| |
| :mod:`fractions` --- Rational numbers |
| ===================================== |
| |
| .. module:: fractions |
| :synopsis: Rational numbers. |
| .. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com> |
| .. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com> |
| .. versionadded:: 2.6 |
| |
| |
| The :mod:`fractions` module defines an immutable, infinite-precision |
| Fraction number class. |
| |
| |
| .. class:: Fraction(numerator=0, denominator=1) |
| Fraction(other_fraction) |
| Fraction(string) |
| |
| The first version requires that *numerator* and *denominator* are |
| instances of :class:`numbers.Integral` and returns a new |
| ``Fraction`` representing ``numerator/denominator``. If |
| *denominator* is :const:`0`, raises a :exc:`ZeroDivisionError`. The |
| second version requires that *other_fraction* is an instance of |
| :class:`numbers.Rational` and returns an instance of |
| :class:`Fraction` with the same value. The third version expects a |
| string of the form ``[-+]?[0-9]+(/[0-9]+)?``, optionally surrounded |
| by spaces. |
| |
| Implements all of the methods and operations from |
| :class:`numbers.Rational` and is immutable and hashable. |
| |
| |
| .. method:: from_float(flt) |
| |
| This classmethod constructs a :class:`Fraction` representing the exact |
| value of *flt*, which must be a :class:`float`. Beware that |
| ``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)`` |
| |
| |
| .. method:: from_decimal(dec) |
| |
| This classmethod constructs a :class:`Fraction` representing the exact |
| value of *dec*, which must be a :class:`decimal.Decimal`. |
| |
| |
| .. method:: limit_denominator(max_denominator=1000000) |
| |
| Finds and returns the closest :class:`Fraction` to ``self`` that has |
| denominator at most max_denominator. This method is useful for finding |
| rational approximations to a given floating-point number: |
| |
| >>> from fractions import Fraction |
| >>> Fraction('3.1415926535897932').limit_denominator(1000) |
| Fraction(355L, 113L) |
| |
| or for recovering a rational number that's represented as a float: |
| |
| >>> from math import pi, cos |
| >>> Fraction.from_float(cos(pi/3)) |
| Fraction(4503599627370497L, 9007199254740992L) |
| >>> Fraction.from_float(cos(pi/3)).limit_denominator() |
| Fraction(1L, 2L) |
| |
| |
| .. method:: __floor__() |
| |
| Returns the greatest :class:`int` ``<= self``. Will be accessible through |
| :func:`math.floor` in Py3k. |
| |
| |
| .. method:: __ceil__() |
| |
| Returns the least :class:`int` ``>= self``. Will be accessible through |
| :func:`math.ceil` in Py3k. |
| |
| |
| .. method:: __round__() |
| __round__(ndigits) |
| |
| The first version returns the nearest :class:`int` to ``self``, rounding |
| half to even. The second version rounds ``self`` to the nearest multiple |
| of ``Fraction(1, 10**ndigits)`` (logically, if ``ndigits`` is negative), |
| again rounding half toward even. Will be accessible through :func:`round` |
| in Py3k. |
| |
| |
| .. seealso:: |
| |
| Module :mod:`numbers` |
| The abstract base classes making up the numeric tower. |