| # Tests for the correctly-rounded string -> float conversions | 
 | # introduced in Python 2.7 and 3.1. | 
 |  | 
 | import random | 
 | import unittest | 
 | import re | 
 | import sys | 
 | import test.support | 
 |  | 
 | if getattr(sys, 'float_repr_style', '') != 'short': | 
 |     raise unittest.SkipTest('correctly-rounded string->float conversions ' | 
 |                             'not available on this system') | 
 |  | 
 | # Correctly rounded str -> float in pure Python, for comparison. | 
 |  | 
 | strtod_parser = re.compile(r"""    # A numeric string consists of: | 
 |     (?P<sign>[-+])?          # an optional sign, followed by | 
 |     (?=\d|\.\d)              # a number with at least one digit | 
 |     (?P<int>\d*)             # having a (possibly empty) integer part | 
 |     (?:\.(?P<frac>\d*))?     # followed by an optional fractional part | 
 |     (?:E(?P<exp>[-+]?\d+))?  # and an optional exponent | 
 |     \Z | 
 | """, re.VERBOSE | re.IGNORECASE).match | 
 |  | 
 | # Pure Python version of correctly rounded string->float conversion. | 
 | # Avoids any use of floating-point by returning the result as a hex string. | 
 | def strtod(s, mant_dig=53, min_exp = -1021, max_exp = 1024): | 
 |     """Convert a finite decimal string to a hex string representing an | 
 |     IEEE 754 binary64 float.  Return 'inf' or '-inf' on overflow. | 
 |     This function makes no use of floating-point arithmetic at any | 
 |     stage.""" | 
 |  | 
 |     # parse string into a pair of integers 'a' and 'b' such that | 
 |     # abs(decimal value) = a/b, along with a boolean 'negative'. | 
 |     m = strtod_parser(s) | 
 |     if m is None: | 
 |         raise ValueError('invalid numeric string') | 
 |     fraction = m.group('frac') or '' | 
 |     intpart = int(m.group('int') + fraction) | 
 |     exp = int(m.group('exp') or '0') - len(fraction) | 
 |     negative = m.group('sign') == '-' | 
 |     a, b = intpart*10**max(exp, 0), 10**max(0, -exp) | 
 |  | 
 |     # quick return for zeros | 
 |     if not a: | 
 |         return '-0x0.0p+0' if negative else '0x0.0p+0' | 
 |  | 
 |     # compute exponent e for result; may be one too small in the case | 
 |     # that the rounded value of a/b lies in a different binade from a/b | 
 |     d = a.bit_length() - b.bit_length() | 
 |     d += (a >> d if d >= 0 else a << -d) >= b | 
 |     e = max(d, min_exp) - mant_dig | 
 |  | 
 |     # approximate a/b by number of the form q * 2**e; adjust e if necessary | 
 |     a, b = a << max(-e, 0), b << max(e, 0) | 
 |     q, r = divmod(a, b) | 
 |     if 2*r > b or 2*r == b and q & 1: | 
 |         q += 1 | 
 |         if q.bit_length() == mant_dig+1: | 
 |             q //= 2 | 
 |             e += 1 | 
 |  | 
 |     # double check that (q, e) has the right form | 
 |     assert q.bit_length() <= mant_dig and e >= min_exp - mant_dig | 
 |     assert q.bit_length() == mant_dig or e == min_exp - mant_dig | 
 |  | 
 |     # check for overflow and underflow | 
 |     if e + q.bit_length() > max_exp: | 
 |         return '-inf' if negative else 'inf' | 
 |     if not q: | 
 |         return '-0x0.0p+0' if negative else '0x0.0p+0' | 
 |  | 
 |     # for hex representation, shift so # bits after point is a multiple of 4 | 
 |     hexdigs = 1 + (mant_dig-2)//4 | 
 |     shift = 3 - (mant_dig-2)%4 | 
 |     q, e = q << shift, e - shift | 
 |     return '{}0x{:x}.{:0{}x}p{:+d}'.format( | 
 |         '-' if negative else '', | 
 |         q // 16**hexdigs, | 
 |         q % 16**hexdigs, | 
 |         hexdigs, | 
 |         e + 4*hexdigs) | 
 |  | 
 | TEST_SIZE = 10 | 
 |  | 
 | class StrtodTests(unittest.TestCase): | 
 |     def check_strtod(self, s): | 
 |         """Compare the result of Python's builtin correctly rounded | 
 |         string->float conversion (using float) to a pure Python | 
 |         correctly rounded string->float implementation.  Fail if the | 
 |         two methods give different results.""" | 
 |  | 
 |         try: | 
 |             fs = float(s) | 
 |         except OverflowError: | 
 |             got = '-inf' if s[0] == '-' else 'inf' | 
 |         except MemoryError: | 
 |             got = 'memory error' | 
 |         else: | 
 |             got = fs.hex() | 
 |         expected = strtod(s) | 
 |         self.assertEqual(expected, got, | 
 |                          "Incorrectly rounded str->float conversion for {}: " | 
 |                          "expected {}, got {}".format(s, expected, got)) | 
 |  | 
 |     def test_short_halfway_cases(self): | 
 |         # exact halfway cases with a small number of significant digits | 
 |         for k in 0, 5, 10, 15, 20: | 
 |             # upper = smallest integer >= 2**54/5**k | 
 |             upper = -(-2**54//5**k) | 
 |             # lower = smallest odd number >= 2**53/5**k | 
 |             lower = -(-2**53//5**k) | 
 |             if lower % 2 == 0: | 
 |                 lower += 1 | 
 |             for i in range(TEST_SIZE): | 
 |                 # Select a random odd n in [2**53/5**k, | 
 |                 # 2**54/5**k). Then n * 10**k gives a halfway case | 
 |                 # with small number of significant digits. | 
 |                 n, e = random.randrange(lower, upper, 2), k | 
 |  | 
 |                 # Remove any additional powers of 5. | 
 |                 while n % 5 == 0: | 
 |                     n, e = n // 5, e + 1 | 
 |                 assert n % 10 in (1, 3, 7, 9) | 
 |  | 
 |                 # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0, | 
 |                 # until n * 2**p2 has more than 20 significant digits. | 
 |                 digits, exponent = n, e | 
 |                 while digits < 10**20: | 
 |                     s = '{}e{}'.format(digits, exponent) | 
 |                     self.check_strtod(s) | 
 |                     # Same again, but with extra trailing zeros. | 
 |                     s = '{}e{}'.format(digits * 10**40, exponent - 40) | 
 |                     self.check_strtod(s) | 
 |                     digits *= 2 | 
 |  | 
 |                 # Try numbers of the form n * 5**p2 * 10**(e - p5), p5 | 
 |                 # >= 0, with n * 5**p5 < 10**20. | 
 |                 digits, exponent = n, e | 
 |                 while digits < 10**20: | 
 |                     s = '{}e{}'.format(digits, exponent) | 
 |                     self.check_strtod(s) | 
 |                     # Same again, but with extra trailing zeros. | 
 |                     s = '{}e{}'.format(digits * 10**40, exponent - 40) | 
 |                     self.check_strtod(s) | 
 |                     digits *= 5 | 
 |                     exponent -= 1 | 
 |  | 
 |     def test_halfway_cases(self): | 
 |         # test halfway cases for the round-half-to-even rule | 
 |         for i in range(100 * TEST_SIZE): | 
 |             # bit pattern for a random finite positive (or +0.0) float | 
 |             bits = random.randrange(2047*2**52) | 
 |  | 
 |             # convert bit pattern to a number of the form m * 2**e | 
 |             e, m = divmod(bits, 2**52) | 
 |             if e: | 
 |                 m, e = m + 2**52, e - 1 | 
 |             e -= 1074 | 
 |  | 
 |             # add 0.5 ulps | 
 |             m, e = 2*m + 1, e - 1 | 
 |  | 
 |             # convert to a decimal string | 
 |             if e >= 0: | 
 |                 digits = m << e | 
 |                 exponent = 0 | 
 |             else: | 
 |                 # m * 2**e = (m * 5**-e) * 10**e | 
 |                 digits = m * 5**-e | 
 |                 exponent = e | 
 |             s = '{}e{}'.format(digits, exponent) | 
 |             self.check_strtod(s) | 
 |  | 
 |     def test_boundaries(self): | 
 |         # boundaries expressed as triples (n, e, u), where | 
 |         # n*10**e is an approximation to the boundary value and | 
 |         # u*10**e is 1ulp | 
 |         boundaries = [ | 
 |             (10000000000000000000, -19, 1110),   # a power of 2 boundary (1.0) | 
 |             (17976931348623159077, 289, 1995),   # overflow boundary (2.**1024) | 
 |             (22250738585072013831, -327, 4941),  # normal/subnormal (2.**-1022) | 
 |             (0, -327, 4941),                     # zero | 
 |             ] | 
 |         for n, e, u in boundaries: | 
 |             for j in range(1000): | 
 |                 digits = n + random.randrange(-3*u, 3*u) | 
 |                 exponent = e | 
 |                 s = '{}e{}'.format(digits, exponent) | 
 |                 self.check_strtod(s) | 
 |                 n *= 10 | 
 |                 u *= 10 | 
 |                 e -= 1 | 
 |  | 
 |     def test_underflow_boundary(self): | 
 |         # test values close to 2**-1075, the underflow boundary; similar | 
 |         # to boundary_tests, except that the random error doesn't scale | 
 |         # with n | 
 |         for exponent in range(-400, -320): | 
 |             base = 10**-exponent // 2**1075 | 
 |             for j in range(TEST_SIZE): | 
 |                 digits = base + random.randrange(-1000, 1000) | 
 |                 s = '{}e{}'.format(digits, exponent) | 
 |                 self.check_strtod(s) | 
 |  | 
 |     def test_bigcomp(self): | 
 |         for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50: | 
 |             dig10 = 10**ndigs | 
 |             for i in range(10 * TEST_SIZE): | 
 |                 digits = random.randrange(dig10) | 
 |                 exponent = random.randrange(-400, 400) | 
 |                 s = '{}e{}'.format(digits, exponent) | 
 |                 self.check_strtod(s) | 
 |  | 
 |     def test_parsing(self): | 
 |         # make '0' more likely to be chosen than other digits | 
 |         digits = '000000123456789' | 
 |         signs = ('+', '-', '') | 
 |  | 
 |         # put together random short valid strings | 
 |         # \d*[.\d*]?e | 
 |         for i in range(1000): | 
 |             for j in range(TEST_SIZE): | 
 |                 s = random.choice(signs) | 
 |                 intpart_len = random.randrange(5) | 
 |                 s += ''.join(random.choice(digits) for _ in range(intpart_len)) | 
 |                 if random.choice([True, False]): | 
 |                     s += '.' | 
 |                     fracpart_len = random.randrange(5) | 
 |                     s += ''.join(random.choice(digits) | 
 |                                  for _ in range(fracpart_len)) | 
 |                 else: | 
 |                     fracpart_len = 0 | 
 |                 if random.choice([True, False]): | 
 |                     s += random.choice(['e', 'E']) | 
 |                     s += random.choice(signs) | 
 |                     exponent_len = random.randrange(1, 4) | 
 |                     s += ''.join(random.choice(digits) | 
 |                                  for _ in range(exponent_len)) | 
 |  | 
 |                 if intpart_len + fracpart_len: | 
 |                     self.check_strtod(s) | 
 |                 else: | 
 |                     try: | 
 |                         float(s) | 
 |                     except ValueError: | 
 |                         pass | 
 |                     else: | 
 |                         assert False, "expected ValueError" | 
 |  | 
 |     def test_particular(self): | 
 |         # inputs that produced crashes or incorrectly rounded results with | 
 |         # previous versions of dtoa.c, for various reasons | 
 |         test_strings = [ | 
 |             # issue 7632 bug 1, originally reported failing case | 
 |             '2183167012312112312312.23538020374420446192e-370', | 
 |             # 5 instances of issue 7632 bug 2 | 
 |             '12579816049008305546974391768996369464963024663104e-357', | 
 |             '17489628565202117263145367596028389348922981857013e-357', | 
 |             '18487398785991994634182916638542680759613590482273e-357', | 
 |             '32002864200581033134358724675198044527469366773928e-358', | 
 |             '94393431193180696942841837085033647913224148539854e-358', | 
 |             '73608278998966969345824653500136787876436005957953e-358', | 
 |             '64774478836417299491718435234611299336288082136054e-358', | 
 |             '13704940134126574534878641876947980878824688451169e-357', | 
 |             '46697445774047060960624497964425416610480524760471e-358', | 
 |             # failing case for bug introduced by METD in r77451 (attempted | 
 |             # fix for issue 7632, bug 2), and fixed in r77482. | 
 |             '28639097178261763178489759107321392745108491825303e-311', | 
 |             # two numbers demonstrating a flaw in the bigcomp 'dig == 0' | 
 |             # correction block (issue 7632, bug 3) | 
 |             '1.00000000000000001e44', | 
 |             '1.0000000000000000100000000000000000000001e44', | 
 |             # dtoa.c bug for numbers just smaller than a power of 2 (issue | 
 |             # 7632, bug 4) | 
 |             '99999999999999994487665465554760717039532578546e-47', | 
 |             # failing case for off-by-one error introduced by METD in | 
 |             # r77483 (dtoa.c cleanup), fixed in r77490 | 
 |             '965437176333654931799035513671997118345570045914469' #... | 
 |             '6213413350821416312194420007991306908470147322020121018368e0', | 
 |             # incorrect lsb detection for round-half-to-even when | 
 |             # bc->scale != 0 (issue 7632, bug 6). | 
 |             '104308485241983990666713401708072175773165034278685' #... | 
 |             '682646111762292409330928739751702404658197872319129' #... | 
 |             '036519947435319418387839758990478549477777586673075' #... | 
 |             '945844895981012024387992135617064532141489278815239' #... | 
 |             '849108105951619997829153633535314849999674266169258' #... | 
 |             '928940692239684771590065027025835804863585454872499' #... | 
 |             '320500023126142553932654370362024104462255244034053' #... | 
 |             '203998964360882487378334860197725139151265590832887' #... | 
 |             '433736189468858614521708567646743455601905935595381' #... | 
 |             '852723723645799866672558576993978025033590728687206' #... | 
 |             '296379801363024094048327273913079612469982585674824' #... | 
 |             '156000783167963081616214710691759864332339239688734' #... | 
 |             '656548790656486646106983450809073750535624894296242' #... | 
 |             '072010195710276073042036425579852459556183541199012' #... | 
 |             '652571123898996574563824424330960027873516082763671875e-1075', | 
 |             # demonstration that original fix for issue 7632 bug 1 was | 
 |             # buggy; the exit condition was too strong | 
 |             '247032822920623295e-341', | 
 |             # demonstrate similar problem to issue 7632 bug1: crash | 
 |             # with 'oversized quotient in quorem' message. | 
 |             '99037485700245683102805043437346965248029601286431e-373', | 
 |             '99617639833743863161109961162881027406769510558457e-373', | 
 |             '98852915025769345295749278351563179840130565591462e-372', | 
 |             '99059944827693569659153042769690930905148015876788e-373', | 
 |             '98914979205069368270421829889078356254059760327101e-372', | 
 |             # issue 7632 bug 5: the following 2 strings convert differently | 
 |             '1000000000000000000000000000000000000000e-16', | 
 |             '10000000000000000000000000000000000000000e-17', | 
 |             # issue 7632 bug 7 | 
 |             '991633793189150720000000000000000000000000000000000000000e-33', | 
 |             # And another, similar, failing halfway case | 
 |             '4106250198039490000000000000000000000000000000000000000e-38', | 
 |             # issue 7632 bug 8:  the following produced 10.0 | 
 |             '10.900000000000000012345678912345678912345', | 
 |  | 
 |             # two humongous values from issue 7743 | 
 |             '116512874940594195638617907092569881519034793229385' #... | 
 |             '228569165191541890846564669771714896916084883987920' #... | 
 |             '473321268100296857636200926065340769682863349205363' #... | 
 |             '349247637660671783209907949273683040397979984107806' #... | 
 |             '461822693332712828397617946036239581632976585100633' #... | 
 |             '520260770761060725403904123144384571612073732754774' #... | 
 |             '588211944406465572591022081973828448927338602556287' #... | 
 |             '851831745419397433012491884869454462440536895047499' #... | 
 |             '436551974649731917170099387762871020403582994193439' #... | 
 |             '761933412166821484015883631622539314203799034497982' #... | 
 |             '130038741741727907429575673302461380386596501187482' #... | 
 |             '006257527709842179336488381672818798450229339123527' #... | 
 |             '858844448336815912020452294624916993546388956561522' #... | 
 |             '161875352572590420823607478788399460162228308693742' #... | 
 |             '05287663441403533948204085390898399055004119873046875e-1075', | 
 |  | 
 |             '525440653352955266109661060358202819561258984964913' #... | 
 |             '892256527849758956045218257059713765874251436193619' #... | 
 |             '443248205998870001633865657517447355992225852945912' #... | 
 |             '016668660000210283807209850662224417504752264995360' #... | 
 |             '631512007753855801075373057632157738752800840302596' #... | 
 |             '237050247910530538250008682272783660778181628040733' #... | 
 |             '653121492436408812668023478001208529190359254322340' #... | 
 |             '397575185248844788515410722958784640926528544043090' #... | 
 |             '115352513640884988017342469275006999104519620946430' #... | 
 |             '818767147966495485406577703972687838176778993472989' #... | 
 |             '561959000047036638938396333146685137903018376496408' #... | 
 |             '319705333868476925297317136513970189073693314710318' #... | 
 |             '991252811050501448326875232850600451776091303043715' #... | 
 |             '157191292827614046876950225714743118291034780466325' #... | 
 |             '085141343734564915193426994587206432697337118211527' #... | 
 |             '278968731294639353354774788602467795167875117481660' #... | 
 |             '4738791256853675690543663283782215866825e-1180', | 
 |  | 
 |             # exercise exit conditions in bigcomp comparison loop | 
 |             '2602129298404963083833853479113577253105939995688e2', | 
 |             '260212929840496308383385347911357725310593999568896e0', | 
 |             '26021292984049630838338534791135772531059399956889601e-2', | 
 |             '260212929840496308383385347911357725310593999568895e0', | 
 |             '260212929840496308383385347911357725310593999568897e0', | 
 |             '260212929840496308383385347911357725310593999568996e0', | 
 |             '260212929840496308383385347911357725310593999568866e0', | 
 |             # 2**53 | 
 |             '9007199254740992.00', | 
 |             # 2**1024 - 2**970:  exact overflow boundary.  All values | 
 |             # smaller than this should round to something finite;  any value | 
 |             # greater than or equal to this one overflows. | 
 |             '179769313486231580793728971405303415079934132710037' #... | 
 |             '826936173778980444968292764750946649017977587207096' #... | 
 |             '330286416692887910946555547851940402630657488671505' #... | 
 |             '820681908902000708383676273854845817711531764475730' #... | 
 |             '270069855571366959622842914819860834936475292719074' #... | 
 |             '168444365510704342711559699508093042880177904174497792', | 
 |             # 2**1024 - 2**970 - tiny | 
 |             '179769313486231580793728971405303415079934132710037' #... | 
 |             '826936173778980444968292764750946649017977587207096' #... | 
 |             '330286416692887910946555547851940402630657488671505' #... | 
 |             '820681908902000708383676273854845817711531764475730' #... | 
 |             '270069855571366959622842914819860834936475292719074' #... | 
 |             '168444365510704342711559699508093042880177904174497791.999', | 
 |             # 2**1024 - 2**970 + tiny | 
 |             '179769313486231580793728971405303415079934132710037' #... | 
 |             '826936173778980444968292764750946649017977587207096' #... | 
 |             '330286416692887910946555547851940402630657488671505' #... | 
 |             '820681908902000708383676273854845817711531764475730' #... | 
 |             '270069855571366959622842914819860834936475292719074' #... | 
 |             '168444365510704342711559699508093042880177904174497792.001', | 
 |             # 1 - 2**-54, +-tiny | 
 |             '999999999999999944488848768742172978818416595458984375e-54', | 
 |             '9999999999999999444888487687421729788184165954589843749999999e-54', | 
 |             '9999999999999999444888487687421729788184165954589843750000001e-54', | 
 |             # Value found by Rick Regan that gives a result of 2**-968 | 
 |             # under Gay's dtoa.c (as of Nov 04, 2010);  since fixed. | 
 |             # (Fixed some time ago in Python's dtoa.c.) | 
 |             '0.0000000000000000000000000000000000000000100000000' #... | 
 |             '000000000576129113423785429971690421191214034235435' #... | 
 |             '087147763178149762956868991692289869941246658073194' #... | 
 |             '51982237978882039897143840789794921875', | 
 |             ] | 
 |         for s in test_strings: | 
 |             self.check_strtod(s) | 
 |  | 
 | def test_main(): | 
 |     test.support.run_unittest(StrtodTests) | 
 |  | 
 | if __name__ == "__main__": | 
 |     test_main() |