| /* |
| ** Routines to represent binary data in ASCII and vice-versa |
| ** |
| ** This module currently supports the following encodings: |
| ** uuencode: |
| ** each line encodes 45 bytes (except possibly the last) |
| ** First char encodes (binary) length, rest data |
| ** each char encodes 6 bits, as follows: |
| ** binary: 01234567 abcdefgh ijklmnop |
| ** ascii: 012345 67abcd efghij klmnop |
| ** ASCII encoding method is "excess-space": 000000 is encoded as ' ', etc. |
| ** short binary data is zero-extended (so the bits are always in the |
| ** right place), this does *not* reflect in the length. |
| ** base64: |
| ** Line breaks are insignificant, but lines are at most 76 chars |
| ** each char encodes 6 bits, in similar order as uucode/hqx. Encoding |
| ** is done via a table. |
| ** Short binary data is filled (in ASCII) with '='. |
| ** hqx: |
| ** File starts with introductory text, real data starts and ends |
| ** with colons. |
| ** Data consists of three similar parts: info, datafork, resourcefork. |
| ** Each part is protected (at the end) with a 16-bit crc |
| ** The binary data is run-length encoded, and then ascii-fied: |
| ** binary: 01234567 abcdefgh ijklmnop |
| ** ascii: 012345 67abcd efghij klmnop |
| ** ASCII encoding is table-driven, see the code. |
| ** Short binary data results in the runt ascii-byte being output with |
| ** the bits in the right place. |
| ** |
| ** While I was reading dozens of programs that encode or decode the formats |
| ** here (documentation? hihi:-) I have formulated Jansen's Observation: |
| ** |
| ** Programs that encode binary data in ASCII are written in |
| ** such a style that they are as unreadable as possible. Devices used |
| ** include unnecessary global variables, burying important tables |
| ** in unrelated sourcefiles, putting functions in include files, |
| ** using seemingly-descriptive variable names for different purposes, |
| ** calls to empty subroutines and a host of others. |
| ** |
| ** I have attempted to break with this tradition, but I guess that that |
| ** does make the performance sub-optimal. Oh well, too bad... |
| ** |
| ** Jack Jansen, CWI, July 1995. |
| */ |
| |
| |
| #include "Python.h" |
| |
| static PyObject *Error; |
| static PyObject *Incomplete; |
| |
| /* |
| ** hqx lookup table, ascii->binary. |
| */ |
| |
| #define RUNCHAR 0x90 |
| |
| #define DONE 0x7F |
| #define SKIP 0x7E |
| #define FAIL 0x7D |
| |
| static unsigned char table_a2b_hqx[256] = { |
| /* ^@ ^A ^B ^C ^D ^E ^F ^G */ |
| /* 0*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* \b \t \n ^K ^L \r ^N ^O */ |
| /* 1*/ FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL, |
| /* ^P ^Q ^R ^S ^T ^U ^V ^W */ |
| /* 2*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */ |
| /* 3*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* ! " # $ % & ' */ |
| /* 4*/ FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, |
| /* ( ) * + , - . / */ |
| /* 5*/ 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL, |
| /* 0 1 2 3 4 5 6 7 */ |
| /* 6*/ 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL, |
| /* 8 9 : ; < = > ? */ |
| /* 7*/ 0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* @ A B C D E F G */ |
| /* 8*/ 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, |
| /* H I J K L M N O */ |
| /* 9*/ 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL, |
| /* P Q R S T U V W */ |
| /*10*/ 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL, |
| /* X Y Z [ \ ] ^ _ */ |
| /*11*/ 0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL, |
| /* ` a b c d e f g */ |
| /*12*/ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL, |
| /* h i j k l m n o */ |
| /*13*/ 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL, |
| /* p q r s t u v w */ |
| /*14*/ 0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* x y z { | } ~ ^? */ |
| /*15*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /*16*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| }; |
| |
| static unsigned char table_b2a_hqx[] = |
| "!\"#$%&'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr"; |
| |
| static char table_a2b_base64[] = { |
| -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, |
| -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, |
| -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63, |
| 52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */ |
| -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14, |
| 15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1, |
| -1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40, |
| 41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1 |
| }; |
| |
| #define BASE64_PAD '=' |
| #define BASE64_MAXBIN 57 /* Max binary chunk size (76 char line) */ |
| |
| static unsigned char table_b2a_base64[] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| |
| |
| |
| static unsigned short crctab_hqx[256] = { |
| 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, |
| 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, |
| 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, |
| 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, |
| 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, |
| 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, |
| 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, |
| 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, |
| 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, |
| 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, |
| 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, |
| 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, |
| 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, |
| 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, |
| 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, |
| 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, |
| 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, |
| 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, |
| 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, |
| 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, |
| 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, |
| 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, |
| 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, |
| 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, |
| 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, |
| 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, |
| 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, |
| 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, |
| 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, |
| 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, |
| 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, |
| 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0, |
| }; |
| |
| static char doc_a2b_uu[] = "(ascii) -> bin. Decode a line of uuencoded data"; |
| |
| static PyObject * |
| binascii_a2b_uu(PyObject *self, PyObject *args) |
| { |
| unsigned char *ascii_data, *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *rv; |
| int ascii_len, bin_len; |
| |
| if ( !PyArg_ParseTuple(args, "t#:a2b_uu", &ascii_data, &ascii_len) ) |
| return NULL; |
| |
| /* First byte: binary data length (in bytes) */ |
| bin_len = (*ascii_data++ - ' ') & 077; |
| ascii_len--; |
| |
| /* Allocate the buffer */ |
| if ( (rv=PyString_FromStringAndSize(NULL, bin_len)) == NULL ) |
| return NULL; |
| bin_data = (unsigned char *)PyString_AsString(rv); |
| |
| for( ; bin_len > 0 ; ascii_len--, ascii_data++ ) { |
| this_ch = *ascii_data; |
| if ( this_ch == '\n' || this_ch == '\r' || ascii_len <= 0) { |
| /* |
| ** Whitespace. Assume some spaces got eaten at |
| ** end-of-line. (We check this later) |
| */ |
| this_ch = 0; |
| } else { |
| /* Check the character for legality |
| ** The 64 in stead of the expected 63 is because |
| ** there are a few uuencodes out there that use |
| ** '`' as zero instead of space. |
| */ |
| if ( this_ch < ' ' || this_ch > (' ' + 64)) { |
| PyErr_SetString(Error, "Illegal char"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| this_ch = (this_ch - ' ') & 077; |
| } |
| /* |
| ** Shift it in on the low end, and see if there's |
| ** a byte ready for output. |
| */ |
| leftchar = (leftchar << 6) | (this_ch); |
| leftbits += 6; |
| if ( leftbits >= 8 ) { |
| leftbits -= 8; |
| *bin_data++ = (leftchar >> leftbits) & 0xff; |
| leftchar &= ((1 << leftbits) - 1); |
| bin_len--; |
| } |
| } |
| /* |
| ** Finally, check that if there's anything left on the line |
| ** that it's whitespace only. |
| */ |
| while( ascii_len-- > 0 ) { |
| this_ch = *ascii_data++; |
| /* Extra '`' may be written as padding in some cases */ |
| if ( this_ch != ' ' && this_ch != ' '+64 && |
| this_ch != '\n' && this_ch != '\r' ) { |
| PyErr_SetString(Error, "Trailing garbage"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| } |
| return rv; |
| } |
| |
| static char doc_b2a_uu[] = "(bin) -> ascii. Uuencode line of data"; |
| |
| static PyObject * |
| binascii_b2a_uu(PyObject *self, PyObject *args) |
| { |
| unsigned char *ascii_data, *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *rv; |
| int bin_len; |
| |
| if ( !PyArg_ParseTuple(args, "s#:b2a_uu", &bin_data, &bin_len) ) |
| return NULL; |
| if ( bin_len > 45 ) { |
| /* The 45 is a limit that appears in all uuencode's */ |
| PyErr_SetString(Error, "At most 45 bytes at once"); |
| return NULL; |
| } |
| |
| /* We're lazy and allocate to much (fixed up later) */ |
| if ( (rv=PyString_FromStringAndSize(NULL, bin_len*2)) == NULL ) |
| return NULL; |
| ascii_data = (unsigned char *)PyString_AsString(rv); |
| |
| /* Store the length */ |
| *ascii_data++ = ' ' + (bin_len & 077); |
| |
| for( ; bin_len > 0 || leftbits != 0 ; bin_len--, bin_data++ ) { |
| /* Shift the data (or padding) into our buffer */ |
| if ( bin_len > 0 ) /* Data */ |
| leftchar = (leftchar << 8) | *bin_data; |
| else /* Padding */ |
| leftchar <<= 8; |
| leftbits += 8; |
| |
| /* See if there are 6-bit groups ready */ |
| while ( leftbits >= 6 ) { |
| this_ch = (leftchar >> (leftbits-6)) & 0x3f; |
| leftbits -= 6; |
| *ascii_data++ = this_ch + ' '; |
| } |
| } |
| *ascii_data++ = '\n'; /* Append a courtesy newline */ |
| |
| _PyString_Resize(&rv, (ascii_data - |
| (unsigned char *)PyString_AsString(rv))); |
| return rv; |
| } |
| |
| |
| static int |
| binascii_find_valid(unsigned char *s, int slen, int num) |
| { |
| /* Finds & returns the (num+1)th |
| ** valid character for base64, or -1 if none. |
| */ |
| |
| int ret = -1; |
| unsigned char c, b64val; |
| |
| while ((slen > 0) && (ret == -1)) { |
| c = *s; |
| b64val = table_a2b_base64[c & 0x7f]; |
| if ( ((c <= 0x7f) && (b64val != (unsigned char)-1)) ) { |
| if (num == 0) |
| ret = *s; |
| num--; |
| } |
| |
| s++; |
| slen--; |
| } |
| return ret; |
| } |
| |
| static char doc_a2b_base64[] = "(ascii) -> bin. Decode a line of base64 data"; |
| |
| static PyObject * |
| binascii_a2b_base64(PyObject *self, PyObject *args) |
| { |
| unsigned char *ascii_data, *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *rv; |
| int ascii_len, bin_len; |
| int quad_pos = 0; |
| |
| if ( !PyArg_ParseTuple(args, "t#:a2b_base64", &ascii_data, &ascii_len) ) |
| return NULL; |
| |
| if ( ascii_len == 0) { |
| PyErr_SetString(Error, "Cannot decode empty input"); |
| return NULL; |
| } |
| bin_len = ((ascii_len+3)/4)*3; /* Upper bound, corrected later */ |
| |
| /* Allocate the buffer */ |
| if ( (rv=PyString_FromStringAndSize(NULL, bin_len)) == NULL ) |
| return NULL; |
| bin_data = (unsigned char *)PyString_AsString(rv); |
| bin_len = 0; |
| |
| for( ; ascii_len > 0; ascii_len--, ascii_data++) { |
| this_ch = *ascii_data; |
| |
| if (this_ch > 0x7f || |
| this_ch == '\r' || this_ch == '\n' || this_ch == ' ') |
| continue; |
| |
| /* Check for pad sequences and ignore |
| ** the invalid ones. |
| */ |
| if (this_ch == BASE64_PAD) { |
| if ( (quad_pos < 2) || |
| ((quad_pos == 2) && |
| (binascii_find_valid(ascii_data, ascii_len, 1) |
| != BASE64_PAD)) ) |
| { |
| continue; |
| } |
| else { |
| /* A pad sequence means no more input. |
| ** We've already interpreted the data |
| ** from the quad at this point. |
| */ |
| leftbits = 0; |
| break; |
| } |
| } |
| |
| this_ch = table_a2b_base64[*ascii_data]; |
| if ( this_ch == (unsigned char) -1 ) |
| continue; |
| |
| /* |
| ** Shift it in on the low end, and see if there's |
| ** a byte ready for output. |
| */ |
| quad_pos = (quad_pos + 1) & 0x03; |
| leftchar = (leftchar << 6) | (this_ch); |
| leftbits += 6; |
| |
| if ( leftbits >= 8 ) { |
| leftbits -= 8; |
| *bin_data++ = (leftchar >> leftbits) & 0xff; |
| bin_len++; |
| leftchar &= ((1 << leftbits) - 1); |
| } |
| } |
| |
| if (leftbits != 0) { |
| PyErr_SetString(Error, "Incorrect padding"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| |
| /* and set string size correctly */ |
| _PyString_Resize(&rv, bin_len); |
| return rv; |
| } |
| |
| static char doc_b2a_base64[] = "(bin) -> ascii. Base64-code line of data"; |
| |
| static PyObject * |
| binascii_b2a_base64(PyObject *self, PyObject *args) |
| { |
| unsigned char *ascii_data, *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *rv; |
| int bin_len; |
| |
| if ( !PyArg_ParseTuple(args, "s#:b2a_base64", &bin_data, &bin_len) ) |
| return NULL; |
| if ( bin_len > BASE64_MAXBIN ) { |
| PyErr_SetString(Error, "Too much data for base64 line"); |
| return NULL; |
| } |
| |
| /* We're lazy and allocate to much (fixed up later) */ |
| if ( (rv=PyString_FromStringAndSize(NULL, bin_len*2)) == NULL ) |
| return NULL; |
| ascii_data = (unsigned char *)PyString_AsString(rv); |
| |
| for( ; bin_len > 0 ; bin_len--, bin_data++ ) { |
| /* Shift the data into our buffer */ |
| leftchar = (leftchar << 8) | *bin_data; |
| leftbits += 8; |
| |
| /* See if there are 6-bit groups ready */ |
| while ( leftbits >= 6 ) { |
| this_ch = (leftchar >> (leftbits-6)) & 0x3f; |
| leftbits -= 6; |
| *ascii_data++ = table_b2a_base64[this_ch]; |
| } |
| } |
| if ( leftbits == 2 ) { |
| *ascii_data++ = table_b2a_base64[(leftchar&3) << 4]; |
| *ascii_data++ = BASE64_PAD; |
| *ascii_data++ = BASE64_PAD; |
| } else if ( leftbits == 4 ) { |
| *ascii_data++ = table_b2a_base64[(leftchar&0xf) << 2]; |
| *ascii_data++ = BASE64_PAD; |
| } |
| *ascii_data++ = '\n'; /* Append a courtesy newline */ |
| |
| _PyString_Resize(&rv, (ascii_data - |
| (unsigned char *)PyString_AsString(rv))); |
| return rv; |
| } |
| |
| static char doc_a2b_hqx[] = "ascii -> bin, done. Decode .hqx coding"; |
| |
| static PyObject * |
| binascii_a2b_hqx(PyObject *self, PyObject *args) |
| { |
| unsigned char *ascii_data, *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *rv; |
| int len; |
| int done = 0; |
| |
| if ( !PyArg_ParseTuple(args, "t#:a2b_hqx", &ascii_data, &len) ) |
| return NULL; |
| |
| /* Allocate a string that is too big (fixed later) */ |
| if ( (rv=PyString_FromStringAndSize(NULL, len)) == NULL ) |
| return NULL; |
| bin_data = (unsigned char *)PyString_AsString(rv); |
| |
| for( ; len > 0 ; len--, ascii_data++ ) { |
| /* Get the byte and look it up */ |
| this_ch = table_a2b_hqx[*ascii_data]; |
| if ( this_ch == SKIP ) |
| continue; |
| if ( this_ch == FAIL ) { |
| PyErr_SetString(Error, "Illegal char"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| if ( this_ch == DONE ) { |
| /* The terminating colon */ |
| done = 1; |
| break; |
| } |
| |
| /* Shift it into the buffer and see if any bytes are ready */ |
| leftchar = (leftchar << 6) | (this_ch); |
| leftbits += 6; |
| if ( leftbits >= 8 ) { |
| leftbits -= 8; |
| *bin_data++ = (leftchar >> leftbits) & 0xff; |
| leftchar &= ((1 << leftbits) - 1); |
| } |
| } |
| |
| if ( leftbits && !done ) { |
| PyErr_SetString(Incomplete, |
| "String has incomplete number of bytes"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| _PyString_Resize( |
| &rv, (bin_data - (unsigned char *)PyString_AsString(rv))); |
| if (rv) { |
| PyObject *rrv = Py_BuildValue("Oi", rv, done); |
| Py_DECREF(rv); |
| return rrv; |
| } |
| |
| return NULL; |
| } |
| |
| static char doc_rlecode_hqx[] = "Binhex RLE-code binary data"; |
| |
| static PyObject * |
| binascii_rlecode_hqx(PyObject *self, PyObject *args) |
| { |
| unsigned char *in_data, *out_data; |
| PyObject *rv; |
| unsigned char ch; |
| int in, inend, len; |
| |
| if ( !PyArg_ParseTuple(args, "s#:rlecode_hqx", &in_data, &len) ) |
| return NULL; |
| |
| /* Worst case: output is twice as big as input (fixed later) */ |
| if ( (rv=PyString_FromStringAndSize(NULL, len*2)) == NULL ) |
| return NULL; |
| out_data = (unsigned char *)PyString_AsString(rv); |
| |
| for( in=0; in<len; in++) { |
| ch = in_data[in]; |
| if ( ch == RUNCHAR ) { |
| /* RUNCHAR. Escape it. */ |
| *out_data++ = RUNCHAR; |
| *out_data++ = 0; |
| } else { |
| /* Check how many following are the same */ |
| for(inend=in+1; |
| inend<len && in_data[inend] == ch && |
| inend < in+255; |
| inend++) ; |
| if ( inend - in > 3 ) { |
| /* More than 3 in a row. Output RLE. */ |
| *out_data++ = ch; |
| *out_data++ = RUNCHAR; |
| *out_data++ = inend-in; |
| in = inend-1; |
| } else { |
| /* Less than 3. Output the byte itself */ |
| *out_data++ = ch; |
| } |
| } |
| } |
| _PyString_Resize(&rv, (out_data - |
| (unsigned char *)PyString_AsString(rv))); |
| return rv; |
| } |
| |
| static char doc_b2a_hqx[] = "Encode .hqx data"; |
| |
| static PyObject * |
| binascii_b2a_hqx(PyObject *self, PyObject *args) |
| { |
| unsigned char *ascii_data, *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *rv; |
| int len; |
| |
| if ( !PyArg_ParseTuple(args, "s#:b2a_hqx", &bin_data, &len) ) |
| return NULL; |
| |
| /* Allocate a buffer that is at least large enough */ |
| if ( (rv=PyString_FromStringAndSize(NULL, len*2)) == NULL ) |
| return NULL; |
| ascii_data = (unsigned char *)PyString_AsString(rv); |
| |
| for( ; len > 0 ; len--, bin_data++ ) { |
| /* Shift into our buffer, and output any 6bits ready */ |
| leftchar = (leftchar << 8) | *bin_data; |
| leftbits += 8; |
| while ( leftbits >= 6 ) { |
| this_ch = (leftchar >> (leftbits-6)) & 0x3f; |
| leftbits -= 6; |
| *ascii_data++ = table_b2a_hqx[this_ch]; |
| } |
| } |
| /* Output a possible runt byte */ |
| if ( leftbits ) { |
| leftchar <<= (6-leftbits); |
| *ascii_data++ = table_b2a_hqx[leftchar & 0x3f]; |
| } |
| _PyString_Resize(&rv, (ascii_data - |
| (unsigned char *)PyString_AsString(rv))); |
| return rv; |
| } |
| |
| static char doc_rledecode_hqx[] = "Decode hexbin RLE-coded string"; |
| |
| static PyObject * |
| binascii_rledecode_hqx(PyObject *self, PyObject *args) |
| { |
| unsigned char *in_data, *out_data; |
| unsigned char in_byte, in_repeat; |
| PyObject *rv; |
| int in_len, out_len, out_len_left; |
| |
| if ( !PyArg_ParseTuple(args, "s#:rledecode_hqx", &in_data, &in_len) ) |
| return NULL; |
| |
| /* Empty string is a special case */ |
| if ( in_len == 0 ) |
| return Py_BuildValue("s", ""); |
| |
| /* Allocate a buffer of reasonable size. Resized when needed */ |
| out_len = in_len*2; |
| if ( (rv=PyString_FromStringAndSize(NULL, out_len)) == NULL ) |
| return NULL; |
| out_len_left = out_len; |
| out_data = (unsigned char *)PyString_AsString(rv); |
| |
| /* |
| ** We need two macros here to get/put bytes and handle |
| ** end-of-buffer for input and output strings. |
| */ |
| #define INBYTE(b) \ |
| do { \ |
| if ( --in_len < 0 ) { \ |
| PyErr_SetString(Incomplete, ""); \ |
| Py_DECREF(rv); \ |
| return NULL; \ |
| } \ |
| b = *in_data++; \ |
| } while(0) |
| |
| #define OUTBYTE(b) \ |
| do { \ |
| if ( --out_len_left < 0 ) { \ |
| _PyString_Resize(&rv, 2*out_len); \ |
| if ( rv == NULL ) return NULL; \ |
| out_data = (unsigned char *)PyString_AsString(rv) \ |
| + out_len; \ |
| out_len_left = out_len-1; \ |
| out_len = out_len * 2; \ |
| } \ |
| *out_data++ = b; \ |
| } while(0) |
| |
| /* |
| ** Handle first byte separately (since we have to get angry |
| ** in case of an orphaned RLE code). |
| */ |
| INBYTE(in_byte); |
| |
| if (in_byte == RUNCHAR) { |
| INBYTE(in_repeat); |
| if (in_repeat != 0) { |
| /* Note Error, not Incomplete (which is at the end |
| ** of the string only). This is a programmer error. |
| */ |
| PyErr_SetString(Error, "Orphaned RLE code at start"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| OUTBYTE(RUNCHAR); |
| } else { |
| OUTBYTE(in_byte); |
| } |
| |
| while( in_len > 0 ) { |
| INBYTE(in_byte); |
| |
| if (in_byte == RUNCHAR) { |
| INBYTE(in_repeat); |
| if ( in_repeat == 0 ) { |
| /* Just an escaped RUNCHAR value */ |
| OUTBYTE(RUNCHAR); |
| } else { |
| /* Pick up value and output a sequence of it */ |
| in_byte = out_data[-1]; |
| while ( --in_repeat > 0 ) |
| OUTBYTE(in_byte); |
| } |
| } else { |
| /* Normal byte */ |
| OUTBYTE(in_byte); |
| } |
| } |
| _PyString_Resize(&rv, (out_data - |
| (unsigned char *)PyString_AsString(rv))); |
| return rv; |
| } |
| |
| static char doc_crc_hqx[] = |
| "(data, oldcrc) -> newcrc. Compute hqx CRC incrementally"; |
| |
| static PyObject * |
| binascii_crc_hqx(PyObject *self, PyObject *args) |
| { |
| unsigned char *bin_data; |
| unsigned int crc; |
| int len; |
| |
| if ( !PyArg_ParseTuple(args, "s#i:crc_hqx", &bin_data, &len, &crc) ) |
| return NULL; |
| |
| while(len--) { |
| crc=((crc<<8)&0xff00)^crctab_hqx[((crc>>8)&0xff)^*bin_data++]; |
| } |
| |
| return Py_BuildValue("i", crc); |
| } |
| |
| static char doc_crc32[] = |
| "(data, oldcrc = 0) -> newcrc. Compute CRC-32 incrementally"; |
| |
| /* Crc - 32 BIT ANSI X3.66 CRC checksum files |
| Also known as: ISO 3307 |
| **********************************************************************| |
| * *| |
| * Demonstration program to compute the 32-bit CRC used as the frame *| |
| * check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *| |
| * and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *| |
| * protocol). The 32-bit FCS was added via the Federal Register, *| |
| * 1 June 1982, p.23798. I presume but don't know for certain that *| |
| * this polynomial is or will be included in CCITT V.41, which *| |
| * defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *| |
| * PUB 78 says that the 32-bit FCS reduces otherwise undetected *| |
| * errors by a factor of 10^-5 over 16-bit FCS. *| |
| * *| |
| **********************************************************************| |
| |
| Copyright (C) 1986 Gary S. Brown. You may use this program, or |
| code or tables extracted from it, as desired without restriction. |
| |
| First, the polynomial itself and its table of feedback terms. The |
| polynomial is |
| X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 |
| Note that we take it "backwards" and put the highest-order term in |
| the lowest-order bit. The X^32 term is "implied"; the LSB is the |
| X^31 term, etc. The X^0 term (usually shown as "+1") results in |
| the MSB being 1. |
| |
| Note that the usual hardware shift register implementation, which |
| is what we're using (we're merely optimizing it by doing eight-bit |
| chunks at a time) shifts bits into the lowest-order term. In our |
| implementation, that means shifting towards the right. Why do we |
| do it this way? Because the calculated CRC must be transmitted in |
| order from highest-order term to lowest-order term. UARTs transmit |
| characters in order from LSB to MSB. By storing the CRC this way, |
| we hand it to the UART in the order low-byte to high-byte; the UART |
| sends each low-bit to hight-bit; and the result is transmission bit |
| by bit from highest- to lowest-order term without requiring any bit |
| shuffling on our part. Reception works similarly. |
| |
| The feedback terms table consists of 256, 32-bit entries. Notes: |
| |
| 1. The table can be generated at runtime if desired; code to do so |
| is shown later. It might not be obvious, but the feedback |
| terms simply represent the results of eight shift/xor opera- |
| tions for all combinations of data and CRC register values. |
| |
| 2. The CRC accumulation logic is the same for all CRC polynomials, |
| be they sixteen or thirty-two bits wide. You simply choose the |
| appropriate table. Alternatively, because the table can be |
| generated at runtime, you can start by generating the table for |
| the polynomial in question and use exactly the same "updcrc", |
| if your application needn't simultaneously handle two CRC |
| polynomials. (Note, however, that XMODEM is strange.) |
| |
| 3. For 16-bit CRCs, the table entries need be only 16 bits wide; |
| of course, 32-bit entries work OK if the high 16 bits are zero. |
| |
| 4. The values must be right-shifted by eight bits by the "updcrc" |
| logic; the shift must be unsigned (bring in zeroes). On some |
| hardware you could probably optimize the shift in assembler by |
| using byte-swap instructions. |
| ********************************************************************/ |
| |
| static unsigned long crc_32_tab[256] = { |
| 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, |
| 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, |
| 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, |
| 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, |
| 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, |
| 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, |
| 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, |
| 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, |
| 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, |
| 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, |
| 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, |
| 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, |
| 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, |
| 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, |
| 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, |
| 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, |
| 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, |
| 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, |
| 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, |
| 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, |
| 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, |
| 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, |
| 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, |
| 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, |
| 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, |
| 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, |
| 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, |
| 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, |
| 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, |
| 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, |
| 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, |
| 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, |
| 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, |
| 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, |
| 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, |
| 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, |
| 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, |
| 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, |
| 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, |
| 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, |
| 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, |
| 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, |
| 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, |
| 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, |
| 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, |
| 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, |
| 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, |
| 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, |
| 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, |
| 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, |
| 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, |
| 0x2d02ef8dUL |
| }; |
| |
| static PyObject * |
| binascii_crc32(PyObject *self, PyObject *args) |
| { /* By Jim Ahlstrom; All rights transferred to CNRI */ |
| unsigned char *bin_data; |
| unsigned long crc = 0UL; /* initial value of CRC */ |
| int len; |
| |
| if ( !PyArg_ParseTuple(args, "s#|l:crc32", &bin_data, &len, &crc) ) |
| return NULL; |
| |
| crc = crc ^ 0xFFFFFFFFUL; |
| while(len--) |
| crc = crc_32_tab[(crc ^ *bin_data++) & 0xffUL] ^ (crc >> 8); |
| /* Note: (crc >> 8) MUST zero fill on left */ |
| return Py_BuildValue("l", crc ^ 0xFFFFFFFFUL); |
| } |
| |
| |
| static PyObject * |
| binascii_hexlify(PyObject *self, PyObject *args) |
| { |
| char* argbuf; |
| int arglen; |
| PyObject *retval; |
| char* retbuf; |
| int i, j; |
| |
| if (!PyArg_ParseTuple(args, "t#:b2a_hex", &argbuf, &arglen)) |
| return NULL; |
| |
| retval = PyString_FromStringAndSize(NULL, arglen*2); |
| if (!retval) |
| return NULL; |
| retbuf = PyString_AsString(retval); |
| if (!retbuf) |
| goto finally; |
| |
| /* make hex version of string, taken from shamodule.c */ |
| for (i=j=0; i < arglen; i++) { |
| char c; |
| c = (argbuf[i] >> 4) & 0xf; |
| c = (c>9) ? c+'a'-10 : c + '0'; |
| retbuf[j++] = c; |
| c = argbuf[i] & 0xf; |
| c = (c>9) ? c+'a'-10 : c + '0'; |
| retbuf[j++] = c; |
| } |
| return retval; |
| |
| finally: |
| Py_DECREF(retval); |
| return NULL; |
| } |
| |
| static char doc_hexlify[] = |
| "b2a_hex(data) -> s; Hexadecimal representation of binary data.\n\ |
| \n\ |
| This function is also available as \"hexlify()\"."; |
| |
| |
| static int |
| to_int(int c) |
| { |
| if (isdigit(c)) |
| return c - '0'; |
| else { |
| if (isupper(c)) |
| c = tolower(c); |
| if (c >= 'a' && c <= 'f') |
| return c - 'a' + 10; |
| } |
| return -1; |
| } |
| |
| |
| static PyObject * |
| binascii_unhexlify(PyObject *self, PyObject *args) |
| { |
| char* argbuf; |
| int arglen; |
| PyObject *retval; |
| char* retbuf; |
| int i, j; |
| |
| if (!PyArg_ParseTuple(args, "s#:a2b_hex", &argbuf, &arglen)) |
| return NULL; |
| |
| /* XXX What should we do about strings with an odd length? Should |
| * we add an implicit leading zero, or a trailing zero? For now, |
| * raise an exception. |
| */ |
| if (arglen % 2) { |
| PyErr_SetString(PyExc_TypeError, "Odd-length string"); |
| return NULL; |
| } |
| |
| retval = PyString_FromStringAndSize(NULL, (arglen/2)); |
| if (!retval) |
| return NULL; |
| retbuf = PyString_AsString(retval); |
| if (!retbuf) |
| goto finally; |
| |
| for (i=j=0; i < arglen; i += 2) { |
| int top = to_int(Py_CHARMASK(argbuf[i])); |
| int bot = to_int(Py_CHARMASK(argbuf[i+1])); |
| if (top == -1 || bot == -1) { |
| PyErr_SetString(PyExc_TypeError, |
| "Non-hexadecimal digit found"); |
| goto finally; |
| } |
| retbuf[j++] = (top << 4) + bot; |
| } |
| return retval; |
| |
| finally: |
| Py_DECREF(retval); |
| return NULL; |
| } |
| |
| static char doc_unhexlify[] = |
| "a2b_hex(hexstr) -> s; Binary data of hexadecimal representation.\n\ |
| \n\ |
| hexstr must contain an even number of hex digits (upper or lower case).\n\ |
| This function is also available as \"unhexlify()\""; |
| |
| |
| /* List of functions defined in the module */ |
| |
| static struct PyMethodDef binascii_module_methods[] = { |
| {"a2b_uu", binascii_a2b_uu, METH_VARARGS, doc_a2b_uu}, |
| {"b2a_uu", binascii_b2a_uu, METH_VARARGS, doc_b2a_uu}, |
| {"a2b_base64", binascii_a2b_base64, METH_VARARGS, doc_a2b_base64}, |
| {"b2a_base64", binascii_b2a_base64, METH_VARARGS, doc_b2a_base64}, |
| {"a2b_hqx", binascii_a2b_hqx, METH_VARARGS, doc_a2b_hqx}, |
| {"b2a_hqx", binascii_b2a_hqx, METH_VARARGS, doc_b2a_hqx}, |
| {"b2a_hex", binascii_hexlify, METH_VARARGS, doc_hexlify}, |
| {"a2b_hex", binascii_unhexlify, METH_VARARGS, doc_unhexlify}, |
| {"hexlify", binascii_hexlify, METH_VARARGS, doc_hexlify}, |
| {"unhexlify", binascii_unhexlify, METH_VARARGS, doc_unhexlify}, |
| {"rlecode_hqx", binascii_rlecode_hqx, METH_VARARGS, doc_rlecode_hqx}, |
| {"rledecode_hqx", binascii_rledecode_hqx, METH_VARARGS, |
| doc_rledecode_hqx}, |
| {"crc_hqx", binascii_crc_hqx, METH_VARARGS, doc_crc_hqx}, |
| {"crc32", binascii_crc32, METH_VARARGS, doc_crc32}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| |
| /* Initialization function for the module (*must* be called initbinascii) */ |
| static char doc_binascii[] = "Conversion between binary data and ASCII"; |
| |
| DL_EXPORT(void) |
| initbinascii(void) |
| { |
| PyObject *m, *d, *x; |
| |
| /* Create the module and add the functions */ |
| m = Py_InitModule("binascii", binascii_module_methods); |
| |
| d = PyModule_GetDict(m); |
| x = PyString_FromString(doc_binascii); |
| PyDict_SetItemString(d, "__doc__", x); |
| Py_XDECREF(x); |
| |
| Error = PyErr_NewException("binascii.Error", NULL, NULL); |
| PyDict_SetItemString(d, "Error", Error); |
| Incomplete = PyErr_NewException("binascii.Incomplete", NULL, NULL); |
| PyDict_SetItemString(d, "Incomplete", Incomplete); |
| } |