| |
| /* Generic object operations; and implementation of None (NoObject) */ |
| |
| #include "Python.h" |
| |
| #ifdef macintosh |
| #include "macglue.h" |
| #endif |
| |
| /* just for trashcan: */ |
| #include "compile.h" |
| #include "frameobject.h" |
| #include "traceback.h" |
| |
| #if defined( Py_TRACE_REFS ) || defined( Py_REF_DEBUG ) |
| DL_IMPORT(long) _Py_RefTotal; |
| #endif |
| |
| /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. |
| These are used by the individual routines for object creation. |
| Do not call them otherwise, they do not initialize the object! */ |
| |
| #ifdef COUNT_ALLOCS |
| static PyTypeObject *type_list; |
| extern int tuple_zero_allocs, fast_tuple_allocs; |
| extern int quick_int_allocs, quick_neg_int_allocs; |
| extern int null_strings, one_strings; |
| void |
| dump_counts(void) |
| { |
| PyTypeObject *tp; |
| |
| for (tp = type_list; tp; tp = tp->tp_next) |
| fprintf(stderr, "%s alloc'd: %d, freed: %d, max in use: %d\n", |
| tp->tp_name, tp->tp_alloc, tp->tp_free, |
| tp->tp_maxalloc); |
| fprintf(stderr, "fast tuple allocs: %d, empty: %d\n", |
| fast_tuple_allocs, tuple_zero_allocs); |
| fprintf(stderr, "fast int allocs: pos: %d, neg: %d\n", |
| quick_int_allocs, quick_neg_int_allocs); |
| fprintf(stderr, "null strings: %d, 1-strings: %d\n", |
| null_strings, one_strings); |
| } |
| |
| PyObject * |
| get_counts(void) |
| { |
| PyTypeObject *tp; |
| PyObject *result; |
| PyObject *v; |
| |
| result = PyList_New(0); |
| if (result == NULL) |
| return NULL; |
| for (tp = type_list; tp; tp = tp->tp_next) { |
| v = Py_BuildValue("(siii)", tp->tp_name, tp->tp_alloc, |
| tp->tp_free, tp->tp_maxalloc); |
| if (v == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| if (PyList_Append(result, v) < 0) { |
| Py_DECREF(v); |
| Py_DECREF(result); |
| return NULL; |
| } |
| Py_DECREF(v); |
| } |
| return result; |
| } |
| |
| void |
| inc_count(PyTypeObject *tp) |
| { |
| if (tp->tp_alloc == 0) { |
| /* first time; insert in linked list */ |
| if (tp->tp_next != NULL) /* sanity check */ |
| Py_FatalError("XXX inc_count sanity check"); |
| tp->tp_next = type_list; |
| type_list = tp; |
| } |
| tp->tp_alloc++; |
| if (tp->tp_alloc - tp->tp_free > tp->tp_maxalloc) |
| tp->tp_maxalloc = tp->tp_alloc - tp->tp_free; |
| } |
| #endif |
| |
| PyObject * |
| PyObject_Init(PyObject *op, PyTypeObject *tp) |
| { |
| if (op == NULL) { |
| PyErr_SetString(PyExc_SystemError, |
| "NULL object passed to PyObject_Init"); |
| return op; |
| } |
| #ifdef WITH_CYCLE_GC |
| if (PyType_IS_GC(tp)) |
| op = (PyObject *) PyObject_FROM_GC(op); |
| #endif |
| /* Any changes should be reflected in PyObject_INIT (objimpl.h) */ |
| op->ob_type = tp; |
| _Py_NewReference(op); |
| if (PyType_SUPPORTS_WEAKREFS(tp)) { |
| PyObject **weaklist = PyObject_GET_WEAKREFS_LISTPTR(op); |
| *weaklist = NULL; |
| } |
| return op; |
| } |
| |
| PyVarObject * |
| PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, int size) |
| { |
| if (op == NULL) { |
| PyErr_SetString(PyExc_SystemError, |
| "NULL object passed to PyObject_InitVar"); |
| return op; |
| } |
| #ifdef WITH_CYCLE_GC |
| if (PyType_IS_GC(tp)) |
| op = (PyVarObject *) PyObject_FROM_GC(op); |
| #endif |
| /* Any changes should be reflected in PyObject_INIT_VAR */ |
| op->ob_size = size; |
| op->ob_type = tp; |
| _Py_NewReference((PyObject *)op); |
| if (PyType_SUPPORTS_WEAKREFS(tp)) { |
| PyObject **weaklist = PyObject_GET_WEAKREFS_LISTPTR(op); |
| *weaklist = NULL; |
| } |
| return op; |
| } |
| |
| PyObject * |
| _PyObject_New(PyTypeObject *tp) |
| { |
| PyObject *op; |
| op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp)); |
| if (op == NULL) |
| return PyErr_NoMemory(); |
| #ifdef WITH_CYCLE_GC |
| if (PyType_IS_GC(tp)) |
| op = (PyObject *) PyObject_FROM_GC(op); |
| #endif |
| return PyObject_INIT(op, tp); |
| } |
| |
| PyVarObject * |
| _PyObject_NewVar(PyTypeObject *tp, int size) |
| { |
| PyVarObject *op; |
| op = (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE(tp, size)); |
| if (op == NULL) |
| return (PyVarObject *)PyErr_NoMemory(); |
| #ifdef WITH_CYCLE_GC |
| if (PyType_IS_GC(tp)) |
| op = (PyVarObject *) PyObject_FROM_GC(op); |
| #endif |
| return PyObject_INIT_VAR(op, tp, size); |
| } |
| |
| void |
| _PyObject_Del(PyObject *op) |
| { |
| #ifdef WITH_CYCLE_GC |
| if (op && PyType_IS_GC(op->ob_type)) { |
| op = (PyObject *) PyObject_AS_GC(op); |
| } |
| #endif |
| PyObject_FREE(op); |
| } |
| |
| #ifndef WITH_CYCLE_GC |
| /* extension modules might need these */ |
| void _PyGC_Insert(PyObject *op) { } |
| void _PyGC_Remove(PyObject *op) { } |
| #endif |
| |
| int |
| PyObject_Print(PyObject *op, FILE *fp, int flags) |
| { |
| int ret = 0; |
| if (PyErr_CheckSignals()) |
| return -1; |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "stack overflow"); |
| return -1; |
| } |
| #endif |
| clearerr(fp); /* Clear any previous error condition */ |
| if (op == NULL) { |
| fprintf(fp, "<nil>"); |
| } |
| else { |
| if (op->ob_refcnt <= 0) |
| fprintf(fp, "<refcnt %u at %p>", |
| op->ob_refcnt, op); |
| else if (op->ob_type->tp_print == NULL) { |
| if (op->ob_type->tp_repr == NULL) { |
| fprintf(fp, "<%s object at %p>", |
| op->ob_type->tp_name, op); |
| } |
| else { |
| PyObject *s; |
| if (flags & Py_PRINT_RAW) |
| s = PyObject_Str(op); |
| else |
| s = PyObject_Repr(op); |
| if (s == NULL) |
| ret = -1; |
| else { |
| ret = PyObject_Print(s, fp, |
| Py_PRINT_RAW); |
| } |
| Py_XDECREF(s); |
| } |
| } |
| else |
| ret = (*op->ob_type->tp_print)(op, fp, flags); |
| } |
| if (ret == 0) { |
| if (ferror(fp)) { |
| PyErr_SetFromErrno(PyExc_IOError); |
| clearerr(fp); |
| ret = -1; |
| } |
| } |
| return ret; |
| } |
| |
| /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */ |
| void _PyObject_Dump(PyObject* op) |
| { |
| if (op == NULL) |
| fprintf(stderr, "NULL\n"); |
| else { |
| (void)PyObject_Print(op, stderr, 0); |
| fprintf(stderr, "\nrefcounts: %d\n", op->ob_refcnt); |
| fprintf(stderr, "address : %p\n", op); |
| } |
| } |
| |
| #ifdef WITH_CYCLE_GC |
| void _PyGC_Dump(PyGC_Head* op) |
| { |
| _PyObject_Dump(PyObject_FROM_GC(op)); |
| } |
| #endif /* WITH_CYCLE_GC */ |
| |
| PyObject * |
| PyObject_Repr(PyObject *v) |
| { |
| if (PyErr_CheckSignals()) |
| return NULL; |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "stack overflow"); |
| return NULL; |
| } |
| #endif |
| if (v == NULL) |
| return PyString_FromString("<NULL>"); |
| else if (v->ob_type->tp_repr == NULL) { |
| char buf[120]; |
| sprintf(buf, "<%.80s object at %p>", |
| v->ob_type->tp_name, v); |
| return PyString_FromString(buf); |
| } |
| else { |
| PyObject *res; |
| res = (*v->ob_type->tp_repr)(v); |
| if (res == NULL) |
| return NULL; |
| if (PyUnicode_Check(res)) { |
| PyObject* str; |
| str = PyUnicode_AsUnicodeEscapeString(res); |
| Py_DECREF(res); |
| if (str) |
| res = str; |
| else |
| return NULL; |
| } |
| if (!PyString_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "__repr__ returned non-string (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| } |
| |
| PyObject * |
| PyObject_Str(PyObject *v) |
| { |
| PyObject *res; |
| |
| if (v == NULL) |
| return PyString_FromString("<NULL>"); |
| else if (PyString_Check(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| else if (v->ob_type->tp_str != NULL) |
| res = (*v->ob_type->tp_str)(v); |
| else { |
| PyObject *func; |
| if (!PyInstance_Check(v) || |
| (func = PyObject_GetAttrString(v, "__str__")) == NULL) { |
| PyErr_Clear(); |
| return PyObject_Repr(v); |
| } |
| res = PyEval_CallObject(func, (PyObject *)NULL); |
| Py_DECREF(func); |
| } |
| if (res == NULL) |
| return NULL; |
| if (PyUnicode_Check(res)) { |
| PyObject* str; |
| str = PyUnicode_AsEncodedString(res, NULL, NULL); |
| Py_DECREF(res); |
| if (str) |
| res = str; |
| else |
| return NULL; |
| } |
| if (!PyString_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "__str__ returned non-string (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| |
| PyObject * |
| PyObject_Unicode(PyObject *v) |
| { |
| PyObject *res; |
| |
| if (v == NULL) |
| res = PyString_FromString("<NULL>"); |
| else if (PyUnicode_Check(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| else if (PyString_Check(v)) { |
| Py_INCREF(v); |
| res = v; |
| } |
| else if (v->ob_type->tp_str != NULL) |
| res = (*v->ob_type->tp_str)(v); |
| else { |
| PyObject *func; |
| static PyObject *strstr; |
| if (strstr == NULL) { |
| strstr= PyString_InternFromString("__str__"); |
| if (strstr == NULL) |
| return NULL; |
| } |
| if (!PyInstance_Check(v) || |
| (func = PyObject_GetAttr(v, strstr)) == NULL) { |
| PyErr_Clear(); |
| res = PyObject_Repr(v); |
| } |
| else { |
| res = PyEval_CallObject(func, (PyObject *)NULL); |
| Py_DECREF(func); |
| } |
| } |
| if (res == NULL) |
| return NULL; |
| if (!PyUnicode_Check(res)) { |
| PyObject* str; |
| str = PyUnicode_FromObject(res); |
| Py_DECREF(res); |
| if (str) |
| res = str; |
| else |
| return NULL; |
| } |
| return res; |
| } |
| |
| |
| /* Macro to get the tp_richcompare field of a type if defined */ |
| #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \ |
| ? (t)->tp_richcompare : NULL) |
| |
| /* Map rich comparison operators to their swapped version, e.g. LT --> GT */ |
| static int swapped_op[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; |
| |
| /* Try a genuine rich comparison, returning an object. Return: |
| NULL for exception; |
| NotImplemented if this particular rich comparison is not implemented or |
| undefined; |
| some object not equal to NotImplemented if it is implemented |
| (this latter object may not be a Boolean). |
| */ |
| static PyObject * |
| try_rich_compare(PyObject *v, PyObject *w, int op) |
| { |
| richcmpfunc f; |
| PyObject *res; |
| |
| if ((f = RICHCOMPARE(v->ob_type)) != NULL) { |
| res = (*f)(v, w, op); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| } |
| if ((f = RICHCOMPARE(w->ob_type)) != NULL) { |
| return (*f)(w, v, swapped_op[op]); |
| } |
| res = Py_NotImplemented; |
| Py_INCREF(res); |
| return res; |
| } |
| |
| /* Try a genuine rich comparison, returning an int. Return: |
| -1 for exception (including the case where try_rich_compare() returns an |
| object that's not a Boolean); |
| 0 if the outcome is false; |
| 1 if the outcome is true; |
| 2 if this particular rich comparison is not implemented or undefined. |
| */ |
| static int |
| try_rich_compare_bool(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| int ok; |
| |
| if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) |
| return 2; /* Shortcut, avoid INCREF+DECREF */ |
| res = try_rich_compare(v, w, op); |
| if (res == NULL) |
| return -1; |
| if (res == Py_NotImplemented) { |
| Py_DECREF(res); |
| return 2; |
| } |
| ok = PyObject_IsTrue(res); |
| Py_DECREF(res); |
| return ok; |
| } |
| |
| /* Try rich comparisons to determine a 3-way comparison. Return: |
| -2 for an exception; |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w; |
| 2 if this particular rich comparison is not implemented or undefined. |
| */ |
| static int |
| try_rich_to_3way_compare(PyObject *v, PyObject *w) |
| { |
| static struct { int op; int outcome; } tries[3] = { |
| /* Try this operator, and if it is true, use this outcome: */ |
| {Py_EQ, 0}, |
| {Py_LT, -1}, |
| {Py_GT, 1}, |
| }; |
| int i; |
| |
| if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) |
| return 2; /* Shortcut */ |
| |
| for (i = 0; i < 3; i++) { |
| switch (try_rich_compare_bool(v, w, tries[i].op)) { |
| case -1: |
| return -1; |
| case 1: |
| return tries[i].outcome; |
| } |
| } |
| |
| return 2; |
| } |
| |
| /* Try a 3-way comparison, returning an int. Return: |
| -2 for an exception; |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w; |
| 2 if this particular 3-way comparison is not implemented or undefined. |
| */ |
| static int |
| try_3way_compare(PyObject *v, PyObject *w) |
| { |
| int c; |
| cmpfunc f; |
| |
| /* Comparisons involving instances are given to instance_compare, |
| which has the same return conventions as this function. */ |
| |
| if (PyInstance_Check(v)) |
| return (*v->ob_type->tp_compare)(v, w); |
| if (PyInstance_Check(w)) |
| return (*w->ob_type->tp_compare)(v, w); |
| |
| /* If the types are equal, don't bother with coercions etc. */ |
| if (v->ob_type == w->ob_type) { |
| if ((f = v->ob_type->tp_compare) == NULL) |
| return 2; |
| c = (*f)(v, w); |
| if (PyErr_Occurred()) |
| return -2; |
| return c < 0 ? -1 : c > 0 ? 1 : 0; |
| } |
| |
| /* Try coercion; if it fails, give up */ |
| c = PyNumber_CoerceEx(&v, &w); |
| if (c < 0) |
| return -2; |
| if (c > 0) |
| return 2; |
| |
| /* Try v's comparison, if defined */ |
| if ((f = v->ob_type->tp_compare) != NULL) { |
| c = (*f)(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| if (PyErr_Occurred()) |
| return -2; |
| return c < 0 ? -1 : c > 0 ? 1 : 0; |
| } |
| |
| /* Try w's comparison, if defined */ |
| if ((f = w->ob_type->tp_compare) != NULL) { |
| c = (*f)(w, v); /* swapped! */ |
| Py_DECREF(v); |
| Py_DECREF(w); |
| if (PyErr_Occurred()) |
| return -2; |
| return c < 0 ? 1 : c > 0 ? -1 : 0; /* negated! */ |
| } |
| |
| /* No comparison defined */ |
| Py_DECREF(v); |
| Py_DECREF(w); |
| return 2; |
| } |
| |
| /* Final fallback 3-way comparison, returning an int. Return: |
| -2 if an error occurred; |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w. |
| */ |
| static int |
| default_3way_compare(PyObject *v, PyObject *w) |
| { |
| int c; |
| char *vname, *wname; |
| |
| if (v->ob_type == w->ob_type) { |
| /* When comparing these pointers, they must be cast to |
| * integer types (i.e. Py_uintptr_t, our spelling of C9X's |
| * uintptr_t). ANSI specifies that pointer compares other |
| * than == and != to non-related structures are undefined. |
| */ |
| Py_uintptr_t vv = (Py_uintptr_t)v; |
| Py_uintptr_t ww = (Py_uintptr_t)w; |
| return (vv < ww) ? -1 : (vv > ww) ? 1 : 0; |
| } |
| |
| /* Special case for Unicode */ |
| if (PyUnicode_Check(v) || PyUnicode_Check(w)) { |
| c = PyUnicode_Compare(v, w); |
| if (!PyErr_Occurred()) |
| return c; |
| /* TypeErrors are ignored: if Unicode coercion fails due |
| to one of the arguments not having the right type, we |
| continue as defined by the coercion protocol (see |
| above). Luckily, decoding errors are reported as |
| ValueErrors and are not masked by this technique. */ |
| if (!PyErr_ExceptionMatches(PyExc_TypeError)) |
| return -2; |
| PyErr_Clear(); |
| } |
| |
| /* None is smaller than anything */ |
| if (v == Py_None) |
| return -1; |
| if (w == Py_None) |
| return 1; |
| |
| /* different type: compare type names */ |
| if (v->ob_type->tp_as_number) |
| vname = ""; |
| else |
| vname = v->ob_type->tp_name; |
| if (w->ob_type->tp_as_number) |
| wname = ""; |
| else |
| wname = w->ob_type->tp_name; |
| c = strcmp(vname, wname); |
| if (c < 0) |
| return -1; |
| if (c > 0) |
| return 1; |
| /* Same type name, or (more likely) incomparable numeric types */ |
| return ((Py_uintptr_t)(v->ob_type) < ( |
| Py_uintptr_t)(w->ob_type)) ? -1 : 1; |
| } |
| |
| #define CHECK_TYPES(o) PyType_HasFeature((o)->ob_type, Py_TPFLAGS_CHECKTYPES) |
| |
| static int |
| do_cmp(PyObject *v, PyObject *w) |
| { |
| int c; |
| |
| c = try_rich_to_3way_compare(v, w); |
| if (c < 2) |
| return c; |
| c = try_3way_compare(v, w); |
| if (c < 2) |
| return c; |
| return default_3way_compare(v, w); |
| } |
| |
| /* compare_nesting is incremented before calling compare (for |
| some types) and decremented on exit. If the count exceeds the |
| nesting limit, enable code to detect circular data structures. |
| |
| This is a tunable parameter that should only affect the performance |
| of comparisons, nothing else. Setting it high makes comparing deeply |
| nested non-cyclical data structures faster, but makes comparing cyclical |
| data structures slower. |
| */ |
| #define NESTING_LIMIT 20 |
| |
| static int compare_nesting = 0; |
| |
| static PyObject* |
| get_inprogress_dict(void) |
| { |
| static PyObject *key; |
| PyObject *tstate_dict, *inprogress; |
| |
| if (key == NULL) { |
| key = PyString_InternFromString("cmp_state"); |
| if (key == NULL) |
| return NULL; |
| } |
| |
| tstate_dict = PyThreadState_GetDict(); |
| if (tstate_dict == NULL) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| |
| inprogress = PyDict_GetItem(tstate_dict, key); |
| if (inprogress == NULL) { |
| inprogress = PyDict_New(); |
| if (inprogress == NULL) |
| return NULL; |
| if (PyDict_SetItem(tstate_dict, key, inprogress) == -1) { |
| Py_DECREF(inprogress); |
| return NULL; |
| } |
| Py_DECREF(inprogress); |
| } |
| |
| return inprogress; |
| } |
| |
| static PyObject * |
| check_recursion(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *inprogress; |
| PyObject *token; |
| Py_uintptr_t iv = (Py_uintptr_t)v; |
| Py_uintptr_t iw = (Py_uintptr_t)w; |
| PyObject *x, *y, *z; |
| |
| inprogress = get_inprogress_dict(); |
| if (inprogress == NULL) |
| return NULL; |
| |
| token = PyTuple_New(3); |
| if (token == NULL) |
| return NULL; |
| |
| if (iv <= iw) { |
| PyTuple_SET_ITEM(token, 0, x = PyLong_FromVoidPtr((void *)v)); |
| PyTuple_SET_ITEM(token, 1, y = PyLong_FromVoidPtr((void *)w)); |
| if (op >= 0) |
| op = swapped_op[op]; |
| } else { |
| PyTuple_SET_ITEM(token, 0, x = PyLong_FromVoidPtr((void *)w)); |
| PyTuple_SET_ITEM(token, 1, y = PyLong_FromVoidPtr((void *)v)); |
| } |
| PyTuple_SET_ITEM(token, 2, z = PyInt_FromLong((long)op)); |
| if (x == NULL || y == NULL || z == NULL) { |
| Py_DECREF(token); |
| return NULL; |
| } |
| |
| if (PyDict_GetItem(inprogress, token) != NULL) { |
| Py_DECREF(token); |
| return Py_None; /* Without INCREF! */ |
| } |
| |
| if (PyDict_SetItem(inprogress, token, token) < 0) { |
| Py_DECREF(token); |
| return NULL; |
| } |
| |
| return token; |
| } |
| |
| static void |
| delete_token(PyObject *token) |
| { |
| PyObject *inprogress; |
| |
| if (token == NULL || token == Py_None) |
| return; |
| inprogress = get_inprogress_dict(); |
| if (inprogress == NULL) |
| PyErr_Clear(); |
| else |
| PyDict_DelItem(inprogress, token); |
| Py_DECREF(token); |
| } |
| |
| int |
| PyObject_Compare(PyObject *v, PyObject *w) |
| { |
| PyTypeObject *vtp; |
| int result; |
| |
| #if defined(USE_STACKCHECK) |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "Stack overflow"); |
| return -1; |
| } |
| #endif |
| if (v == NULL || w == NULL) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (v == w) |
| return 0; |
| vtp = v->ob_type; |
| compare_nesting++; |
| if (compare_nesting > NESTING_LIMIT && |
| (vtp->tp_as_mapping |
| || (vtp->tp_as_sequence |
| && !PyString_Check(v) |
| && !PyTuple_Check(v)))) { |
| /* try to detect circular data structures */ |
| PyObject *token = check_recursion(v, w, -1); |
| |
| if (token == NULL) { |
| result = -1; |
| } |
| else if (token == Py_None) { |
| /* already comparing these objects. assume |
| they're equal until shown otherwise */ |
| result = 0; |
| } |
| else { |
| result = do_cmp(v, w); |
| delete_token(token); |
| } |
| } |
| else { |
| result = do_cmp(v, w); |
| } |
| compare_nesting--; |
| return result < 0 ? -1 : result; |
| } |
| |
| static PyObject * |
| try_3way_to_rich_compare(PyObject *v, PyObject *w, int op) |
| { |
| int c; |
| PyObject *result; |
| |
| c = try_3way_compare(v, w); |
| if (c >= 2) |
| c = default_3way_compare(v, w); |
| if (c <= -2) |
| return NULL; |
| switch (op) { |
| case Py_LT: c = c < 0; break; |
| case Py_LE: c = c <= 0; break; |
| case Py_EQ: c = c == 0; break; |
| case Py_NE: c = c != 0; break; |
| case Py_GT: c = c > 0; break; |
| case Py_GE: c = c >= 0; break; |
| } |
| result = c ? Py_True : Py_False; |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyObject * |
| do_richcmp(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| |
| res = try_rich_compare(v, w, op); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| |
| return try_3way_to_rich_compare(v, w, op); |
| } |
| |
| PyObject * |
| PyObject_RichCompare(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| |
| assert(Py_LT <= op && op <= Py_GE); |
| |
| compare_nesting++; |
| if (compare_nesting > NESTING_LIMIT && |
| (v->ob_type->tp_as_mapping |
| || (v->ob_type->tp_as_sequence |
| && !PyString_Check(v) |
| && !PyTuple_Check(v)))) { |
| /* try to detect circular data structures */ |
| PyObject *token = check_recursion(v, w, op); |
| |
| if (token == NULL) { |
| res = NULL; |
| } |
| else if (token == Py_None) { |
| /* already comparing these objects with this operator. |
| assume they're equal until shown otherwise */ |
| if (op == Py_EQ) |
| res = Py_True; |
| else if (op == Py_NE) |
| res = Py_False; |
| else { |
| PyErr_SetString(PyExc_ValueError, |
| "can't order recursive values"); |
| res = NULL; |
| } |
| Py_XINCREF(res); |
| } |
| else { |
| res = do_richcmp(v, w, op); |
| delete_token(token); |
| } |
| } |
| else { |
| res = do_richcmp(v, w, op); |
| } |
| compare_nesting--; |
| return res; |
| } |
| |
| int |
| PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res = PyObject_RichCompare(v, w, op); |
| int ok; |
| |
| if (res == NULL) |
| return -1; |
| ok = PyObject_IsTrue(res); |
| Py_DECREF(res); |
| return ok; |
| } |
| |
| /* Set of hash utility functions to help maintaining the invariant that |
| iff a==b then hash(a)==hash(b) |
| |
| All the utility functions (_Py_Hash*()) return "-1" to signify an error. |
| */ |
| |
| long |
| _Py_HashDouble(double v) |
| { |
| double intpart, fractpart; |
| int expo; |
| long hipart; |
| long x; /* the final hash value */ |
| /* This is designed so that Python numbers of different types |
| * that compare equal hash to the same value; otherwise comparisons |
| * of mapping keys will turn out weird. |
| */ |
| |
| #ifdef MPW /* MPW C modf expects pointer to extended as second argument */ |
| { |
| extended e; |
| fractpart = modf(v, &e); |
| intpart = e; |
| } |
| #else |
| fractpart = modf(v, &intpart); |
| #endif |
| if (fractpart == 0.0) { |
| /* This must return the same hash as an equal int or long. */ |
| if (intpart > LONG_MAX || -intpart > LONG_MAX) { |
| /* Convert to long and use its hash. */ |
| PyObject *plong; /* converted to Python long */ |
| if (Py_IS_INFINITY(intpart)) |
| /* can't convert to long int -- arbitrary */ |
| v = v < 0 ? -271828.0 : 314159.0; |
| plong = PyLong_FromDouble(v); |
| if (plong == NULL) |
| return -1; |
| x = PyObject_Hash(plong); |
| Py_DECREF(plong); |
| return x; |
| } |
| /* Fits in a C long == a Python int, so is its own hash. */ |
| x = (long)intpart; |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| /* The fractional part is non-zero, so we don't have to worry about |
| * making this match the hash of some other type. |
| * Use frexp to get at the bits in the double. |
| * Since the VAX D double format has 56 mantissa bits, which is the |
| * most of any double format in use, each of these parts may have as |
| * many as (but no more than) 56 significant bits. |
| * So, assuming sizeof(long) >= 4, each part can be broken into two |
| * longs; frexp and multiplication are used to do that. |
| * Also, since the Cray double format has 15 exponent bits, which is |
| * the most of any double format in use, shifting the exponent field |
| * left by 15 won't overflow a long (again assuming sizeof(long) >= 4). |
| */ |
| v = frexp(v, &expo); |
| v *= 2147483648.0; /* 2**31 */ |
| hipart = (long)v; /* take the top 32 bits */ |
| v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */ |
| x = hipart + (long)v + (expo << 15); |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| long |
| _Py_HashPointer(void *p) |
| { |
| #if SIZEOF_LONG >= SIZEOF_VOID_P |
| return (long)p; |
| #else |
| /* convert to a Python long and hash that */ |
| PyObject* longobj; |
| long x; |
| |
| if ((longobj = PyLong_FromVoidPtr(p)) == NULL) { |
| x = -1; |
| goto finally; |
| } |
| x = PyObject_Hash(longobj); |
| |
| finally: |
| Py_XDECREF(longobj); |
| return x; |
| #endif |
| } |
| |
| |
| long |
| PyObject_Hash(PyObject *v) |
| { |
| PyTypeObject *tp = v->ob_type; |
| if (tp->tp_hash != NULL) |
| return (*tp->tp_hash)(v); |
| if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) { |
| return _Py_HashPointer(v); /* Use address as hash value */ |
| } |
| /* If there's a cmp but no hash defined, the object can't be hashed */ |
| PyErr_SetString(PyExc_TypeError, "unhashable type"); |
| return -1; |
| } |
| |
| PyObject * |
| PyObject_GetAttrString(PyObject *v, char *name) |
| { |
| if (v->ob_type->tp_getattro != NULL) { |
| PyObject *w, *res; |
| w = PyString_InternFromString(name); |
| if (w == NULL) |
| return NULL; |
| res = (*v->ob_type->tp_getattro)(v, w); |
| Py_XDECREF(w); |
| return res; |
| } |
| |
| if (v->ob_type->tp_getattr == NULL) { |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object has no attribute '%.400s'", |
| v->ob_type->tp_name, |
| name); |
| return NULL; |
| } |
| else { |
| return (*v->ob_type->tp_getattr)(v, name); |
| } |
| } |
| |
| int |
| PyObject_HasAttrString(PyObject *v, char *name) |
| { |
| PyObject *res = PyObject_GetAttrString(v, name); |
| if (res != NULL) { |
| Py_DECREF(res); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| int |
| PyObject_SetAttrString(PyObject *v, char *name, PyObject *w) |
| { |
| if (v->ob_type->tp_setattro != NULL) { |
| PyObject *s; |
| int res; |
| s = PyString_InternFromString(name); |
| if (s == NULL) |
| return -1; |
| res = (*v->ob_type->tp_setattro)(v, s, w); |
| Py_XDECREF(s); |
| return res; |
| } |
| |
| if (v->ob_type->tp_setattr == NULL) { |
| if (v->ob_type->tp_getattr == NULL) |
| PyErr_SetString(PyExc_TypeError, |
| "attribute-less object (assign or del)"); |
| else |
| PyErr_SetString(PyExc_TypeError, |
| "object has read-only attributes"); |
| return -1; |
| } |
| else { |
| return (*v->ob_type->tp_setattr)(v, name, w); |
| } |
| } |
| |
| /* Internal API needed by PyObject_GetAttr(): */ |
| extern |
| PyObject *_PyUnicode_AsDefaultEncodedString(PyObject *unicode, |
| const char *errors); |
| |
| PyObject * |
| PyObject_GetAttr(PyObject *v, PyObject *name) |
| { |
| /* The Unicode to string conversion is done here because the |
| existing tp_getattro slots expect a string object as name |
| and we wouldn't want to break those. */ |
| if (PyUnicode_Check(name)) { |
| name = _PyUnicode_AsDefaultEncodedString(name, NULL); |
| if (name == NULL) |
| return NULL; |
| } |
| |
| if (!PyString_Check(name)) { |
| PyErr_SetString(PyExc_TypeError, |
| "attribute name must be string"); |
| return NULL; |
| } |
| if (v->ob_type->tp_getattro != NULL) |
| return (*v->ob_type->tp_getattro)(v, name); |
| else |
| return PyObject_GetAttrString(v, PyString_AS_STRING(name)); |
| } |
| |
| int |
| PyObject_HasAttr(PyObject *v, PyObject *name) |
| { |
| PyObject *res = PyObject_GetAttr(v, name); |
| if (res != NULL) { |
| Py_DECREF(res); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| int |
| PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) |
| { |
| int err; |
| |
| /* The Unicode to string conversion is done here because the |
| existing tp_setattro slots expect a string object as name |
| and we wouldn't want to break those. */ |
| if (PyUnicode_Check(name)) { |
| name = PyUnicode_AsEncodedString(name, NULL, NULL); |
| if (name == NULL) |
| return -1; |
| } |
| else |
| Py_INCREF(name); |
| |
| if (!PyString_Check(name)){ |
| PyErr_SetString(PyExc_TypeError, |
| "attribute name must be string"); |
| err = -1; |
| } |
| else { |
| PyString_InternInPlace(&name); |
| if (v->ob_type->tp_setattro != NULL) |
| err = (*v->ob_type->tp_setattro)(v, name, value); |
| else |
| err = PyObject_SetAttrString(v, |
| PyString_AS_STRING(name), value); |
| } |
| |
| Py_DECREF(name); |
| return err; |
| } |
| |
| /* Test a value used as condition, e.g., in a for or if statement. |
| Return -1 if an error occurred */ |
| |
| int |
| PyObject_IsTrue(PyObject *v) |
| { |
| int res; |
| if (v == Py_None) |
| res = 0; |
| else if (v->ob_type->tp_as_number != NULL && |
| v->ob_type->tp_as_number->nb_nonzero != NULL) |
| res = (*v->ob_type->tp_as_number->nb_nonzero)(v); |
| else if (v->ob_type->tp_as_mapping != NULL && |
| v->ob_type->tp_as_mapping->mp_length != NULL) |
| res = (*v->ob_type->tp_as_mapping->mp_length)(v); |
| else if (v->ob_type->tp_as_sequence != NULL && |
| v->ob_type->tp_as_sequence->sq_length != NULL) |
| res = (*v->ob_type->tp_as_sequence->sq_length)(v); |
| else |
| res = 1; |
| if (res > 0) |
| res = 1; |
| return res; |
| } |
| |
| /* equivalent of 'not v' |
| Return -1 if an error occurred */ |
| |
| int |
| PyObject_Not(PyObject *v) |
| { |
| int res; |
| res = PyObject_IsTrue(v); |
| if (res < 0) |
| return res; |
| return res == 0; |
| } |
| |
| /* Coerce two numeric types to the "larger" one. |
| Increment the reference count on each argument. |
| Return value: |
| -1 if an error occurred; |
| 0 if the coercion succeeded (and then the reference counts are increased); |
| 1 if no coercion is possible (and no error is raised). |
| */ |
| int |
| PyNumber_CoerceEx(PyObject **pv, PyObject **pw) |
| { |
| register PyObject *v = *pv; |
| register PyObject *w = *pw; |
| int res; |
| |
| if (v->ob_type == w->ob_type && !PyInstance_Check(v)) { |
| Py_INCREF(v); |
| Py_INCREF(w); |
| return 0; |
| } |
| if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) { |
| res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw); |
| if (res <= 0) |
| return res; |
| } |
| if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) { |
| res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv); |
| if (res <= 0) |
| return res; |
| } |
| return 1; |
| } |
| |
| /* Coerce two numeric types to the "larger" one. |
| Increment the reference count on each argument. |
| Return -1 and raise an exception if no coercion is possible |
| (and then no reference count is incremented). |
| */ |
| int |
| PyNumber_Coerce(PyObject **pv, PyObject **pw) |
| { |
| int err = PyNumber_CoerceEx(pv, pw); |
| if (err <= 0) |
| return err; |
| PyErr_SetString(PyExc_TypeError, "number coercion failed"); |
| return -1; |
| } |
| |
| |
| /* Test whether an object can be called */ |
| |
| int |
| PyCallable_Check(PyObject *x) |
| { |
| if (x == NULL) |
| return 0; |
| if (x->ob_type->tp_call != NULL || |
| PyFunction_Check(x) || |
| PyMethod_Check(x) || |
| PyCFunction_Check(x) || |
| PyClass_Check(x)) |
| return 1; |
| if (PyInstance_Check(x)) { |
| PyObject *call = PyObject_GetAttrString(x, "__call__"); |
| if (call == NULL) { |
| PyErr_Clear(); |
| return 0; |
| } |
| /* Could test recursively but don't, for fear of endless |
| recursion if some joker sets self.__call__ = self */ |
| Py_DECREF(call); |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| NoObject is usable as a non-NULL undefined value, used by the macro None. |
| There is (and should be!) no way to create other objects of this type, |
| so there is exactly one (which is indestructible, by the way). |
| */ |
| |
| /* ARGSUSED */ |
| static PyObject * |
| none_repr(PyObject *op) |
| { |
| return PyString_FromString("None"); |
| } |
| |
| /* ARGUSED */ |
| static void |
| none_dealloc(PyObject* ignore) |
| { |
| /* This should never get called, but we also don't want to SEGV if |
| * we accidently decref None out of existance. |
| */ |
| abort(); |
| } |
| |
| |
| static PyTypeObject PyNothing_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "None", |
| 0, |
| 0, |
| (destructor)none_dealloc, /*tp_dealloc*/ /*never called*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_compare*/ |
| (reprfunc)none_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash */ |
| }; |
| |
| PyObject _Py_NoneStruct = { |
| PyObject_HEAD_INIT(&PyNothing_Type) |
| }; |
| |
| /* NotImplemented is an object that can be used to signal that an |
| operation is not implemented for the given type combination. */ |
| |
| static PyObject * |
| NotImplemented_repr(PyObject *op) |
| { |
| return PyString_FromString("NotImplemented"); |
| } |
| |
| static PyTypeObject PyNotImplemented_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "NotImplemented", |
| 0, |
| 0, |
| (destructor)none_dealloc, /*tp_dealloc*/ /*never called*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_compare*/ |
| (reprfunc)NotImplemented_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash */ |
| }; |
| |
| PyObject _Py_NotImplementedStruct = { |
| PyObject_HEAD_INIT(&PyNotImplemented_Type) |
| }; |
| |
| |
| #ifdef Py_TRACE_REFS |
| |
| static PyObject refchain = {&refchain, &refchain}; |
| |
| void |
| _Py_ResetReferences(void) |
| { |
| refchain._ob_prev = refchain._ob_next = &refchain; |
| _Py_RefTotal = 0; |
| } |
| |
| void |
| _Py_NewReference(PyObject *op) |
| { |
| _Py_RefTotal++; |
| op->ob_refcnt = 1; |
| op->_ob_next = refchain._ob_next; |
| op->_ob_prev = &refchain; |
| refchain._ob_next->_ob_prev = op; |
| refchain._ob_next = op; |
| #ifdef COUNT_ALLOCS |
| inc_count(op->ob_type); |
| #endif |
| } |
| |
| void |
| _Py_ForgetReference(register PyObject *op) |
| { |
| #ifdef SLOW_UNREF_CHECK |
| register PyObject *p; |
| #endif |
| if (op->ob_refcnt < 0) |
| Py_FatalError("UNREF negative refcnt"); |
| if (op == &refchain || |
| op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) |
| Py_FatalError("UNREF invalid object"); |
| #ifdef SLOW_UNREF_CHECK |
| for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { |
| if (p == op) |
| break; |
| } |
| if (p == &refchain) /* Not found */ |
| Py_FatalError("UNREF unknown object"); |
| #endif |
| op->_ob_next->_ob_prev = op->_ob_prev; |
| op->_ob_prev->_ob_next = op->_ob_next; |
| op->_ob_next = op->_ob_prev = NULL; |
| #ifdef COUNT_ALLOCS |
| op->ob_type->tp_free++; |
| #endif |
| } |
| |
| void |
| _Py_Dealloc(PyObject *op) |
| { |
| destructor dealloc = op->ob_type->tp_dealloc; |
| _Py_ForgetReference(op); |
| (*dealloc)(op); |
| } |
| |
| void |
| _Py_PrintReferences(FILE *fp) |
| { |
| PyObject *op; |
| fprintf(fp, "Remaining objects:\n"); |
| for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { |
| fprintf(fp, "[%d] ", op->ob_refcnt); |
| if (PyObject_Print(op, fp, 0) != 0) |
| PyErr_Clear(); |
| putc('\n', fp); |
| } |
| } |
| |
| PyObject * |
| _Py_GetObjects(PyObject *self, PyObject *args) |
| { |
| int i, n; |
| PyObject *t = NULL; |
| PyObject *res, *op; |
| |
| if (!PyArg_ParseTuple(args, "i|O", &n, &t)) |
| return NULL; |
| op = refchain._ob_next; |
| res = PyList_New(0); |
| if (res == NULL) |
| return NULL; |
| for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { |
| while (op == self || op == args || op == res || op == t || |
| t != NULL && op->ob_type != (PyTypeObject *) t) { |
| op = op->_ob_next; |
| if (op == &refchain) |
| return res; |
| } |
| if (PyList_Append(res, op) < 0) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| op = op->_ob_next; |
| } |
| return res; |
| } |
| |
| #endif |
| |
| |
| /* Hack to force loading of cobject.o */ |
| PyTypeObject *_Py_cobject_hack = &PyCObject_Type; |
| |
| |
| /* Hack to force loading of abstract.o */ |
| int (*_Py_abstract_hack)(PyObject *) = &PyObject_Size; |
| |
| |
| /* Python's malloc wrappers (see pymem.h) */ |
| |
| void * |
| PyMem_Malloc(size_t nbytes) |
| { |
| #if _PyMem_EXTRA > 0 |
| if (nbytes == 0) |
| nbytes = _PyMem_EXTRA; |
| #endif |
| return PyMem_MALLOC(nbytes); |
| } |
| |
| void * |
| PyMem_Realloc(void *p, size_t nbytes) |
| { |
| #if _PyMem_EXTRA > 0 |
| if (nbytes == 0) |
| nbytes = _PyMem_EXTRA; |
| #endif |
| return PyMem_REALLOC(p, nbytes); |
| } |
| |
| void |
| PyMem_Free(void *p) |
| { |
| PyMem_FREE(p); |
| } |
| |
| |
| /* Python's object malloc wrappers (see objimpl.h) */ |
| |
| void * |
| PyObject_Malloc(size_t nbytes) |
| { |
| return PyObject_MALLOC(nbytes); |
| } |
| |
| void * |
| PyObject_Realloc(void *p, size_t nbytes) |
| { |
| return PyObject_REALLOC(p, nbytes); |
| } |
| |
| void |
| PyObject_Free(void *p) |
| { |
| PyObject_FREE(p); |
| } |
| |
| |
| /* Hook to clear up weak references only once the _weakref module is |
| imported. We use a dummy implementation to simplify the code at each |
| call site instead of requiring a test for NULL. |
| */ |
| |
| static void |
| empty_clear_weak_refs(PyObject *o) |
| { |
| return; |
| } |
| |
| void (*PyObject_ClearWeakRefs)(PyObject *) = empty_clear_weak_refs; |
| |
| |
| |
| /* These methods are used to control infinite recursion in repr, str, print, |
| etc. Container objects that may recursively contain themselves, |
| e.g. builtin dictionaries and lists, should used Py_ReprEnter() and |
| Py_ReprLeave() to avoid infinite recursion. |
| |
| Py_ReprEnter() returns 0 the first time it is called for a particular |
| object and 1 every time thereafter. It returns -1 if an exception |
| occurred. Py_ReprLeave() has no return value. |
| |
| See dictobject.c and listobject.c for examples of use. |
| */ |
| |
| #define KEY "Py_Repr" |
| |
| int |
| Py_ReprEnter(PyObject *obj) |
| { |
| PyObject *dict; |
| PyObject *list; |
| int i; |
| |
| dict = PyThreadState_GetDict(); |
| if (dict == NULL) |
| return -1; |
| list = PyDict_GetItemString(dict, KEY); |
| if (list == NULL) { |
| list = PyList_New(0); |
| if (list == NULL) |
| return -1; |
| if (PyDict_SetItemString(dict, KEY, list) < 0) |
| return -1; |
| Py_DECREF(list); |
| } |
| i = PyList_GET_SIZE(list); |
| while (--i >= 0) { |
| if (PyList_GET_ITEM(list, i) == obj) |
| return 1; |
| } |
| PyList_Append(list, obj); |
| return 0; |
| } |
| |
| void |
| Py_ReprLeave(PyObject *obj) |
| { |
| PyObject *dict; |
| PyObject *list; |
| int i; |
| |
| dict = PyThreadState_GetDict(); |
| if (dict == NULL) |
| return; |
| list = PyDict_GetItemString(dict, KEY); |
| if (list == NULL || !PyList_Check(list)) |
| return; |
| i = PyList_GET_SIZE(list); |
| /* Count backwards because we always expect obj to be list[-1] */ |
| while (--i >= 0) { |
| if (PyList_GET_ITEM(list, i) == obj) { |
| PyList_SetSlice(list, i, i + 1, NULL); |
| break; |
| } |
| } |
| } |
| |
| /* |
| trashcan |
| CT 2k0130 |
| non-recursively destroy nested objects |
| |
| CT 2k0223 |
| everything is now done in a macro. |
| |
| CT 2k0305 |
| modified to use functions, after Tim Peter's suggestion. |
| |
| CT 2k0309 |
| modified to restore a possible error. |
| |
| CT 2k0325 |
| added better safe than sorry check for threadstate |
| |
| CT 2k0422 |
| complete rewrite. We now build a chain via ob_type |
| and save the limited number of types in ob_refcnt. |
| This is perfect since we don't need any memory. |
| A patch for free-threading would need just a lock. |
| */ |
| |
| #define Py_TRASHCAN_TUPLE 1 |
| #define Py_TRASHCAN_LIST 2 |
| #define Py_TRASHCAN_DICT 3 |
| #define Py_TRASHCAN_FRAME 4 |
| #define Py_TRASHCAN_TRACEBACK 5 |
| /* extend here if other objects want protection */ |
| |
| int _PyTrash_delete_nesting = 0; |
| |
| PyObject * _PyTrash_delete_later = NULL; |
| |
| void |
| _PyTrash_deposit_object(PyObject *op) |
| { |
| int typecode; |
| |
| if (PyTuple_Check(op)) |
| typecode = Py_TRASHCAN_TUPLE; |
| else if (PyList_Check(op)) |
| typecode = Py_TRASHCAN_LIST; |
| else if (PyDict_Check(op)) |
| typecode = Py_TRASHCAN_DICT; |
| else if (PyFrame_Check(op)) |
| typecode = Py_TRASHCAN_FRAME; |
| else if (PyTraceBack_Check(op)) |
| typecode = Py_TRASHCAN_TRACEBACK; |
| else /* We have a bug here -- those are the only types in GC */ { |
| Py_FatalError("Type not supported in GC -- internal bug"); |
| return; /* pacify compiler -- execution never here */ |
| } |
| op->ob_refcnt = typecode; |
| |
| op->ob_type = (PyTypeObject*)_PyTrash_delete_later; |
| _PyTrash_delete_later = op; |
| } |
| |
| void |
| _PyTrash_destroy_chain(void) |
| { |
| while (_PyTrash_delete_later) { |
| PyObject *shredder = _PyTrash_delete_later; |
| _PyTrash_delete_later = (PyObject*) shredder->ob_type; |
| |
| switch (shredder->ob_refcnt) { |
| case Py_TRASHCAN_TUPLE: |
| shredder->ob_type = &PyTuple_Type; |
| break; |
| case Py_TRASHCAN_LIST: |
| shredder->ob_type = &PyList_Type; |
| break; |
| case Py_TRASHCAN_DICT: |
| shredder->ob_type = &PyDict_Type; |
| break; |
| case Py_TRASHCAN_FRAME: |
| shredder->ob_type = &PyFrame_Type; |
| break; |
| case Py_TRASHCAN_TRACEBACK: |
| shredder->ob_type = &PyTraceBack_Type; |
| break; |
| } |
| _Py_NewReference(shredder); |
| |
| ++_PyTrash_delete_nesting; |
| Py_DECREF(shredder); |
| --_PyTrash_delete_nesting; |
| } |
| } |
| |
| #ifdef WITH_PYMALLOC |
| #include "obmalloc.c" |
| #endif |