| |
| /* Complex object implementation */ |
| |
| /* Borrows heavily from floatobject.c */ |
| |
| /* Submitted by Jim Hugunin */ |
| |
| #include "Python.h" |
| #include "structmember.h" |
| |
| #ifdef HAVE_IEEEFP_H |
| #include <ieeefp.h> |
| #endif |
| |
| #ifndef WITHOUT_COMPLEX |
| |
| /* Precisions used by repr() and str(), respectively. |
| |
| The repr() precision (17 significant decimal digits) is the minimal number |
| that is guaranteed to have enough precision so that if the number is read |
| back in the exact same binary value is recreated. This is true for IEEE |
| floating point by design, and also happens to work for all other modern |
| hardware. |
| |
| The str() precision is chosen so that in most cases, the rounding noise |
| created by various operations is suppressed, while giving plenty of |
| precision for practical use. |
| */ |
| |
| #define PREC_REPR 17 |
| #define PREC_STR 12 |
| |
| /* elementary operations on complex numbers */ |
| |
| static Py_complex c_1 = {1., 0.}; |
| |
| Py_complex |
| c_sum(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| r.real = a.real + b.real; |
| r.imag = a.imag + b.imag; |
| return r; |
| } |
| |
| Py_complex |
| c_diff(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| r.real = a.real - b.real; |
| r.imag = a.imag - b.imag; |
| return r; |
| } |
| |
| Py_complex |
| c_neg(Py_complex a) |
| { |
| Py_complex r; |
| r.real = -a.real; |
| r.imag = -a.imag; |
| return r; |
| } |
| |
| Py_complex |
| c_prod(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| r.real = a.real*b.real - a.imag*b.imag; |
| r.imag = a.real*b.imag + a.imag*b.real; |
| return r; |
| } |
| |
| Py_complex |
| c_quot(Py_complex a, Py_complex b) |
| { |
| /****************************************************************** |
| This was the original algorithm. It's grossly prone to spurious |
| overflow and underflow errors. It also merrily divides by 0 despite |
| checking for that(!). The code still serves a doc purpose here, as |
| the algorithm following is a simple by-cases transformation of this |
| one: |
| |
| Py_complex r; |
| double d = b.real*b.real + b.imag*b.imag; |
| if (d == 0.) |
| errno = EDOM; |
| r.real = (a.real*b.real + a.imag*b.imag)/d; |
| r.imag = (a.imag*b.real - a.real*b.imag)/d; |
| return r; |
| ******************************************************************/ |
| |
| /* This algorithm is better, and is pretty obvious: first divide the |
| * numerators and denominator by whichever of {b.real, b.imag} has |
| * larger magnitude. The earliest reference I found was to CACM |
| * Algorithm 116 (Complex Division, Robert L. Smith, Stanford |
| * University). As usual, though, we're still ignoring all IEEE |
| * endcases. |
| */ |
| Py_complex r; /* the result */ |
| const double abs_breal = b.real < 0 ? -b.real : b.real; |
| const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; |
| |
| if (abs_breal >= abs_bimag) { |
| /* divide tops and bottom by b.real */ |
| if (abs_breal == 0.0) { |
| errno = EDOM; |
| r.real = r.imag = 0.0; |
| } |
| else { |
| const double ratio = b.imag / b.real; |
| const double denom = b.real + b.imag * ratio; |
| r.real = (a.real + a.imag * ratio) / denom; |
| r.imag = (a.imag - a.real * ratio) / denom; |
| } |
| } |
| else { |
| /* divide tops and bottom by b.imag */ |
| const double ratio = b.real / b.imag; |
| const double denom = b.real * ratio + b.imag; |
| assert(b.imag != 0.0); |
| r.real = (a.real * ratio + a.imag) / denom; |
| r.imag = (a.imag * ratio - a.real) / denom; |
| } |
| return r; |
| } |
| |
| Py_complex |
| c_pow(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| double vabs,len,at,phase; |
| if (b.real == 0. && b.imag == 0.) { |
| r.real = 1.; |
| r.imag = 0.; |
| } |
| else if (a.real == 0. && a.imag == 0.) { |
| if (b.imag != 0. || b.real < 0.) |
| errno = EDOM; |
| r.real = 0.; |
| r.imag = 0.; |
| } |
| else { |
| vabs = hypot(a.real,a.imag); |
| len = pow(vabs,b.real); |
| at = atan2(a.imag, a.real); |
| phase = at*b.real; |
| if (b.imag != 0.0) { |
| len /= exp(at*b.imag); |
| phase += b.imag*log(vabs); |
| } |
| r.real = len*cos(phase); |
| r.imag = len*sin(phase); |
| } |
| return r; |
| } |
| |
| static Py_complex |
| c_powu(Py_complex x, long n) |
| { |
| Py_complex r, p; |
| long mask = 1; |
| r = c_1; |
| p = x; |
| while (mask > 0 && n >= mask) { |
| if (n & mask) |
| r = c_prod(r,p); |
| mask <<= 1; |
| p = c_prod(p,p); |
| } |
| return r; |
| } |
| |
| static Py_complex |
| c_powi(Py_complex x, long n) |
| { |
| Py_complex cn; |
| |
| if (n > 100 || n < -100) { |
| cn.real = (double) n; |
| cn.imag = 0.; |
| return c_pow(x,cn); |
| } |
| else if (n > 0) |
| return c_powu(x,n); |
| else |
| return c_quot(c_1,c_powu(x,-n)); |
| |
| } |
| |
| double |
| c_abs(Py_complex z) |
| { |
| /* sets errno = ERANGE on overflow; otherwise errno = 0 */ |
| double result; |
| |
| if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
| /* C99 rules: if either the real or the imaginary part is an |
| infinity, return infinity, even if the other part is a |
| NaN. */ |
| if (Py_IS_INFINITY(z.real)) { |
| result = fabs(z.real); |
| errno = 0; |
| return result; |
| } |
| if (Py_IS_INFINITY(z.imag)) { |
| result = fabs(z.imag); |
| errno = 0; |
| return result; |
| } |
| /* either the real or imaginary part is a NaN, |
| and neither is infinite. Result should be NaN. */ |
| return Py_NAN; |
| } |
| result = hypot(z.real, z.imag); |
| if (!Py_IS_FINITE(result)) |
| errno = ERANGE; |
| else |
| errno = 0; |
| return result; |
| } |
| |
| static PyObject * |
| complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) |
| { |
| PyObject *op; |
| |
| op = type->tp_alloc(type, 0); |
| if (op != NULL) |
| ((PyComplexObject *)op)->cval = cval; |
| return op; |
| } |
| |
| PyObject * |
| PyComplex_FromCComplex(Py_complex cval) |
| { |
| register PyComplexObject *op; |
| |
| /* Inline PyObject_New */ |
| op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); |
| if (op == NULL) |
| return PyErr_NoMemory(); |
| PyObject_INIT(op, &PyComplex_Type); |
| op->cval = cval; |
| return (PyObject *) op; |
| } |
| |
| static PyObject * |
| complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) |
| { |
| Py_complex c; |
| c.real = real; |
| c.imag = imag; |
| return complex_subtype_from_c_complex(type, c); |
| } |
| |
| PyObject * |
| PyComplex_FromDoubles(double real, double imag) |
| { |
| Py_complex c; |
| c.real = real; |
| c.imag = imag; |
| return PyComplex_FromCComplex(c); |
| } |
| |
| double |
| PyComplex_RealAsDouble(PyObject *op) |
| { |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval.real; |
| } |
| else { |
| return PyFloat_AsDouble(op); |
| } |
| } |
| |
| double |
| PyComplex_ImagAsDouble(PyObject *op) |
| { |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval.imag; |
| } |
| else { |
| return 0.0; |
| } |
| } |
| |
| Py_complex |
| PyComplex_AsCComplex(PyObject *op) |
| { |
| Py_complex cv; |
| PyObject *newop = NULL; |
| static PyObject *complex_str = NULL; |
| |
| assert(op); |
| /* If op is already of type PyComplex_Type, return its value */ |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval; |
| } |
| /* If not, use op's __complex__ method, if it exists */ |
| |
| /* return -1 on failure */ |
| cv.real = -1.; |
| cv.imag = 0.; |
| |
| if (complex_str == NULL) { |
| if (!(complex_str = PyString_InternFromString("__complex__"))) |
| return cv; |
| } |
| |
| if (PyInstance_Check(op)) { |
| /* this can go away in python 3000 */ |
| if (PyObject_HasAttr(op, complex_str)) { |
| newop = PyObject_CallMethod(op, "__complex__", NULL); |
| if (!newop) |
| return cv; |
| } |
| /* else try __float__ */ |
| } else { |
| PyObject *complexfunc; |
| complexfunc = _PyType_Lookup(op->ob_type, complex_str); |
| /* complexfunc is a borrowed reference */ |
| if (complexfunc) { |
| newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL); |
| if (!newop) |
| return cv; |
| } |
| } |
| |
| if (newop) { |
| if (!PyComplex_Check(newop)) { |
| PyErr_SetString(PyExc_TypeError, |
| "__complex__ should return a complex object"); |
| Py_DECREF(newop); |
| return cv; |
| } |
| cv = ((PyComplexObject *)newop)->cval; |
| Py_DECREF(newop); |
| return cv; |
| } |
| /* If neither of the above works, interpret op as a float giving the |
| real part of the result, and fill in the imaginary part as 0. */ |
| else { |
| /* PyFloat_AsDouble will return -1 on failure */ |
| cv.real = PyFloat_AsDouble(op); |
| return cv; |
| } |
| } |
| |
| static void |
| complex_dealloc(PyObject *op) |
| { |
| op->ob_type->tp_free(op); |
| } |
| |
| |
| static void |
| complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision) |
| { |
| char format[32]; |
| if (v->cval.real == 0.) { |
| if (!Py_IS_FINITE(v->cval.imag)) { |
| if (Py_IS_NAN(v->cval.imag)) |
| strncpy(buf, "nan*j", 6); |
| else if (copysign(1, v->cval.imag) == 1) |
| strncpy(buf, "inf*j", 6); |
| else |
| strncpy(buf, "-inf*j", 7); |
| } |
| else { |
| PyOS_snprintf(format, sizeof(format), "%%.%ig", precision); |
| PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag); |
| strncat(buf, "j", 1); |
| } |
| } else { |
| char re[64], im[64]; |
| /* Format imaginary part with sign, real part without */ |
| if (!Py_IS_FINITE(v->cval.real)) { |
| if (Py_IS_NAN(v->cval.real)) |
| strncpy(re, "nan", 4); |
| /* else if (copysign(1, v->cval.real) == 1) */ |
| else if (v->cval.real > 0) |
| strncpy(re, "inf", 4); |
| else |
| strncpy(re, "-inf", 5); |
| } |
| else { |
| PyOS_snprintf(format, sizeof(format), "%%.%ig", precision); |
| PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real); |
| } |
| if (!Py_IS_FINITE(v->cval.imag)) { |
| if (Py_IS_NAN(v->cval.imag)) |
| strncpy(im, "+nan*", 6); |
| /* else if (copysign(1, v->cval.imag) == 1) */ |
| else if (v->cval.imag > 0) |
| strncpy(im, "+inf*", 6); |
| else |
| strncpy(im, "-inf*", 6); |
| } |
| else { |
| PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision); |
| PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag); |
| } |
| PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im); |
| } |
| } |
| |
| static int |
| complex_print(PyComplexObject *v, FILE *fp, int flags) |
| { |
| char buf[100]; |
| complex_to_buf(buf, sizeof(buf), v, |
| (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); |
| Py_BEGIN_ALLOW_THREADS |
| fputs(buf, fp); |
| Py_END_ALLOW_THREADS |
| return 0; |
| } |
| |
| static PyObject * |
| complex_repr(PyComplexObject *v) |
| { |
| char buf[100]; |
| complex_to_buf(buf, sizeof(buf), v, PREC_REPR); |
| return PyString_FromString(buf); |
| } |
| |
| static PyObject * |
| complex_str(PyComplexObject *v) |
| { |
| char buf[100]; |
| complex_to_buf(buf, sizeof(buf), v, PREC_STR); |
| return PyString_FromString(buf); |
| } |
| |
| static long |
| complex_hash(PyComplexObject *v) |
| { |
| long hashreal, hashimag, combined; |
| hashreal = _Py_HashDouble(v->cval.real); |
| if (hashreal == -1) |
| return -1; |
| hashimag = _Py_HashDouble(v->cval.imag); |
| if (hashimag == -1) |
| return -1; |
| /* Note: if the imaginary part is 0, hashimag is 0 now, |
| * so the following returns hashreal unchanged. This is |
| * important because numbers of different types that |
| * compare equal must have the same hash value, so that |
| * hash(x + 0*j) must equal hash(x). |
| */ |
| combined = hashreal + 1000003 * hashimag; |
| if (combined == -1) |
| combined = -2; |
| return combined; |
| } |
| |
| /* This macro may return! */ |
| #define TO_COMPLEX(obj, c) \ |
| if (PyComplex_Check(obj)) \ |
| c = ((PyComplexObject *)(obj))->cval; \ |
| else if (to_complex(&(obj), &(c)) < 0) \ |
| return (obj) |
| |
| static int |
| to_complex(PyObject **pobj, Py_complex *pc) |
| { |
| PyObject *obj = *pobj; |
| |
| pc->real = pc->imag = 0.0; |
| if (PyInt_Check(obj)) { |
| pc->real = PyInt_AS_LONG(obj); |
| return 0; |
| } |
| if (PyLong_Check(obj)) { |
| pc->real = PyLong_AsDouble(obj); |
| if (pc->real == -1.0 && PyErr_Occurred()) { |
| *pobj = NULL; |
| return -1; |
| } |
| return 0; |
| } |
| if (PyFloat_Check(obj)) { |
| pc->real = PyFloat_AsDouble(obj); |
| return 0; |
| } |
| Py_INCREF(Py_NotImplemented); |
| *pobj = Py_NotImplemented; |
| return -1; |
| } |
| |
| |
| static PyObject * |
| complex_add(PyComplexObject *v, PyComplexObject *w) |
| { |
| Py_complex result; |
| PyFPE_START_PROTECT("complex_add", return 0) |
| result = c_sum(v->cval,w->cval); |
| PyFPE_END_PROTECT(result) |
| return PyComplex_FromCComplex(result); |
| } |
| |
| static PyObject * |
| complex_sub(PyComplexObject *v, PyComplexObject *w) |
| { |
| Py_complex result; |
| PyFPE_START_PROTECT("complex_sub", return 0) |
| result = c_diff(v->cval,w->cval); |
| PyFPE_END_PROTECT(result) |
| return PyComplex_FromCComplex(result); |
| } |
| |
| static PyObject * |
| complex_mul(PyComplexObject *v, PyComplexObject *w) |
| { |
| Py_complex result; |
| PyFPE_START_PROTECT("complex_mul", return 0) |
| result = c_prod(v->cval,w->cval); |
| PyFPE_END_PROTECT(result) |
| return PyComplex_FromCComplex(result); |
| } |
| |
| static PyObject * |
| complex_div(PyComplexObject *v, PyComplexObject *w) |
| { |
| Py_complex quot; |
| |
| PyFPE_START_PROTECT("complex_div", return 0) |
| errno = 0; |
| quot = c_quot(v->cval,w->cval); |
| PyFPE_END_PROTECT(quot) |
| if (errno == EDOM) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); |
| return NULL; |
| } |
| return PyComplex_FromCComplex(quot); |
| } |
| |
| static PyObject * |
| complex_classic_div(PyComplexObject *v, PyComplexObject *w) |
| { |
| Py_complex quot; |
| |
| if (Py_DivisionWarningFlag >= 2 && |
| PyErr_Warn(PyExc_DeprecationWarning, |
| "classic complex division") < 0) |
| return NULL; |
| |
| PyFPE_START_PROTECT("complex_classic_div", return 0) |
| errno = 0; |
| quot = c_quot(v->cval,w->cval); |
| PyFPE_END_PROTECT(quot) |
| if (errno == EDOM) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); |
| return NULL; |
| } |
| return PyComplex_FromCComplex(quot); |
| } |
| |
| static PyObject * |
| complex_remainder(PyComplexObject *v, PyComplexObject *w) |
| { |
| Py_complex div, mod; |
| |
| if (PyErr_Warn(PyExc_DeprecationWarning, |
| "complex divmod(), // and % are deprecated") < 0) |
| return NULL; |
| |
| errno = 0; |
| div = c_quot(v->cval,w->cval); /* The raw divisor value. */ |
| if (errno == EDOM) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder"); |
| return NULL; |
| } |
| div.real = floor(div.real); /* Use the floor of the real part. */ |
| div.imag = 0.0; |
| mod = c_diff(v->cval, c_prod(w->cval, div)); |
| |
| return PyComplex_FromCComplex(mod); |
| } |
| |
| |
| static PyObject * |
| complex_divmod(PyComplexObject *v, PyComplexObject *w) |
| { |
| Py_complex div, mod; |
| PyObject *d, *m, *z; |
| |
| if (PyErr_Warn(PyExc_DeprecationWarning, |
| "complex divmod(), // and % are deprecated") < 0) |
| return NULL; |
| |
| errno = 0; |
| div = c_quot(v->cval,w->cval); /* The raw divisor value. */ |
| if (errno == EDOM) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()"); |
| return NULL; |
| } |
| div.real = floor(div.real); /* Use the floor of the real part. */ |
| div.imag = 0.0; |
| mod = c_diff(v->cval, c_prod(w->cval, div)); |
| d = PyComplex_FromCComplex(div); |
| m = PyComplex_FromCComplex(mod); |
| z = PyTuple_Pack(2, d, m); |
| Py_XDECREF(d); |
| Py_XDECREF(m); |
| return z; |
| } |
| |
| static PyObject * |
| complex_pow(PyObject *v, PyObject *w, PyObject *z) |
| { |
| Py_complex p; |
| Py_complex exponent; |
| long int_exponent; |
| Py_complex a, b; |
| TO_COMPLEX(v, a); |
| TO_COMPLEX(w, b); |
| |
| if (z!=Py_None) { |
| PyErr_SetString(PyExc_ValueError, "complex modulo"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("complex_pow", return 0) |
| errno = 0; |
| exponent = b; |
| int_exponent = (long)exponent.real; |
| if (exponent.imag == 0. && exponent.real == int_exponent) |
| p = c_powi(a,int_exponent); |
| else |
| p = c_pow(a,exponent); |
| |
| PyFPE_END_PROTECT(p) |
| Py_ADJUST_ERANGE2(p.real, p.imag); |
| if (errno == EDOM) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "0.0 to a negative or complex power"); |
| return NULL; |
| } |
| else if (errno == ERANGE) { |
| PyErr_SetString(PyExc_OverflowError, |
| "complex exponentiation"); |
| return NULL; |
| } |
| return PyComplex_FromCComplex(p); |
| } |
| |
| static PyObject * |
| complex_int_div(PyComplexObject *v, PyComplexObject *w) |
| { |
| PyObject *t, *r; |
| |
| if (PyErr_Warn(PyExc_DeprecationWarning, |
| "complex divmod(), // and % are deprecated") < 0) |
| return NULL; |
| |
| t = complex_divmod(v, w); |
| if (t != NULL) { |
| r = PyTuple_GET_ITEM(t, 0); |
| Py_INCREF(r); |
| Py_DECREF(t); |
| return r; |
| } |
| return NULL; |
| } |
| |
| static PyObject * |
| complex_neg(PyComplexObject *v) |
| { |
| Py_complex neg; |
| neg.real = -v->cval.real; |
| neg.imag = -v->cval.imag; |
| return PyComplex_FromCComplex(neg); |
| } |
| |
| static PyObject * |
| complex_pos(PyComplexObject *v) |
| { |
| if (PyComplex_CheckExact(v)) { |
| Py_INCREF(v); |
| return (PyObject *)v; |
| } |
| else |
| return PyComplex_FromCComplex(v->cval); |
| } |
| |
| static PyObject * |
| complex_abs(PyComplexObject *v) |
| { |
| double result; |
| |
| PyFPE_START_PROTECT("complex_abs", return 0) |
| result = c_abs(v->cval); |
| PyFPE_END_PROTECT(result) |
| |
| if (errno == ERANGE) { |
| PyErr_SetString(PyExc_OverflowError, |
| "absolute value too large"); |
| return NULL; |
| } |
| return PyFloat_FromDouble(result); |
| } |
| |
| static int |
| complex_nonzero(PyComplexObject *v) |
| { |
| return v->cval.real != 0.0 || v->cval.imag != 0.0; |
| } |
| |
| static int |
| complex_coerce(PyObject **pv, PyObject **pw) |
| { |
| Py_complex cval; |
| cval.imag = 0.; |
| if (PyInt_Check(*pw)) { |
| cval.real = (double)PyInt_AsLong(*pw); |
| *pw = PyComplex_FromCComplex(cval); |
| Py_INCREF(*pv); |
| return 0; |
| } |
| else if (PyLong_Check(*pw)) { |
| cval.real = PyLong_AsDouble(*pw); |
| if (cval.real == -1.0 && PyErr_Occurred()) |
| return -1; |
| *pw = PyComplex_FromCComplex(cval); |
| Py_INCREF(*pv); |
| return 0; |
| } |
| else if (PyFloat_Check(*pw)) { |
| cval.real = PyFloat_AsDouble(*pw); |
| *pw = PyComplex_FromCComplex(cval); |
| Py_INCREF(*pv); |
| return 0; |
| } |
| else if (PyComplex_Check(*pw)) { |
| Py_INCREF(*pv); |
| Py_INCREF(*pw); |
| return 0; |
| } |
| return 1; /* Can't do it */ |
| } |
| |
| static PyObject * |
| complex_richcompare(PyObject *v, PyObject *w, int op) |
| { |
| int c; |
| Py_complex i, j; |
| PyObject *res; |
| |
| c = PyNumber_CoerceEx(&v, &w); |
| if (c < 0) |
| return NULL; |
| if (c > 0) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| /* Make sure both arguments are complex. */ |
| if (!(PyComplex_Check(v) && PyComplex_Check(w))) { |
| Py_DECREF(v); |
| Py_DECREF(w); |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| i = ((PyComplexObject *)v)->cval; |
| j = ((PyComplexObject *)w)->cval; |
| Py_DECREF(v); |
| Py_DECREF(w); |
| |
| if (op != Py_EQ && op != Py_NE) { |
| PyErr_SetString(PyExc_TypeError, |
| "no ordering relation is defined for complex numbers"); |
| return NULL; |
| } |
| |
| if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ)) |
| res = Py_True; |
| else |
| res = Py_False; |
| |
| Py_INCREF(res); |
| return res; |
| } |
| |
| static PyObject * |
| complex_int(PyObject *v) |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "can't convert complex to int; use int(abs(z))"); |
| return NULL; |
| } |
| |
| static PyObject * |
| complex_long(PyObject *v) |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "can't convert complex to long; use long(abs(z))"); |
| return NULL; |
| } |
| |
| static PyObject * |
| complex_float(PyObject *v) |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "can't convert complex to float; use abs(z)"); |
| return NULL; |
| } |
| |
| static PyObject * |
| complex_conjugate(PyObject *self) |
| { |
| Py_complex c; |
| c = ((PyComplexObject *)self)->cval; |
| c.imag = -c.imag; |
| return PyComplex_FromCComplex(c); |
| } |
| |
| PyDoc_STRVAR(complex_conjugate_doc, |
| "complex.conjugate() -> complex\n" |
| "\n" |
| "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j."); |
| |
| static PyObject * |
| complex_getnewargs(PyComplexObject *v) |
| { |
| Py_complex c = v->cval; |
| return Py_BuildValue("(dd)", c.real, c.imag); |
| } |
| |
| #if 0 |
| static PyObject * |
| complex_is_finite(PyObject *self) |
| { |
| Py_complex c; |
| c = ((PyComplexObject *)self)->cval; |
| return PyBool_FromLong((long)(Py_IS_FINITE(c.real) && |
| Py_IS_FINITE(c.imag))); |
| } |
| |
| PyDoc_STRVAR(complex_is_finite_doc, |
| "complex.is_finite() -> bool\n" |
| "\n" |
| "Returns True if the real and the imaginary part is finite."); |
| #endif |
| |
| static PyMethodDef complex_methods[] = { |
| {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS, |
| complex_conjugate_doc}, |
| #if 0 |
| {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS, |
| complex_is_finite_doc}, |
| #endif |
| {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyMemberDef complex_members[] = { |
| {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, |
| "the real part of a complex number"}, |
| {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, |
| "the imaginary part of a complex number"}, |
| {0}, |
| }; |
| |
| static PyObject * |
| complex_subtype_from_string(PyTypeObject *type, PyObject *v) |
| { |
| const char *s, *start; |
| char *end; |
| double x=0.0, y=0.0, z; |
| int got_re=0, got_im=0, got_bracket=0, done=0; |
| int digit_or_dot; |
| int sw_error=0; |
| int sign; |
| char buffer[256]; /* For errors */ |
| #ifdef Py_USING_UNICODE |
| char s_buffer[256]; |
| #endif |
| Py_ssize_t len; |
| |
| if (PyString_Check(v)) { |
| s = PyString_AS_STRING(v); |
| len = PyString_GET_SIZE(v); |
| } |
| #ifdef Py_USING_UNICODE |
| else if (PyUnicode_Check(v)) { |
| if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) { |
| PyErr_SetString(PyExc_ValueError, |
| "complex() literal too large to convert"); |
| return NULL; |
| } |
| if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), |
| PyUnicode_GET_SIZE(v), |
| s_buffer, |
| NULL)) |
| return NULL; |
| s = s_buffer; |
| len = strlen(s); |
| } |
| #endif |
| else if (PyObject_AsCharBuffer(v, &s, &len)) { |
| PyErr_SetString(PyExc_TypeError, |
| "complex() arg is not a string"); |
| return NULL; |
| } |
| |
| /* position on first nonblank */ |
| start = s; |
| while (*s && isspace(Py_CHARMASK(*s))) |
| s++; |
| if (s[0] == '\0') { |
| PyErr_SetString(PyExc_ValueError, |
| "complex() arg is an empty string"); |
| return NULL; |
| } |
| if (s[0] == '(') { |
| /* Skip over possible bracket from repr(). */ |
| got_bracket = 1; |
| s++; |
| while (*s && isspace(Py_CHARMASK(*s))) |
| s++; |
| } |
| |
| z = -1.0; |
| sign = 1; |
| do { |
| |
| switch (*s) { |
| |
| case '\0': |
| if (s-start != len) { |
| PyErr_SetString( |
| PyExc_ValueError, |
| "complex() arg contains a null byte"); |
| return NULL; |
| } |
| if(!done) sw_error=1; |
| break; |
| |
| case ')': |
| if (!got_bracket || !(got_re || got_im)) { |
| sw_error=1; |
| break; |
| } |
| got_bracket=0; |
| done=1; |
| s++; |
| while (*s && isspace(Py_CHARMASK(*s))) |
| s++; |
| if (*s) sw_error=1; |
| break; |
| |
| case '-': |
| sign = -1; |
| /* Fallthrough */ |
| case '+': |
| if (done) sw_error=1; |
| s++; |
| if ( *s=='\0'||*s=='+'||*s=='-'||*s==')'|| |
| isspace(Py_CHARMASK(*s)) ) sw_error=1; |
| break; |
| |
| case 'J': |
| case 'j': |
| if (got_im || done) { |
| sw_error = 1; |
| break; |
| } |
| if (z<0.0) { |
| y=sign; |
| } |
| else{ |
| y=sign*z; |
| } |
| got_im=1; |
| s++; |
| if (*s!='+' && *s!='-' ) |
| done=1; |
| break; |
| |
| default: |
| if (isspace(Py_CHARMASK(*s))) { |
| while (*s && isspace(Py_CHARMASK(*s))) |
| s++; |
| if (*s && *s != ')') |
| sw_error=1; |
| else |
| done = 1; |
| break; |
| } |
| digit_or_dot = |
| (*s=='.' || isdigit(Py_CHARMASK(*s))); |
| if (done||!digit_or_dot) { |
| sw_error=1; |
| break; |
| } |
| errno = 0; |
| PyFPE_START_PROTECT("strtod", return 0) |
| z = PyOS_ascii_strtod(s, &end) ; |
| PyFPE_END_PROTECT(z) |
| if (errno != 0) { |
| PyOS_snprintf(buffer, sizeof(buffer), |
| "float() out of range: %.150s", s); |
| PyErr_SetString( |
| PyExc_ValueError, |
| buffer); |
| return NULL; |
| } |
| s=end; |
| if (*s=='J' || *s=='j') { |
| |
| break; |
| } |
| if (got_re) { |
| sw_error=1; |
| break; |
| } |
| |
| /* accept a real part */ |
| x=sign*z; |
| got_re=1; |
| if (got_im) done=1; |
| z = -1.0; |
| sign = 1; |
| break; |
| |
| } /* end of switch */ |
| |
| } while (s - start < len && !sw_error); |
| |
| if (sw_error || got_bracket) { |
| PyErr_SetString(PyExc_ValueError, |
| "complex() arg is a malformed string"); |
| return NULL; |
| } |
| |
| return complex_subtype_from_doubles(type, x, y); |
| } |
| |
| static PyObject * |
| complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *r, *i, *tmp, *f; |
| PyNumberMethods *nbr, *nbi = NULL; |
| Py_complex cr, ci; |
| int own_r = 0; |
| int cr_is_complex = 0; |
| int ci_is_complex = 0; |
| static PyObject *complexstr; |
| static char *kwlist[] = {"real", "imag", 0}; |
| |
| r = Py_False; |
| i = NULL; |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist, |
| &r, &i)) |
| return NULL; |
| |
| /* Special-case for a single argument when type(arg) is complex. */ |
| if (PyComplex_CheckExact(r) && i == NULL && |
| type == &PyComplex_Type) { |
| /* Note that we can't know whether it's safe to return |
| a complex *subclass* instance as-is, hence the restriction |
| to exact complexes here. If either the input or the |
| output is a complex subclass, it will be handled below |
| as a non-orthogonal vector. */ |
| Py_INCREF(r); |
| return r; |
| } |
| if (PyString_Check(r) || PyUnicode_Check(r)) { |
| if (i != NULL) { |
| PyErr_SetString(PyExc_TypeError, |
| "complex() can't take second arg" |
| " if first is a string"); |
| return NULL; |
| } |
| return complex_subtype_from_string(type, r); |
| } |
| if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) { |
| PyErr_SetString(PyExc_TypeError, |
| "complex() second arg can't be a string"); |
| return NULL; |
| } |
| |
| /* XXX Hack to support classes with __complex__ method */ |
| if (complexstr == NULL) { |
| complexstr = PyString_InternFromString("__complex__"); |
| if (complexstr == NULL) |
| return NULL; |
| } |
| f = PyObject_GetAttr(r, complexstr); |
| if (f == NULL) |
| PyErr_Clear(); |
| else { |
| PyObject *args = PyTuple_New(0); |
| if (args == NULL) |
| return NULL; |
| r = PyEval_CallObject(f, args); |
| Py_DECREF(args); |
| Py_DECREF(f); |
| if (r == NULL) |
| return NULL; |
| own_r = 1; |
| } |
| nbr = r->ob_type->tp_as_number; |
| if (i != NULL) |
| nbi = i->ob_type->tp_as_number; |
| if (nbr == NULL || nbr->nb_float == NULL || |
| ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) { |
| PyErr_SetString(PyExc_TypeError, |
| "complex() argument must be a string or a number"); |
| if (own_r) { |
| Py_DECREF(r); |
| } |
| return NULL; |
| } |
| |
| /* If we get this far, then the "real" and "imag" parts should |
| both be treated as numbers, and the constructor should return a |
| complex number equal to (real + imag*1j). |
| |
| Note that we do NOT assume the input to already be in canonical |
| form; the "real" and "imag" parts might themselves be complex |
| numbers, which slightly complicates the code below. */ |
| if (PyComplex_Check(r)) { |
| /* Note that if r is of a complex subtype, we're only |
| retaining its real & imag parts here, and the return |
| value is (properly) of the builtin complex type. */ |
| cr = ((PyComplexObject*)r)->cval; |
| cr_is_complex = 1; |
| if (own_r) { |
| Py_DECREF(r); |
| } |
| } |
| else { |
| /* The "real" part really is entirely real, and contributes |
| nothing in the imaginary direction. |
| Just treat it as a double. */ |
| tmp = PyNumber_Float(r); |
| if (own_r) { |
| /* r was a newly created complex number, rather |
| than the original "real" argument. */ |
| Py_DECREF(r); |
| } |
| if (tmp == NULL) |
| return NULL; |
| if (!PyFloat_Check(tmp)) { |
| PyErr_SetString(PyExc_TypeError, |
| "float(r) didn't return a float"); |
| Py_DECREF(tmp); |
| return NULL; |
| } |
| cr.real = PyFloat_AsDouble(tmp); |
| cr.imag = 0.0; /* Shut up compiler warning */ |
| Py_DECREF(tmp); |
| } |
| if (i == NULL) { |
| ci.real = 0.0; |
| } |
| else if (PyComplex_Check(i)) { |
| ci = ((PyComplexObject*)i)->cval; |
| ci_is_complex = 1; |
| } else { |
| /* The "imag" part really is entirely imaginary, and |
| contributes nothing in the real direction. |
| Just treat it as a double. */ |
| tmp = (*nbi->nb_float)(i); |
| if (tmp == NULL) |
| return NULL; |
| ci.real = PyFloat_AsDouble(tmp); |
| Py_DECREF(tmp); |
| } |
| /* If the input was in canonical form, then the "real" and "imag" |
| parts are real numbers, so that ci.imag and cr.imag are zero. |
| We need this correction in case they were not real numbers. */ |
| |
| if (ci_is_complex) { |
| cr.real -= ci.imag; |
| } |
| if (cr_is_complex) { |
| ci.real += cr.imag; |
| } |
| return complex_subtype_from_doubles(type, cr.real, ci.real); |
| } |
| |
| PyDoc_STRVAR(complex_doc, |
| "complex(real[, imag]) -> complex number\n" |
| "\n" |
| "Create a complex number from a real part and an optional imaginary part.\n" |
| "This is equivalent to (real + imag*1j) where imag defaults to 0."); |
| |
| static PyNumberMethods complex_as_number = { |
| (binaryfunc)complex_add, /* nb_add */ |
| (binaryfunc)complex_sub, /* nb_subtract */ |
| (binaryfunc)complex_mul, /* nb_multiply */ |
| (binaryfunc)complex_classic_div, /* nb_divide */ |
| (binaryfunc)complex_remainder, /* nb_remainder */ |
| (binaryfunc)complex_divmod, /* nb_divmod */ |
| (ternaryfunc)complex_pow, /* nb_power */ |
| (unaryfunc)complex_neg, /* nb_negative */ |
| (unaryfunc)complex_pos, /* nb_positive */ |
| (unaryfunc)complex_abs, /* nb_absolute */ |
| (inquiry)complex_nonzero, /* nb_nonzero */ |
| 0, /* nb_invert */ |
| 0, /* nb_lshift */ |
| 0, /* nb_rshift */ |
| 0, /* nb_and */ |
| 0, /* nb_xor */ |
| 0, /* nb_or */ |
| complex_coerce, /* nb_coerce */ |
| complex_int, /* nb_int */ |
| complex_long, /* nb_long */ |
| complex_float, /* nb_float */ |
| 0, /* nb_oct */ |
| 0, /* nb_hex */ |
| 0, /* nb_inplace_add */ |
| 0, /* nb_inplace_subtract */ |
| 0, /* nb_inplace_multiply*/ |
| 0, /* nb_inplace_divide */ |
| 0, /* nb_inplace_remainder */ |
| 0, /* nb_inplace_power */ |
| 0, /* nb_inplace_lshift */ |
| 0, /* nb_inplace_rshift */ |
| 0, /* nb_inplace_and */ |
| 0, /* nb_inplace_xor */ |
| 0, /* nb_inplace_or */ |
| (binaryfunc)complex_int_div, /* nb_floor_divide */ |
| (binaryfunc)complex_div, /* nb_true_divide */ |
| 0, /* nb_inplace_floor_divide */ |
| 0, /* nb_inplace_true_divide */ |
| }; |
| |
| PyTypeObject PyComplex_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "complex", |
| sizeof(PyComplexObject), |
| 0, |
| complex_dealloc, /* tp_dealloc */ |
| (printfunc)complex_print, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_compare */ |
| (reprfunc)complex_repr, /* tp_repr */ |
| &complex_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)complex_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)complex_str, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| complex_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| complex_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| complex_methods, /* tp_methods */ |
| complex_members, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| PyType_GenericAlloc, /* tp_alloc */ |
| complex_new, /* tp_new */ |
| PyObject_Del, /* tp_free */ |
| }; |
| |
| #endif |