| /* | 
 |  * Implementation of the Global Interpreter Lock (GIL). | 
 |  */ | 
 |  | 
 | #include <stdlib.h> | 
 | #include <errno.h> | 
 |  | 
 |  | 
 | /* First some general settings */ | 
 |  | 
 | /* microseconds (the Python API uses seconds, though) */ | 
 | #define DEFAULT_INTERVAL 5000 | 
 | static unsigned long gil_interval = DEFAULT_INTERVAL; | 
 | #define INTERVAL (gil_interval >= 1 ? gil_interval : 1) | 
 |  | 
 | /* Enable if you want to force the switching of threads at least every `gil_interval` */ | 
 | #undef FORCE_SWITCHING | 
 | #define FORCE_SWITCHING | 
 |  | 
 |  | 
 | /* | 
 |    Notes about the implementation: | 
 |  | 
 |    - The GIL is just a boolean variable (gil_locked) whose access is protected | 
 |      by a mutex (gil_mutex), and whose changes are signalled by a condition | 
 |      variable (gil_cond). gil_mutex is taken for short periods of time, | 
 |      and therefore mostly uncontended. | 
 |  | 
 |    - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be | 
 |      able to release the GIL on demand by another thread. A volatile boolean | 
 |      variable (gil_drop_request) is used for that purpose, which is checked | 
 |      at every turn of the eval loop. That variable is set after a wait of | 
 |      `interval` microseconds on `gil_cond` has timed out. | 
 |        | 
 |       [Actually, another volatile boolean variable (eval_breaker) is used | 
 |        which ORs several conditions into one. Volatile booleans are | 
 |        sufficient as inter-thread signalling means since Python is run | 
 |        on cache-coherent architectures only.] | 
 |  | 
 |    - A thread wanting to take the GIL will first let pass a given amount of | 
 |      time (`interval` microseconds) before setting gil_drop_request. This | 
 |      encourages a defined switching period, but doesn't enforce it since | 
 |      opcodes can take an arbitrary time to execute. | 
 |   | 
 |      The `interval` value is available for the user to read and modify | 
 |      using the Python API `sys.{get,set}switchinterval()`. | 
 |  | 
 |    - When a thread releases the GIL and gil_drop_request is set, that thread | 
 |      ensures that another GIL-awaiting thread gets scheduled. | 
 |      It does so by waiting on a condition variable (switch_cond) until | 
 |      the value of gil_last_holder is changed to something else than its | 
 |      own thread state pointer, indicating that another thread was able to | 
 |      take the GIL. | 
 |   | 
 |      This is meant to prohibit the latency-adverse behaviour on multi-core | 
 |      machines where one thread would speculatively release the GIL, but still | 
 |      run and end up being the first to re-acquire it, making the "timeslices" | 
 |      much longer than expected. | 
 |      (Note: this mechanism is enabled with FORCE_SWITCHING above) | 
 | */ | 
 |  | 
 | #ifndef _POSIX_THREADS | 
 | /* This means pthreads are not implemented in libc headers, hence the macro | 
 |    not present in unistd.h. But they still can be implemented as an external | 
 |    library (e.g. gnu pth in pthread emulation) */ | 
 | # ifdef HAVE_PTHREAD_H | 
 | #  include <pthread.h> /* _POSIX_THREADS */ | 
 | # endif | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef _POSIX_THREADS | 
 |  | 
 | /* | 
 |  * POSIX support | 
 |  */ | 
 |  | 
 | #include <pthread.h> | 
 |  | 
 | #define ADD_MICROSECONDS(tv, interval) \ | 
 | do { \ | 
 |     tv.tv_usec += (long) interval; \ | 
 |     tv.tv_sec += tv.tv_usec / 1000000; \ | 
 |     tv.tv_usec %= 1000000; \ | 
 | } while (0) | 
 |  | 
 | /* We assume all modern POSIX systems have gettimeofday() */ | 
 | #ifdef GETTIMEOFDAY_NO_TZ | 
 | #define GETTIMEOFDAY(ptv) gettimeofday(ptv) | 
 | #else | 
 | #define GETTIMEOFDAY(ptv) gettimeofday(ptv, (struct timezone *)NULL) | 
 | #endif | 
 |  | 
 | #define MUTEX_T pthread_mutex_t | 
 | #define MUTEX_INIT(mut) \ | 
 |     if (pthread_mutex_init(&mut, NULL)) { \ | 
 |         Py_FatalError("pthread_mutex_init(" #mut ") failed"); }; | 
 | #define MUTEX_LOCK(mut) \ | 
 |     if (pthread_mutex_lock(&mut)) { \ | 
 |         Py_FatalError("pthread_mutex_lock(" #mut ") failed"); }; | 
 | #define MUTEX_UNLOCK(mut) \ | 
 |     if (pthread_mutex_unlock(&mut)) { \ | 
 |         Py_FatalError("pthread_mutex_unlock(" #mut ") failed"); }; | 
 |  | 
 | #define COND_T pthread_cond_t | 
 | #define COND_INIT(cond) \ | 
 |     if (pthread_cond_init(&cond, NULL)) { \ | 
 |         Py_FatalError("pthread_cond_init(" #cond ") failed"); }; | 
 | #define COND_RESET(cond) | 
 | #define COND_SIGNAL(cond) \ | 
 |     if (pthread_cond_signal(&cond)) { \ | 
 |         Py_FatalError("pthread_cond_signal(" #cond ") failed"); }; | 
 | #define COND_WAIT(cond, mut) \ | 
 |     if (pthread_cond_wait(&cond, &mut)) { \ | 
 |         Py_FatalError("pthread_cond_wait(" #cond ") failed"); }; | 
 | #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ | 
 |     { \ | 
 |         int r; \ | 
 |         struct timespec ts; \ | 
 |         struct timeval deadline; \ | 
 |         \ | 
 |         GETTIMEOFDAY(&deadline); \ | 
 |         ADD_MICROSECONDS(deadline, microseconds); \ | 
 |         ts.tv_sec = deadline.tv_sec; \ | 
 |         ts.tv_nsec = deadline.tv_usec * 1000; \ | 
 |         \ | 
 |         r = pthread_cond_timedwait(&cond, &mut, &ts); \ | 
 |         if (r == ETIMEDOUT) \ | 
 |             timeout_result = 1; \ | 
 |         else if (r) \ | 
 |             Py_FatalError("pthread_cond_timedwait(" #cond ") failed"); \ | 
 |         else \ | 
 |             timeout_result = 0; \ | 
 |     } \ | 
 |  | 
 | #elif defined(NT_THREADS) | 
 |  | 
 | /* | 
 |  * Windows (2000 and later, as well as (hopefully) CE) support | 
 |  */ | 
 |  | 
 | #include <windows.h> | 
 |  | 
 | #define MUTEX_T HANDLE | 
 | #define MUTEX_INIT(mut) \ | 
 |     if (!(mut = CreateMutex(NULL, FALSE, NULL))) { \ | 
 |         Py_FatalError("CreateMutex(" #mut ") failed"); }; | 
 | #define MUTEX_LOCK(mut) \ | 
 |     if (WaitForSingleObject(mut, INFINITE) != WAIT_OBJECT_0) { \ | 
 |         Py_FatalError("WaitForSingleObject(" #mut ") failed"); }; | 
 | #define MUTEX_UNLOCK(mut) \ | 
 |     if (!ReleaseMutex(mut)) { \ | 
 |         Py_FatalError("ReleaseMutex(" #mut ") failed"); }; | 
 |  | 
 | /* We emulate condition variables with events. It is sufficient here. | 
 |    WaitForMultipleObjects() allows the event to be caught and the mutex | 
 |    to be taken atomically. | 
 |    As for SignalObjectAndWait(), its semantics are unfortunately a bit | 
 |    more foggy. Many sources on the Web define it as atomically releasing | 
 |    the first object while starting to wait on the second, but MSDN states | 
 |    it is *not* atomic... | 
 |  | 
 |    In any case, the emulation here is tailored for our particular use case. | 
 |    For example, we don't care how many threads are woken up when a condition | 
 |    gets signalled. Generic emulations of the pthread_cond_* API using | 
 |    Win32 functions can be found on the Web. | 
 |    The following read can be edificating (or not): | 
 |    http://www.cse.wustl.edu/~schmidt/win32-cv-1.html | 
 | */ | 
 | #define COND_T HANDLE | 
 | #define COND_INIT(cond) \ | 
 |     /* auto-reset, non-signalled */ \ | 
 |     if (!(cond = CreateEvent(NULL, FALSE, FALSE, NULL))) { \ | 
 |         Py_FatalError("CreateMutex(" #cond ") failed"); }; | 
 | #define COND_RESET(cond) \ | 
 |     if (!ResetEvent(cond)) { \ | 
 |         Py_FatalError("ResetEvent(" #cond ") failed"); }; | 
 | #define COND_SIGNAL(cond) \ | 
 |     if (!SetEvent(cond)) { \ | 
 |         Py_FatalError("SetEvent(" #cond ") failed"); }; | 
 | #define COND_WAIT(cond, mut) \ | 
 |     { \ | 
 |         if (SignalObjectAndWait(mut, cond, INFINITE, FALSE) != WAIT_OBJECT_0) \ | 
 |             Py_FatalError("SignalObjectAndWait(" #mut ", " #cond") failed"); \ | 
 |         MUTEX_LOCK(mut); \ | 
 |     } | 
 | #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ | 
 |     { \ | 
 |         DWORD r; \ | 
 |         HANDLE objects[2] = { cond, mut }; \ | 
 |         MUTEX_UNLOCK(mut); \ | 
 |         r = WaitForMultipleObjects(2, objects, TRUE, microseconds / 1000); \ | 
 |         if (r == WAIT_TIMEOUT) { \ | 
 |             MUTEX_LOCK(mut); \ | 
 |             timeout_result = 1; \ | 
 |         } \ | 
 |         else if (r != WAIT_OBJECT_0) \ | 
 |             Py_FatalError("WaitForSingleObject(" #cond ") failed"); \ | 
 |         else \ | 
 |             timeout_result = 0; \ | 
 |     } | 
 |  | 
 | #else | 
 |  | 
 | #error You need either a POSIX-compatible or a Windows system! | 
 |  | 
 | #endif /* _POSIX_THREADS, NT_THREADS */ | 
 |  | 
 |  | 
 | /* Whether the GIL is already taken (-1 if uninitialized). This is atomic | 
 |    because it can be read without any lock taken in ceval.c. */ | 
 | static _Py_atomic_int gil_locked = {-1}; | 
 | /* Number of GIL switches since the beginning. */ | 
 | static unsigned long gil_switch_number = 0; | 
 | /* Last PyThreadState holding / having held the GIL. This helps us know | 
 |    whether anyone else was scheduled after we dropped the GIL. */ | 
 | static _Py_atomic_address gil_last_holder = {NULL}; | 
 |  | 
 | /* This condition variable allows one or several threads to wait until | 
 |    the GIL is released. In addition, the mutex also protects the above | 
 |    variables. */ | 
 | static COND_T gil_cond; | 
 | static MUTEX_T gil_mutex; | 
 |  | 
 | #ifdef FORCE_SWITCHING | 
 | /* This condition variable helps the GIL-releasing thread wait for | 
 |    a GIL-awaiting thread to be scheduled and take the GIL. */ | 
 | static COND_T switch_cond; | 
 | static MUTEX_T switch_mutex; | 
 | #endif | 
 |  | 
 |  | 
 | static int gil_created(void) | 
 | { | 
 |     return _Py_atomic_load_explicit(&gil_locked, _Py_memory_order_acquire) >= 0; | 
 | } | 
 |  | 
 | static void create_gil(void) | 
 | { | 
 |     MUTEX_INIT(gil_mutex); | 
 | #ifdef FORCE_SWITCHING | 
 |     MUTEX_INIT(switch_mutex); | 
 | #endif | 
 |     COND_INIT(gil_cond); | 
 | #ifdef FORCE_SWITCHING | 
 |     COND_INIT(switch_cond); | 
 | #endif | 
 |     _Py_atomic_store_relaxed(&gil_last_holder, NULL); | 
 |     _Py_ANNOTATE_RWLOCK_CREATE(&gil_locked); | 
 |     _Py_atomic_store_explicit(&gil_locked, 0, _Py_memory_order_release); | 
 | } | 
 |  | 
 | static void recreate_gil(void) | 
 | { | 
 |     _Py_ANNOTATE_RWLOCK_DESTROY(&gil_locked); | 
 |     create_gil(); | 
 | } | 
 |  | 
 | static void drop_gil(PyThreadState *tstate) | 
 | { | 
 |     /* NOTE: tstate is allowed to be NULL. */ | 
 |     if (!_Py_atomic_load_relaxed(&gil_locked)) | 
 |         Py_FatalError("drop_gil: GIL is not locked"); | 
 |     if (tstate != NULL && | 
 |         tstate != _Py_atomic_load_relaxed(&gil_last_holder)) | 
 |         Py_FatalError("drop_gil: wrong thread state"); | 
 |  | 
 |     MUTEX_LOCK(gil_mutex); | 
 |     _Py_ANNOTATE_RWLOCK_RELEASED(&gil_locked, /*is_write=*/1); | 
 |     _Py_atomic_store_relaxed(&gil_locked, 0); | 
 |     COND_SIGNAL(gil_cond); | 
 |     MUTEX_UNLOCK(gil_mutex); | 
 |      | 
 | #ifdef FORCE_SWITCHING | 
 |     if (_Py_atomic_load_relaxed(&gil_drop_request) && tstate != NULL) { | 
 |         MUTEX_LOCK(switch_mutex); | 
 |         /* Not switched yet => wait */ | 
 |         if (_Py_atomic_load_relaxed(&gil_last_holder) == tstate) { | 
 | 	    RESET_GIL_DROP_REQUEST(); | 
 |             /* NOTE: if COND_WAIT does not atomically start waiting when | 
 |                releasing the mutex, another thread can run through, take | 
 |                the GIL and drop it again, and reset the condition | 
 |                before we even had a chance to wait for it. */ | 
 |             COND_WAIT(switch_cond, switch_mutex); | 
 |             COND_RESET(switch_cond); | 
 | 	} | 
 |         MUTEX_UNLOCK(switch_mutex); | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | static void take_gil(PyThreadState *tstate) | 
 | { | 
 |     int err; | 
 |     if (tstate == NULL) | 
 |         Py_FatalError("take_gil: NULL tstate"); | 
 |  | 
 |     err = errno; | 
 |     MUTEX_LOCK(gil_mutex); | 
 |  | 
 |     if (!_Py_atomic_load_relaxed(&gil_locked)) | 
 |         goto _ready; | 
 |      | 
 |     COND_RESET(gil_cond); | 
 |     while (_Py_atomic_load_relaxed(&gil_locked)) { | 
 |         int timed_out = 0; | 
 |         unsigned long saved_switchnum; | 
 |  | 
 |         saved_switchnum = gil_switch_number; | 
 |         COND_TIMED_WAIT(gil_cond, gil_mutex, INTERVAL, timed_out); | 
 |         /* If we timed out and no switch occurred in the meantime, it is time | 
 |            to ask the GIL-holding thread to drop it. */ | 
 |         if (timed_out && | 
 |             _Py_atomic_load_relaxed(&gil_locked) && | 
 |             gil_switch_number == saved_switchnum) { | 
 |             SET_GIL_DROP_REQUEST(); | 
 |         } | 
 |     } | 
 | _ready: | 
 | #ifdef FORCE_SWITCHING | 
 |     /* This mutex must be taken before modifying gil_last_holder (see drop_gil()). */ | 
 |     MUTEX_LOCK(switch_mutex); | 
 | #endif | 
 |     /* We now hold the GIL */ | 
 |     _Py_atomic_store_relaxed(&gil_locked, 1); | 
 |     _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil_locked, /*is_write=*/1); | 
 |  | 
 |     if (tstate != _Py_atomic_load_relaxed(&gil_last_holder)) { | 
 |         _Py_atomic_store_relaxed(&gil_last_holder, tstate); | 
 |         ++gil_switch_number; | 
 |     } | 
 |  | 
 | #ifdef FORCE_SWITCHING | 
 |     COND_SIGNAL(switch_cond); | 
 |     MUTEX_UNLOCK(switch_mutex); | 
 | #endif | 
 |     if (_Py_atomic_load_relaxed(&gil_drop_request)) { | 
 |         RESET_GIL_DROP_REQUEST(); | 
 |     } | 
 |     if (tstate->async_exc != NULL) { | 
 |         _PyEval_SignalAsyncExc(); | 
 |     } | 
 |      | 
 |     MUTEX_UNLOCK(gil_mutex); | 
 |     errno = err; | 
 | } | 
 |  | 
 | void _PyEval_SetSwitchInterval(unsigned long microseconds) | 
 | { | 
 |     gil_interval = microseconds; | 
 | } | 
 |  | 
 | unsigned long _PyEval_GetSwitchInterval() | 
 | { | 
 |     return gil_interval; | 
 | } |