
 |           {\code{div(\var{a}, \var{b})}} | 
 |   \lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}} | 
 |           {\code{and_(\var{a}, \var{b})}} | 
 |   \lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}} | 
 |           {\code{xor(\var{a}, \var{b})}} | 
 |   \lineiii{Bitwise Inversion}{\code{\~{} \var{a}}} | 
 |           {\code{invert(\var{a})}} | 
 |   \lineiii{Bitwise Or}{\code{\var{a} | \var{b}}} | 
 |           {\code{or_(\var{a}, \var{b})}} | 
 |   \lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}} | 
 |           {\code{setitem(\var{o}, \var{k}, \var{v})}} | 
 |   \lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}} | 
 |           {\code{delitem(\var{o}, \var{k})}} | 
 |   \lineiii{Indexing}{\code{\var{o}[\var{k}]}} | 
 |           {\code{getitem(\var{o}, \var{k})}} | 
 |   \lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}} | 
 |           {\code{lshift(\var{a}, \var{b})}} | 
 |   \lineiii{Modulo}{\code{\var{a} \%\ \var{b}}} | 
 |           {\code{mod(\var{a}, \var{b})}} | 
 |   \lineiii{Multiplication}{\code{\var{a} * \var{b}}} | 
 |           {\code{mul(\var{a}, \var{b})}} | 
 |   \lineiii{Negation (Arithmetic)}{\code{- \var{a}}} | 
 |           {\code{neg(\var{a})}} | 
 |   \lineiii{Negation (Logical)}{\code{not \var{a}}} | 
 |           {\code{not_(\var{a})}} | 
 |   \lineiii{Right Shift}{\code{\var{a} >\code{>} \var{b}}} | 
 |           {\code{rshift(\var{a}, \var{b})}} | 
 |   \lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}} | 
 |           {\code{repeat(\var{seq}, \var{i})}} | 
 |   \lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}} | 
 |           {\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}} | 
 |   \lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}} | 
 |           {\code{delslice(\var{seq}, \var{i}, \var{j})}} | 
 |   \lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}} | 
 |           {\code{getslice(\var{seq}, \var{i}, \var{j})}} | 
 |   \lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}} | 
 |           {\code{mod(\var{s}, \var{o})}} | 
 |   \lineiii{Subtraction}{\code{\var{a} - \var{b}}} | 
 |           {\code{sub(\var{a}, \var{b})}} | 
 |   \lineiii{Truth Test}{\code{\var{o}}} | 
 |           {\code{truth(\var{o})}} | 
 | \end{tableiii} |