| /* |
| * This file compiles an abstract syntax tree (AST) into Python bytecode. |
| * |
| * The primary entry point is PyAST_Compile(), which returns a |
| * PyCodeObject. The compiler makes several passes to build the code |
| * object: |
| * 1. Checks for future statements. See future.c |
| * 2. Builds a symbol table. See symtable.c. |
| * 3. Generate code for basic blocks. See compiler_mod() in this file. |
| * 4. Assemble the basic blocks into final code. See assemble() in |
| * this file. |
| * |
| * Note that compiler_mod() suggests module, but the module ast type |
| * (mod_ty) has cases for expressions and interactive statements. |
| * |
| * CAUTION: The VISIT_* macros abort the current function when they |
| * encounter a problem. So don't invoke them when there is memory |
| * which needs to be released. Code blocks are OK, as the compiler |
| * structure takes care of releasing those. |
| */ |
| |
| #include "Python.h" |
| |
| #include "Python-ast.h" |
| #include "node.h" |
| #include "pyarena.h" |
| #include "ast.h" |
| #include "code.h" |
| #include "compile.h" |
| #include "symtable.h" |
| #include "opcode.h" |
| |
| int Py_OptimizeFlag = 0; |
| |
| /* |
| ISSUES: |
| |
| opcode_stack_effect() function should be reviewed since stack depth bugs |
| could be really hard to find later. |
| |
| Dead code is being generated (i.e. after unconditional jumps). |
| XXX(nnorwitz): not sure this is still true |
| */ |
| |
| #define DEFAULT_BLOCK_SIZE 16 |
| #define DEFAULT_BLOCKS 8 |
| #define DEFAULT_CODE_SIZE 128 |
| #define DEFAULT_LNOTAB_SIZE 16 |
| |
| struct instr { |
| unsigned i_jabs : 1; |
| unsigned i_jrel : 1; |
| unsigned i_hasarg : 1; |
| unsigned char i_opcode; |
| int i_oparg; |
| struct basicblock_ *i_target; /* target block (if jump instruction) */ |
| int i_lineno; |
| }; |
| |
| typedef struct basicblock_ { |
| /* Each basicblock in a compilation unit is linked via b_list in the |
| reverse order that the block are allocated. b_list points to the next |
| block, not to be confused with b_next, which is next by control flow. */ |
| struct basicblock_ *b_list; |
| /* number of instructions used */ |
| int b_iused; |
| /* length of instruction array (b_instr) */ |
| int b_ialloc; |
| /* pointer to an array of instructions, initially NULL */ |
| struct instr *b_instr; |
| /* If b_next is non-NULL, it is a pointer to the next |
| block reached by normal control flow. */ |
| struct basicblock_ *b_next; |
| /* b_seen is used to perform a DFS of basicblocks. */ |
| unsigned b_seen : 1; |
| /* b_return is true if a RETURN_VALUE opcode is inserted. */ |
| unsigned b_return : 1; |
| /* depth of stack upon entry of block, computed by stackdepth() */ |
| int b_startdepth; |
| /* instruction offset for block, computed by assemble_jump_offsets() */ |
| int b_offset; |
| } basicblock; |
| |
| /* fblockinfo tracks the current frame block. |
| |
| A frame block is used to handle loops, try/except, and try/finally. |
| It's called a frame block to distinguish it from a basic block in the |
| compiler IR. |
| */ |
| |
| enum fblocktype { LOOP, EXCEPT, FINALLY_TRY, FINALLY_END }; |
| |
| struct fblockinfo { |
| enum fblocktype fb_type; |
| basicblock *fb_block; |
| }; |
| |
| /* The following items change on entry and exit of code blocks. |
| They must be saved and restored when returning to a block. |
| */ |
| struct compiler_unit { |
| PySTEntryObject *u_ste; |
| |
| PyObject *u_name; |
| /* The following fields are dicts that map objects to |
| the index of them in co_XXX. The index is used as |
| the argument for opcodes that refer to those collections. |
| */ |
| PyObject *u_consts; /* all constants */ |
| PyObject *u_names; /* all names */ |
| PyObject *u_varnames; /* local variables */ |
| PyObject *u_cellvars; /* cell variables */ |
| PyObject *u_freevars; /* free variables */ |
| |
| PyObject *u_private; /* for private name mangling */ |
| |
| int u_argcount; /* number of arguments for block */ |
| /* Pointer to the most recently allocated block. By following b_list |
| members, you can reach all early allocated blocks. */ |
| basicblock *u_blocks; |
| basicblock *u_curblock; /* pointer to current block */ |
| int u_tmpname; /* temporary variables for list comps */ |
| |
| int u_nfblocks; |
| struct fblockinfo u_fblock[CO_MAXBLOCKS]; |
| |
| int u_firstlineno; /* the first lineno of the block */ |
| int u_lineno; /* the lineno for the current stmt */ |
| bool u_lineno_set; /* boolean to indicate whether instr |
| has been generated with current lineno */ |
| }; |
| |
| /* This struct captures the global state of a compilation. |
| |
| The u pointer points to the current compilation unit, while units |
| for enclosing blocks are stored in c_stack. The u and c_stack are |
| managed by compiler_enter_scope() and compiler_exit_scope(). |
| */ |
| |
| struct compiler { |
| const char *c_filename; |
| struct symtable *c_st; |
| PyFutureFeatures *c_future; /* pointer to module's __future__ */ |
| PyCompilerFlags *c_flags; |
| |
| int c_interactive; /* true if in interactive mode */ |
| int c_nestlevel; |
| |
| struct compiler_unit *u; /* compiler state for current block */ |
| PyObject *c_stack; /* Python list holding compiler_unit ptrs */ |
| char *c_encoding; /* source encoding (a borrowed reference) */ |
| PyArena *c_arena; /* pointer to memory allocation arena */ |
| }; |
| |
| struct assembler { |
| PyObject *a_bytecode; /* string containing bytecode */ |
| int a_offset; /* offset into bytecode */ |
| int a_nblocks; /* number of reachable blocks */ |
| basicblock **a_postorder; /* list of blocks in dfs postorder */ |
| PyObject *a_lnotab; /* string containing lnotab */ |
| int a_lnotab_off; /* offset into lnotab */ |
| int a_lineno; /* last lineno of emitted instruction */ |
| int a_lineno_off; /* bytecode offset of last lineno */ |
| }; |
| |
| static int compiler_enter_scope(struct compiler *, identifier, void *, int); |
| static void compiler_free(struct compiler *); |
| static basicblock *compiler_new_block(struct compiler *); |
| static int compiler_next_instr(struct compiler *, basicblock *); |
| static int compiler_addop(struct compiler *, int); |
| static int compiler_addop_o(struct compiler *, int, PyObject *, PyObject *); |
| static int compiler_addop_i(struct compiler *, int, int); |
| static int compiler_addop_j(struct compiler *, int, basicblock *, int); |
| static basicblock *compiler_use_new_block(struct compiler *); |
| static int compiler_error(struct compiler *, const char *); |
| static int compiler_nameop(struct compiler *, identifier, expr_context_ty); |
| |
| static PyCodeObject *compiler_mod(struct compiler *, mod_ty); |
| static int compiler_visit_stmt(struct compiler *, stmt_ty); |
| static int compiler_visit_keyword(struct compiler *, keyword_ty); |
| static int compiler_visit_expr(struct compiler *, expr_ty); |
| static int compiler_augassign(struct compiler *, stmt_ty); |
| static int compiler_visit_slice(struct compiler *, slice_ty, |
| expr_context_ty); |
| |
| static int compiler_push_fblock(struct compiler *, enum fblocktype, |
| basicblock *); |
| static void compiler_pop_fblock(struct compiler *, enum fblocktype, |
| basicblock *); |
| /* Returns true if there is a loop on the fblock stack. */ |
| static int compiler_in_loop(struct compiler *); |
| |
| static int inplace_binop(struct compiler *, operator_ty); |
| static int expr_constant(expr_ty e); |
| |
| static int compiler_with(struct compiler *, stmt_ty); |
| |
| static PyCodeObject *assemble(struct compiler *, int addNone); |
| static PyObject *__doc__; |
| |
| PyObject * |
| _Py_Mangle(PyObject *privateobj, PyObject *ident) |
| { |
| /* Name mangling: __private becomes _classname__private. |
| This is independent from how the name is used. */ |
| const char *p, *name = PyString_AsString(ident); |
| char *buffer; |
| size_t nlen, plen; |
| if (privateobj == NULL || !PyString_Check(privateobj) || |
| name == NULL || name[0] != '_' || name[1] != '_') { |
| Py_INCREF(ident); |
| return ident; |
| } |
| p = PyString_AsString(privateobj); |
| nlen = strlen(name); |
| if (name[nlen-1] == '_' && name[nlen-2] == '_') { |
| Py_INCREF(ident); |
| return ident; /* Don't mangle __whatever__ */ |
| } |
| /* Strip leading underscores from class name */ |
| while (*p == '_') |
| p++; |
| if (*p == '\0') { |
| Py_INCREF(ident); |
| return ident; /* Don't mangle if class is just underscores */ |
| } |
| plen = strlen(p); |
| ident = PyString_FromStringAndSize(NULL, 1 + nlen + plen); |
| if (!ident) |
| return 0; |
| /* ident = "_" + p[:plen] + name # i.e. 1+plen+nlen bytes */ |
| buffer = PyString_AS_STRING(ident); |
| buffer[0] = '_'; |
| strncpy(buffer+1, p, plen); |
| strcpy(buffer+1+plen, name); |
| return ident; |
| } |
| |
| static int |
| compiler_init(struct compiler *c) |
| { |
| memset(c, 0, sizeof(struct compiler)); |
| |
| c->c_stack = PyList_New(0); |
| if (!c->c_stack) |
| return 0; |
| |
| return 1; |
| } |
| |
| PyCodeObject * |
| PyAST_Compile(mod_ty mod, const char *filename, PyCompilerFlags *flags, |
| PyArena *arena) |
| { |
| struct compiler c; |
| PyCodeObject *co = NULL; |
| PyCompilerFlags local_flags; |
| int merged; |
| |
| if (!__doc__) { |
| __doc__ = PyString_InternFromString("__doc__"); |
| if (!__doc__) |
| return NULL; |
| } |
| |
| if (!compiler_init(&c)) |
| return NULL; |
| c.c_filename = filename; |
| c.c_arena = arena; |
| c.c_future = PyFuture_FromAST(mod, filename); |
| if (c.c_future == NULL) |
| goto finally; |
| if (!flags) { |
| local_flags.cf_flags = 0; |
| flags = &local_flags; |
| } |
| merged = c.c_future->ff_features | flags->cf_flags; |
| c.c_future->ff_features = merged; |
| flags->cf_flags = merged; |
| c.c_flags = flags; |
| c.c_nestlevel = 0; |
| |
| c.c_st = PySymtable_Build(mod, filename, c.c_future); |
| if (c.c_st == NULL) { |
| if (!PyErr_Occurred()) |
| PyErr_SetString(PyExc_SystemError, "no symtable"); |
| goto finally; |
| } |
| |
| /* XXX initialize to NULL for now, need to handle */ |
| c.c_encoding = NULL; |
| |
| co = compiler_mod(&c, mod); |
| |
| finally: |
| compiler_free(&c); |
| assert(co || PyErr_Occurred()); |
| return co; |
| } |
| |
| PyCodeObject * |
| PyNode_Compile(struct _node *n, const char *filename) |
| { |
| PyCodeObject *co = NULL; |
| mod_ty mod; |
| PyArena *arena = PyArena_New(); |
| if (!arena) |
| return NULL; |
| mod = PyAST_FromNode(n, NULL, filename, arena); |
| if (mod) |
| co = PyAST_Compile(mod, filename, NULL, arena); |
| PyArena_Free(arena); |
| return co; |
| } |
| |
| static void |
| compiler_free(struct compiler *c) |
| { |
| if (c->c_st) |
| PySymtable_Free(c->c_st); |
| if (c->c_future) |
| PyObject_Free(c->c_future); |
| Py_DECREF(c->c_stack); |
| } |
| |
| static PyObject * |
| list2dict(PyObject *list) |
| { |
| Py_ssize_t i, n; |
| PyObject *v, *k; |
| PyObject *dict = PyDict_New(); |
| if (!dict) return NULL; |
| |
| n = PyList_Size(list); |
| for (i = 0; i < n; i++) { |
| v = PyInt_FromLong(i); |
| if (!v) { |
| Py_DECREF(dict); |
| return NULL; |
| } |
| k = PyList_GET_ITEM(list, i); |
| k = PyTuple_Pack(2, k, k->ob_type); |
| if (k == NULL || PyDict_SetItem(dict, k, v) < 0) { |
| Py_XDECREF(k); |
| Py_DECREF(v); |
| Py_DECREF(dict); |
| return NULL; |
| } |
| Py_DECREF(k); |
| Py_DECREF(v); |
| } |
| return dict; |
| } |
| |
| /* Return new dict containing names from src that match scope(s). |
| |
| src is a symbol table dictionary. If the scope of a name matches |
| either scope_type or flag is set, insert it into the new dict. The |
| values are integers, starting at offset and increasing by one for |
| each key. |
| */ |
| |
| static PyObject * |
| dictbytype(PyObject *src, int scope_type, int flag, int offset) |
| { |
| Py_ssize_t pos = 0, i = offset, scope; |
| PyObject *k, *v, *dest = PyDict_New(); |
| |
| assert(offset >= 0); |
| if (dest == NULL) |
| return NULL; |
| |
| while (PyDict_Next(src, &pos, &k, &v)) { |
| /* XXX this should probably be a macro in symtable.h */ |
| assert(PyInt_Check(v)); |
| scope = (PyInt_AS_LONG(v) >> SCOPE_OFF) & SCOPE_MASK; |
| |
| if (scope == scope_type || PyInt_AS_LONG(v) & flag) { |
| PyObject *tuple, *item = PyInt_FromLong(i); |
| if (item == NULL) { |
| Py_DECREF(dest); |
| return NULL; |
| } |
| i++; |
| tuple = PyTuple_Pack(2, k, k->ob_type); |
| if (!tuple || PyDict_SetItem(dest, tuple, item) < 0) { |
| Py_DECREF(item); |
| Py_DECREF(dest); |
| Py_XDECREF(tuple); |
| return NULL; |
| } |
| Py_DECREF(item); |
| Py_DECREF(tuple); |
| } |
| } |
| return dest; |
| } |
| |
| /* Begin: Peephole optimizations ----------------------------------------- */ |
| |
| #define GETARG(arr, i) ((int)((arr[i+2]<<8) + arr[i+1])) |
| #define UNCONDITIONAL_JUMP(op) (op==JUMP_ABSOLUTE || op==JUMP_FORWARD) |
| #define ABSOLUTE_JUMP(op) (op==JUMP_ABSOLUTE || op==CONTINUE_LOOP) |
| #define GETJUMPTGT(arr, i) (GETARG(arr,i) + (ABSOLUTE_JUMP(arr[i]) ? 0 : i+3)) |
| #define SETARG(arr, i, val) arr[i+2] = val>>8; arr[i+1] = val & 255 |
| #define CODESIZE(op) (HAS_ARG(op) ? 3 : 1) |
| #define ISBASICBLOCK(blocks, start, bytes) \ |
| (blocks[start]==blocks[start+bytes-1]) |
| |
| /* Replace LOAD_CONST c1. LOAD_CONST c2 ... LOAD_CONST cn BUILD_TUPLE n |
| with LOAD_CONST (c1, c2, ... cn). |
| The consts table must still be in list form so that the |
| new constant (c1, c2, ... cn) can be appended. |
| Called with codestr pointing to the first LOAD_CONST. |
| Bails out with no change if one or more of the LOAD_CONSTs is missing. |
| Also works for BUILD_LIST when followed by an "in" or "not in" test. |
| */ |
| static int |
| tuple_of_constants(unsigned char *codestr, int n, PyObject *consts) |
| { |
| PyObject *newconst, *constant; |
| Py_ssize_t i, arg, len_consts; |
| |
| /* Pre-conditions */ |
| assert(PyList_CheckExact(consts)); |
| assert(codestr[n*3] == BUILD_TUPLE || codestr[n*3] == BUILD_LIST); |
| assert(GETARG(codestr, (n*3)) == n); |
| for (i=0 ; i<n ; i++) |
| assert(codestr[i*3] == LOAD_CONST); |
| |
| /* Buildup new tuple of constants */ |
| newconst = PyTuple_New(n); |
| if (newconst == NULL) |
| return 0; |
| len_consts = PyList_GET_SIZE(consts); |
| for (i=0 ; i<n ; i++) { |
| arg = GETARG(codestr, (i*3)); |
| assert(arg < len_consts); |
| constant = PyList_GET_ITEM(consts, arg); |
| Py_INCREF(constant); |
| PyTuple_SET_ITEM(newconst, i, constant); |
| } |
| |
| /* Append folded constant onto consts */ |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| Py_DECREF(newconst); |
| |
| /* Write NOPs over old LOAD_CONSTS and |
| add a new LOAD_CONST newconst on top of the BUILD_TUPLE n */ |
| memset(codestr, NOP, n*3); |
| codestr[n*3] = LOAD_CONST; |
| SETARG(codestr, (n*3), len_consts); |
| return 1; |
| } |
| |
| /* Replace LOAD_CONST c1. LOAD_CONST c2 BINOP |
| with LOAD_CONST binop(c1,c2) |
| The consts table must still be in list form so that the |
| new constant can be appended. |
| Called with codestr pointing to the first LOAD_CONST. |
| Abandons the transformation if the folding fails (i.e. 1+'a'). |
| If the new constant is a sequence, only folds when the size |
| is below a threshold value. That keeps pyc files from |
| becoming large in the presence of code like: (None,)*1000. |
| */ |
| static int |
| fold_binops_on_constants(unsigned char *codestr, PyObject *consts) |
| { |
| PyObject *newconst, *v, *w; |
| Py_ssize_t len_consts, size; |
| int opcode; |
| |
| /* Pre-conditions */ |
| assert(PyList_CheckExact(consts)); |
| assert(codestr[0] == LOAD_CONST); |
| assert(codestr[3] == LOAD_CONST); |
| |
| /* Create new constant */ |
| v = PyList_GET_ITEM(consts, GETARG(codestr, 0)); |
| w = PyList_GET_ITEM(consts, GETARG(codestr, 3)); |
| opcode = codestr[6]; |
| switch (opcode) { |
| case BINARY_POWER: |
| newconst = PyNumber_Power(v, w, Py_None); |
| break; |
| case BINARY_MULTIPLY: |
| newconst = PyNumber_Multiply(v, w); |
| break; |
| case BINARY_DIVIDE: |
| /* Cannot fold this operation statically since |
| the result can depend on the run-time presence |
| of the -Qnew flag */ |
| return 0; |
| case BINARY_TRUE_DIVIDE: |
| newconst = PyNumber_TrueDivide(v, w); |
| break; |
| case BINARY_FLOOR_DIVIDE: |
| newconst = PyNumber_FloorDivide(v, w); |
| break; |
| case BINARY_MODULO: |
| newconst = PyNumber_Remainder(v, w); |
| break; |
| case BINARY_ADD: |
| newconst = PyNumber_Add(v, w); |
| break; |
| case BINARY_SUBTRACT: |
| newconst = PyNumber_Subtract(v, w); |
| break; |
| case BINARY_SUBSCR: |
| newconst = PyObject_GetItem(v, w); |
| break; |
| case BINARY_LSHIFT: |
| newconst = PyNumber_Lshift(v, w); |
| break; |
| case BINARY_RSHIFT: |
| newconst = PyNumber_Rshift(v, w); |
| break; |
| case BINARY_AND: |
| newconst = PyNumber_And(v, w); |
| break; |
| case BINARY_XOR: |
| newconst = PyNumber_Xor(v, w); |
| break; |
| case BINARY_OR: |
| newconst = PyNumber_Or(v, w); |
| break; |
| default: |
| /* Called with an unknown opcode */ |
| PyErr_Format(PyExc_SystemError, |
| "unexpected binary operation %d on a constant", |
| opcode); |
| return 0; |
| } |
| if (newconst == NULL) { |
| PyErr_Clear(); |
| return 0; |
| } |
| size = PyObject_Size(newconst); |
| if (size == -1) |
| PyErr_Clear(); |
| else if (size > 20) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| |
| /* Append folded constant into consts table */ |
| len_consts = PyList_GET_SIZE(consts); |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| Py_DECREF(newconst); |
| |
| /* Write NOP NOP NOP NOP LOAD_CONST newconst */ |
| memset(codestr, NOP, 4); |
| codestr[4] = LOAD_CONST; |
| SETARG(codestr, 4, len_consts); |
| return 1; |
| } |
| |
| static int |
| fold_unaryops_on_constants(unsigned char *codestr, PyObject *consts) |
| { |
| PyObject *newconst=NULL, *v; |
| Py_ssize_t len_consts; |
| int opcode; |
| |
| /* Pre-conditions */ |
| assert(PyList_CheckExact(consts)); |
| assert(codestr[0] == LOAD_CONST); |
| |
| /* Create new constant */ |
| v = PyList_GET_ITEM(consts, GETARG(codestr, 0)); |
| opcode = codestr[3]; |
| switch (opcode) { |
| case UNARY_NEGATIVE: |
| /* Preserve the sign of -0.0 */ |
| if (PyObject_IsTrue(v) == 1) |
| newconst = PyNumber_Negative(v); |
| break; |
| case UNARY_CONVERT: |
| newconst = PyObject_Repr(v); |
| break; |
| case UNARY_INVERT: |
| newconst = PyNumber_Invert(v); |
| break; |
| default: |
| /* Called with an unknown opcode */ |
| PyErr_Format(PyExc_SystemError, |
| "unexpected unary operation %d on a constant", |
| opcode); |
| return 0; |
| } |
| if (newconst == NULL) { |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| /* Append folded constant into consts table */ |
| len_consts = PyList_GET_SIZE(consts); |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| Py_DECREF(newconst); |
| |
| /* Write NOP LOAD_CONST newconst */ |
| codestr[0] = NOP; |
| codestr[1] = LOAD_CONST; |
| SETARG(codestr, 1, len_consts); |
| return 1; |
| } |
| |
| static unsigned int * |
| markblocks(unsigned char *code, int len) |
| { |
| unsigned int *blocks = (unsigned int *)PyMem_Malloc(len*sizeof(int)); |
| int i,j, opcode, blockcnt = 0; |
| |
| if (blocks == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| memset(blocks, 0, len*sizeof(int)); |
| |
| /* Mark labels in the first pass */ |
| for (i=0 ; i<len ; i+=CODESIZE(opcode)) { |
| opcode = code[i]; |
| switch (opcode) { |
| case FOR_ITER: |
| case JUMP_FORWARD: |
| case JUMP_IF_FALSE: |
| case JUMP_IF_TRUE: |
| case JUMP_ABSOLUTE: |
| case CONTINUE_LOOP: |
| case SETUP_LOOP: |
| case SETUP_EXCEPT: |
| case SETUP_FINALLY: |
| j = GETJUMPTGT(code, i); |
| blocks[j] = 1; |
| break; |
| } |
| } |
| /* Build block numbers in the second pass */ |
| for (i=0 ; i<len ; i++) { |
| blockcnt += blocks[i]; /* increment blockcnt over labels */ |
| blocks[i] = blockcnt; |
| } |
| return blocks; |
| } |
| |
| /* Perform basic peephole optimizations to components of a code object. |
| The consts object should still be in list form to allow new constants |
| to be appended. |
| |
| To keep the optimizer simple, it bails out (does nothing) for code |
| containing extended arguments or that has a length over 32,700. That |
| allows us to avoid overflow and sign issues. Likewise, it bails when |
| the lineno table has complex encoding for gaps >= 255. |
| |
| Optimizations are restricted to simple transformations occuring within a |
| single basic block. All transformations keep the code size the same or |
| smaller. For those that reduce size, the gaps are initially filled with |
| NOPs. Later those NOPs are removed and the jump addresses retargeted in |
| a single pass. Line numbering is adjusted accordingly. */ |
| |
| static PyObject * |
| optimize_code(PyObject *code, PyObject* consts, PyObject *names, |
| PyObject *lineno_obj) |
| { |
| Py_ssize_t i, j, codelen; |
| int nops, h, adj; |
| int tgt, tgttgt, opcode; |
| unsigned char *codestr = NULL; |
| unsigned char *lineno; |
| int *addrmap = NULL; |
| int new_line, cum_orig_line, last_line, tabsiz; |
| int cumlc=0, lastlc=0; /* Count runs of consecutive LOAD_CONSTs */ |
| unsigned int *blocks = NULL; |
| char *name; |
| |
| /* Bail out if an exception is set */ |
| if (PyErr_Occurred()) |
| goto exitUnchanged; |
| |
| /* Bypass optimization when the lineno table is too complex */ |
| assert(PyString_Check(lineno_obj)); |
| lineno = (unsigned char*)PyString_AS_STRING(lineno_obj); |
| tabsiz = PyString_GET_SIZE(lineno_obj); |
| if (memchr(lineno, 255, tabsiz) != NULL) |
| goto exitUnchanged; |
| |
| /* Avoid situations where jump retargeting could overflow */ |
| assert(PyString_Check(code)); |
| codelen = PyString_Size(code); |
| if (codelen > 32700) |
| goto exitUnchanged; |
| |
| /* Make a modifiable copy of the code string */ |
| codestr = (unsigned char *)PyMem_Malloc(codelen); |
| if (codestr == NULL) |
| goto exitUnchanged; |
| codestr = (unsigned char *)memcpy(codestr, |
| PyString_AS_STRING(code), codelen); |
| |
| /* Verify that RETURN_VALUE terminates the codestring. This allows |
| the various transformation patterns to look ahead several |
| instructions without additional checks to make sure they are not |
| looking beyond the end of the code string. |
| */ |
| if (codestr[codelen-1] != RETURN_VALUE) |
| goto exitUnchanged; |
| |
| /* Mapping to new jump targets after NOPs are removed */ |
| addrmap = (int *)PyMem_Malloc(codelen * sizeof(int)); |
| if (addrmap == NULL) |
| goto exitUnchanged; |
| |
| blocks = markblocks(codestr, codelen); |
| if (blocks == NULL) |
| goto exitUnchanged; |
| assert(PyList_Check(consts)); |
| |
| for (i=0 ; i<codelen ; i += CODESIZE(codestr[i])) { |
| opcode = codestr[i]; |
| |
| lastlc = cumlc; |
| cumlc = 0; |
| |
| switch (opcode) { |
| |
| /* Replace UNARY_NOT JUMP_IF_FALSE POP_TOP with |
| with JUMP_IF_TRUE POP_TOP */ |
| case UNARY_NOT: |
| if (codestr[i+1] != JUMP_IF_FALSE || |
| codestr[i+4] != POP_TOP || |
| !ISBASICBLOCK(blocks,i,5)) |
| continue; |
| tgt = GETJUMPTGT(codestr, (i+1)); |
| if (codestr[tgt] != POP_TOP) |
| continue; |
| j = GETARG(codestr, i+1) + 1; |
| codestr[i] = JUMP_IF_TRUE; |
| SETARG(codestr, i, j); |
| codestr[i+3] = POP_TOP; |
| codestr[i+4] = NOP; |
| break; |
| |
| /* not a is b --> a is not b |
| not a in b --> a not in b |
| not a is not b --> a is b |
| not a not in b --> a in b |
| */ |
| case COMPARE_OP: |
| j = GETARG(codestr, i); |
| if (j < 6 || j > 9 || |
| codestr[i+3] != UNARY_NOT || |
| !ISBASICBLOCK(blocks,i,4)) |
| continue; |
| SETARG(codestr, i, (j^1)); |
| codestr[i+3] = NOP; |
| break; |
| |
| /* Replace LOAD_GLOBAL/LOAD_NAME None |
| with LOAD_CONST None */ |
| case LOAD_NAME: |
| case LOAD_GLOBAL: |
| j = GETARG(codestr, i); |
| name = PyString_AsString(PyTuple_GET_ITEM(names, j)); |
| if (name == NULL || strcmp(name, "None") != 0) |
| continue; |
| for (j=0 ; j < PyList_GET_SIZE(consts) ; j++) { |
| if (PyList_GET_ITEM(consts, j) == Py_None) { |
| codestr[i] = LOAD_CONST; |
| SETARG(codestr, i, j); |
| cumlc = lastlc + 1; |
| break; |
| } |
| } |
| break; |
| |
| /* Skip over LOAD_CONST trueconst |
| JUMP_IF_FALSE xx POP_TOP */ |
| case LOAD_CONST: |
| cumlc = lastlc + 1; |
| j = GETARG(codestr, i); |
| if (codestr[i+3] != JUMP_IF_FALSE || |
| codestr[i+6] != POP_TOP || |
| !ISBASICBLOCK(blocks,i,7) || |
| !PyObject_IsTrue(PyList_GET_ITEM(consts, j))) |
| continue; |
| memset(codestr+i, NOP, 7); |
| cumlc = 0; |
| break; |
| |
| /* Try to fold tuples of constants (includes a case for lists |
| which are only used for "in" and "not in" tests). |
| Skip over BUILD_SEQN 1 UNPACK_SEQN 1. |
| Replace BUILD_SEQN 2 UNPACK_SEQN 2 with ROT2. |
| Replace BUILD_SEQN 3 UNPACK_SEQN 3 with ROT3 ROT2. */ |
| case BUILD_TUPLE: |
| case BUILD_LIST: |
| j = GETARG(codestr, i); |
| h = i - 3 * j; |
| if (h >= 0 && |
| j <= lastlc && |
| ((opcode == BUILD_TUPLE && |
| ISBASICBLOCK(blocks, h, 3*(j+1))) || |
| (opcode == BUILD_LIST && |
| codestr[i+3]==COMPARE_OP && |
| ISBASICBLOCK(blocks, h, 3*(j+2)) && |
| (GETARG(codestr,i+3)==6 || |
| GETARG(codestr,i+3)==7))) && |
| tuple_of_constants(&codestr[h], j, consts)) { |
| assert(codestr[i] == LOAD_CONST); |
| cumlc = 1; |
| break; |
| } |
| if (codestr[i+3] != UNPACK_SEQUENCE || |
| !ISBASICBLOCK(blocks,i,6) || |
| j != GETARG(codestr, i+3)) |
| continue; |
| if (j == 1) { |
| memset(codestr+i, NOP, 6); |
| } else if (j == 2) { |
| codestr[i] = ROT_TWO; |
| memset(codestr+i+1, NOP, 5); |
| } else if (j == 3) { |
| codestr[i] = ROT_THREE; |
| codestr[i+1] = ROT_TWO; |
| memset(codestr+i+2, NOP, 4); |
| } |
| break; |
| |
| /* Fold binary ops on constants. |
| LOAD_CONST c1 LOAD_CONST c2 BINOP --> LOAD_CONST binop(c1,c2) */ |
| case BINARY_POWER: |
| case BINARY_MULTIPLY: |
| case BINARY_TRUE_DIVIDE: |
| case BINARY_FLOOR_DIVIDE: |
| case BINARY_MODULO: |
| case BINARY_ADD: |
| case BINARY_SUBTRACT: |
| case BINARY_SUBSCR: |
| case BINARY_LSHIFT: |
| case BINARY_RSHIFT: |
| case BINARY_AND: |
| case BINARY_XOR: |
| case BINARY_OR: |
| if (lastlc >= 2 && |
| ISBASICBLOCK(blocks, i-6, 7) && |
| fold_binops_on_constants(&codestr[i-6], consts)) { |
| i -= 2; |
| assert(codestr[i] == LOAD_CONST); |
| cumlc = 1; |
| } |
| break; |
| |
| /* Fold unary ops on constants. |
| LOAD_CONST c1 UNARY_OP --> LOAD_CONST unary_op(c) */ |
| case UNARY_NEGATIVE: |
| case UNARY_CONVERT: |
| case UNARY_INVERT: |
| if (lastlc >= 1 && |
| ISBASICBLOCK(blocks, i-3, 4) && |
| fold_unaryops_on_constants(&codestr[i-3], consts)) { |
| i -= 2; |
| assert(codestr[i] == LOAD_CONST); |
| cumlc = 1; |
| } |
| break; |
| |
| /* Simplify conditional jump to conditional jump where the |
| result of the first test implies the success of a similar |
| test or the failure of the opposite test. |
| Arises in code like: |
| "if a and b:" |
| "if a or b:" |
| "a and b or c" |
| "(a and b) and c" |
| x:JUMP_IF_FALSE y y:JUMP_IF_FALSE z --> x:JUMP_IF_FALSE z |
| x:JUMP_IF_FALSE y y:JUMP_IF_TRUE z --> x:JUMP_IF_FALSE y+3 |
| where y+3 is the instruction following the second test. |
| */ |
| case JUMP_IF_FALSE: |
| case JUMP_IF_TRUE: |
| tgt = GETJUMPTGT(codestr, i); |
| j = codestr[tgt]; |
| if (j == JUMP_IF_FALSE || j == JUMP_IF_TRUE) { |
| if (j == opcode) { |
| tgttgt = GETJUMPTGT(codestr, tgt) - i - 3; |
| SETARG(codestr, i, tgttgt); |
| } else { |
| tgt -= i; |
| SETARG(codestr, i, tgt); |
| } |
| break; |
| } |
| /* Intentional fallthrough */ |
| |
| /* Replace jumps to unconditional jumps */ |
| case FOR_ITER: |
| case JUMP_FORWARD: |
| case JUMP_ABSOLUTE: |
| case CONTINUE_LOOP: |
| case SETUP_LOOP: |
| case SETUP_EXCEPT: |
| case SETUP_FINALLY: |
| tgt = GETJUMPTGT(codestr, i); |
| if (!UNCONDITIONAL_JUMP(codestr[tgt])) |
| continue; |
| tgttgt = GETJUMPTGT(codestr, tgt); |
| if (opcode == JUMP_FORWARD) /* JMP_ABS can go backwards */ |
| opcode = JUMP_ABSOLUTE; |
| if (!ABSOLUTE_JUMP(opcode)) |
| tgttgt -= i + 3; /* Calc relative jump addr */ |
| if (tgttgt < 0) /* No backward relative jumps */ |
| continue; |
| codestr[i] = opcode; |
| SETARG(codestr, i, tgttgt); |
| break; |
| |
| case EXTENDED_ARG: |
| goto exitUnchanged; |
| |
| /* Replace RETURN LOAD_CONST None RETURN with just RETURN */ |
| case RETURN_VALUE: |
| if (i+4 >= codelen || |
| codestr[i+4] != RETURN_VALUE || |
| !ISBASICBLOCK(blocks,i,5)) |
| continue; |
| memset(codestr+i+1, NOP, 4); |
| break; |
| } |
| } |
| |
| /* Fixup linenotab */ |
| for (i=0, nops=0 ; i<codelen ; i += CODESIZE(codestr[i])) { |
| addrmap[i] = i - nops; |
| if (codestr[i] == NOP) |
| nops++; |
| } |
| cum_orig_line = 0; |
| last_line = 0; |
| for (i=0 ; i < tabsiz ; i+=2) { |
| cum_orig_line += lineno[i]; |
| new_line = addrmap[cum_orig_line]; |
| assert (new_line - last_line < 255); |
| lineno[i] =((unsigned char)(new_line - last_line)); |
| last_line = new_line; |
| } |
| |
| /* Remove NOPs and fixup jump targets */ |
| for (i=0, h=0 ; i<codelen ; ) { |
| opcode = codestr[i]; |
| switch (opcode) { |
| case NOP: |
| i++; |
| continue; |
| |
| case JUMP_ABSOLUTE: |
| case CONTINUE_LOOP: |
| j = addrmap[GETARG(codestr, i)]; |
| SETARG(codestr, i, j); |
| break; |
| |
| case FOR_ITER: |
| case JUMP_FORWARD: |
| case JUMP_IF_FALSE: |
| case JUMP_IF_TRUE: |
| case SETUP_LOOP: |
| case SETUP_EXCEPT: |
| case SETUP_FINALLY: |
| j = addrmap[GETARG(codestr, i) + i + 3] - addrmap[i] - 3; |
| SETARG(codestr, i, j); |
| break; |
| } |
| adj = CODESIZE(opcode); |
| while (adj--) |
| codestr[h++] = codestr[i++]; |
| } |
| assert(h + nops == codelen); |
| |
| code = PyString_FromStringAndSize((char *)codestr, h); |
| PyMem_Free(addrmap); |
| PyMem_Free(codestr); |
| PyMem_Free(blocks); |
| return code; |
| |
| exitUnchanged: |
| if (blocks != NULL) |
| PyMem_Free(blocks); |
| if (addrmap != NULL) |
| PyMem_Free(addrmap); |
| if (codestr != NULL) |
| PyMem_Free(codestr); |
| Py_INCREF(code); |
| return code; |
| } |
| |
| /* End: Peephole optimizations ----------------------------------------- */ |
| |
| /* |
| |
| Leave this debugging code for just a little longer. |
| |
| static void |
| compiler_display_symbols(PyObject *name, PyObject *symbols) |
| { |
| PyObject *key, *value; |
| int flags; |
| Py_ssize_t pos = 0; |
| |
| fprintf(stderr, "block %s\n", PyString_AS_STRING(name)); |
| while (PyDict_Next(symbols, &pos, &key, &value)) { |
| flags = PyInt_AsLong(value); |
| fprintf(stderr, "var %s:", PyString_AS_STRING(key)); |
| if (flags & DEF_GLOBAL) |
| fprintf(stderr, " declared_global"); |
| if (flags & DEF_LOCAL) |
| fprintf(stderr, " local"); |
| if (flags & DEF_PARAM) |
| fprintf(stderr, " param"); |
| if (flags & DEF_STAR) |
| fprintf(stderr, " stararg"); |
| if (flags & DEF_DOUBLESTAR) |
| fprintf(stderr, " starstar"); |
| if (flags & DEF_INTUPLE) |
| fprintf(stderr, " tuple"); |
| if (flags & DEF_FREE) |
| fprintf(stderr, " free"); |
| if (flags & DEF_FREE_GLOBAL) |
| fprintf(stderr, " global"); |
| if (flags & DEF_FREE_CLASS) |
| fprintf(stderr, " free/class"); |
| if (flags & DEF_IMPORT) |
| fprintf(stderr, " import"); |
| fprintf(stderr, "\n"); |
| } |
| fprintf(stderr, "\n"); |
| } |
| */ |
| |
| static void |
| compiler_unit_check(struct compiler_unit *u) |
| { |
| basicblock *block; |
| for (block = u->u_blocks; block != NULL; block = block->b_list) { |
| assert(block != (void *)0xcbcbcbcb); |
| assert(block != (void *)0xfbfbfbfb); |
| assert(block != (void *)0xdbdbdbdb); |
| if (block->b_instr != NULL) { |
| assert(block->b_ialloc > 0); |
| assert(block->b_iused > 0); |
| assert(block->b_ialloc >= block->b_iused); |
| } |
| else { |
| assert (block->b_iused == 0); |
| assert (block->b_ialloc == 0); |
| } |
| } |
| } |
| |
| static void |
| compiler_unit_free(struct compiler_unit *u) |
| { |
| basicblock *b, *next; |
| |
| compiler_unit_check(u); |
| b = u->u_blocks; |
| while (b != NULL) { |
| if (b->b_instr) |
| PyObject_Free((void *)b->b_instr); |
| next = b->b_list; |
| PyObject_Free((void *)b); |
| b = next; |
| } |
| Py_CLEAR(u->u_ste); |
| Py_CLEAR(u->u_name); |
| Py_CLEAR(u->u_consts); |
| Py_CLEAR(u->u_names); |
| Py_CLEAR(u->u_varnames); |
| Py_CLEAR(u->u_freevars); |
| Py_CLEAR(u->u_cellvars); |
| Py_CLEAR(u->u_private); |
| PyObject_Free(u); |
| } |
| |
| static int |
| compiler_enter_scope(struct compiler *c, identifier name, void *key, |
| int lineno) |
| { |
| struct compiler_unit *u; |
| |
| u = (struct compiler_unit *)PyObject_Malloc(sizeof( |
| struct compiler_unit)); |
| if (!u) { |
| PyErr_NoMemory(); |
| return 0; |
| } |
| memset(u, 0, sizeof(struct compiler_unit)); |
| u->u_argcount = 0; |
| u->u_ste = PySymtable_Lookup(c->c_st, key); |
| if (!u->u_ste) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| Py_INCREF(name); |
| u->u_name = name; |
| u->u_varnames = list2dict(u->u_ste->ste_varnames); |
| u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0); |
| if (!u->u_varnames || !u->u_cellvars) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| |
| u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS, |
| PyDict_Size(u->u_cellvars)); |
| if (!u->u_freevars) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| |
| u->u_blocks = NULL; |
| u->u_tmpname = 0; |
| u->u_nfblocks = 0; |
| u->u_firstlineno = lineno; |
| u->u_lineno = 0; |
| u->u_lineno_set = false; |
| u->u_consts = PyDict_New(); |
| if (!u->u_consts) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| u->u_names = PyDict_New(); |
| if (!u->u_names) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| |
| u->u_private = NULL; |
| |
| /* Push the old compiler_unit on the stack. */ |
| if (c->u) { |
| PyObject *wrapper = PyCObject_FromVoidPtr(c->u, NULL); |
| if (!wrapper || PyList_Append(c->c_stack, wrapper) < 0) { |
| Py_XDECREF(wrapper); |
| compiler_unit_free(u); |
| return 0; |
| } |
| Py_DECREF(wrapper); |
| u->u_private = c->u->u_private; |
| Py_XINCREF(u->u_private); |
| } |
| c->u = u; |
| |
| c->c_nestlevel++; |
| if (compiler_use_new_block(c) == NULL) |
| return 0; |
| |
| return 1; |
| } |
| |
| static void |
| compiler_exit_scope(struct compiler *c) |
| { |
| int n; |
| PyObject *wrapper; |
| |
| c->c_nestlevel--; |
| compiler_unit_free(c->u); |
| /* Restore c->u to the parent unit. */ |
| n = PyList_GET_SIZE(c->c_stack) - 1; |
| if (n >= 0) { |
| wrapper = PyList_GET_ITEM(c->c_stack, n); |
| c->u = (struct compiler_unit *)PyCObject_AsVoidPtr(wrapper); |
| /* we are deleting from a list so this really shouldn't fail */ |
| if (PySequence_DelItem(c->c_stack, n) < 0) |
| Py_FatalError("compiler_exit_scope()"); |
| compiler_unit_check(c->u); |
| } |
| else |
| c->u = NULL; |
| |
| } |
| |
| /* Allocate a new "anonymous" local variable. |
| Used by list comprehensions and with statements. |
| */ |
| |
| static PyObject * |
| compiler_new_tmpname(struct compiler *c) |
| { |
| char tmpname[256]; |
| PyOS_snprintf(tmpname, sizeof(tmpname), "_[%d]", ++c->u->u_tmpname); |
| return PyString_FromString(tmpname); |
| } |
| |
| /* Allocate a new block and return a pointer to it. |
| Returns NULL on error. |
| */ |
| |
| static basicblock * |
| compiler_new_block(struct compiler *c) |
| { |
| basicblock *b; |
| struct compiler_unit *u; |
| |
| u = c->u; |
| b = (basicblock *)PyObject_Malloc(sizeof(basicblock)); |
| if (b == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| memset((void *)b, 0, sizeof(basicblock)); |
| /* Extend the singly linked list of blocks with new block. */ |
| b->b_list = u->u_blocks; |
| u->u_blocks = b; |
| return b; |
| } |
| |
| static basicblock * |
| compiler_use_new_block(struct compiler *c) |
| { |
| basicblock *block = compiler_new_block(c); |
| if (block == NULL) |
| return NULL; |
| c->u->u_curblock = block; |
| return block; |
| } |
| |
| static basicblock * |
| compiler_next_block(struct compiler *c) |
| { |
| basicblock *block = compiler_new_block(c); |
| if (block == NULL) |
| return NULL; |
| c->u->u_curblock->b_next = block; |
| c->u->u_curblock = block; |
| return block; |
| } |
| |
| static basicblock * |
| compiler_use_next_block(struct compiler *c, basicblock *block) |
| { |
| assert(block != NULL); |
| c->u->u_curblock->b_next = block; |
| c->u->u_curblock = block; |
| return block; |
| } |
| |
| /* Returns the offset of the next instruction in the current block's |
| b_instr array. Resizes the b_instr as necessary. |
| Returns -1 on failure. |
| */ |
| |
| static int |
| compiler_next_instr(struct compiler *c, basicblock *b) |
| { |
| assert(b != NULL); |
| if (b->b_instr == NULL) { |
| b->b_instr = (struct instr *)PyObject_Malloc( |
| sizeof(struct instr) * DEFAULT_BLOCK_SIZE); |
| if (b->b_instr == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| b->b_ialloc = DEFAULT_BLOCK_SIZE; |
| memset((char *)b->b_instr, 0, |
| sizeof(struct instr) * DEFAULT_BLOCK_SIZE); |
| } |
| else if (b->b_iused == b->b_ialloc) { |
| struct instr *tmp; |
| size_t oldsize, newsize; |
| oldsize = b->b_ialloc * sizeof(struct instr); |
| newsize = oldsize << 1; |
| if (newsize == 0) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| b->b_ialloc <<= 1; |
| tmp = (struct instr *)PyObject_Realloc( |
| (void *)b->b_instr, newsize); |
| if (tmp == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| b->b_instr = tmp; |
| memset((char *)b->b_instr + oldsize, 0, newsize - oldsize); |
| } |
| return b->b_iused++; |
| } |
| |
| /* Set the i_lineno member of the instruction at offse off if the |
| line number for the current expression/statement (?) has not |
| already been set. If it has been set, the call has no effect. |
| |
| Every time a new node is b |
| */ |
| |
| static void |
| compiler_set_lineno(struct compiler *c, int off) |
| { |
| basicblock *b; |
| if (c->u->u_lineno_set) |
| return; |
| c->u->u_lineno_set = true; |
| b = c->u->u_curblock; |
| b->b_instr[off].i_lineno = c->u->u_lineno; |
| } |
| |
| static int |
| opcode_stack_effect(int opcode, int oparg) |
| { |
| switch (opcode) { |
| case POP_TOP: |
| return -1; |
| case ROT_TWO: |
| case ROT_THREE: |
| return 0; |
| case DUP_TOP: |
| return 1; |
| case ROT_FOUR: |
| return 0; |
| |
| case UNARY_POSITIVE: |
| case UNARY_NEGATIVE: |
| case UNARY_NOT: |
| case UNARY_CONVERT: |
| case UNARY_INVERT: |
| return 0; |
| |
| case LIST_APPEND: |
| return -2; |
| |
| case BINARY_POWER: |
| case BINARY_MULTIPLY: |
| case BINARY_DIVIDE: |
| case BINARY_MODULO: |
| case BINARY_ADD: |
| case BINARY_SUBTRACT: |
| case BINARY_SUBSCR: |
| case BINARY_FLOOR_DIVIDE: |
| case BINARY_TRUE_DIVIDE: |
| return -1; |
| case INPLACE_FLOOR_DIVIDE: |
| case INPLACE_TRUE_DIVIDE: |
| return -1; |
| |
| case SLICE+0: |
| return 1; |
| case SLICE+1: |
| return 0; |
| case SLICE+2: |
| return 0; |
| case SLICE+3: |
| return -1; |
| |
| case STORE_SLICE+0: |
| return -2; |
| case STORE_SLICE+1: |
| return -3; |
| case STORE_SLICE+2: |
| return -3; |
| case STORE_SLICE+3: |
| return -4; |
| |
| case DELETE_SLICE+0: |
| return -1; |
| case DELETE_SLICE+1: |
| return -2; |
| case DELETE_SLICE+2: |
| return -2; |
| case DELETE_SLICE+3: |
| return -3; |
| |
| case INPLACE_ADD: |
| case INPLACE_SUBTRACT: |
| case INPLACE_MULTIPLY: |
| case INPLACE_DIVIDE: |
| case INPLACE_MODULO: |
| return -1; |
| case STORE_SUBSCR: |
| return -3; |
| case DELETE_SUBSCR: |
| return -2; |
| |
| case BINARY_LSHIFT: |
| case BINARY_RSHIFT: |
| case BINARY_AND: |
| case BINARY_XOR: |
| case BINARY_OR: |
| return -1; |
| case INPLACE_POWER: |
| return -1; |
| case GET_ITER: |
| return 0; |
| |
| case PRINT_EXPR: |
| return -1; |
| case PRINT_ITEM: |
| return -1; |
| case PRINT_NEWLINE: |
| return 0; |
| case PRINT_ITEM_TO: |
| return -2; |
| case PRINT_NEWLINE_TO: |
| return -1; |
| case INPLACE_LSHIFT: |
| case INPLACE_RSHIFT: |
| case INPLACE_AND: |
| case INPLACE_XOR: |
| case INPLACE_OR: |
| return -1; |
| case BREAK_LOOP: |
| return 0; |
| case WITH_CLEANUP: |
| return -1; /* XXX Sometimes more */ |
| case LOAD_LOCALS: |
| return 1; |
| case RETURN_VALUE: |
| return -1; |
| case IMPORT_STAR: |
| return -1; |
| case EXEC_STMT: |
| return -3; |
| case YIELD_VALUE: |
| return 0; |
| |
| case POP_BLOCK: |
| return 0; |
| case END_FINALLY: |
| return -1; /* or -2 or -3 if exception occurred */ |
| case BUILD_CLASS: |
| return -2; |
| |
| case STORE_NAME: |
| return -1; |
| case DELETE_NAME: |
| return 0; |
| case UNPACK_SEQUENCE: |
| return oparg-1; |
| case FOR_ITER: |
| return 1; |
| |
| case STORE_ATTR: |
| return -2; |
| case DELETE_ATTR: |
| return -1; |
| case STORE_GLOBAL: |
| return -1; |
| case DELETE_GLOBAL: |
| return 0; |
| case DUP_TOPX: |
| return oparg; |
| case LOAD_CONST: |
| return 1; |
| case LOAD_NAME: |
| return 1; |
| case BUILD_TUPLE: |
| case BUILD_LIST: |
| return 1-oparg; |
| case BUILD_MAP: |
| return 1; |
| case LOAD_ATTR: |
| return 0; |
| case COMPARE_OP: |
| return -1; |
| case IMPORT_NAME: |
| return 0; |
| case IMPORT_FROM: |
| return 1; |
| |
| case JUMP_FORWARD: |
| case JUMP_IF_FALSE: |
| case JUMP_IF_TRUE: |
| case JUMP_ABSOLUTE: |
| return 0; |
| |
| case LOAD_GLOBAL: |
| return 1; |
| |
| case CONTINUE_LOOP: |
| return 0; |
| case SETUP_LOOP: |
| return 0; |
| case SETUP_EXCEPT: |
| case SETUP_FINALLY: |
| return 3; /* actually pushed by an exception */ |
| |
| case LOAD_FAST: |
| return 1; |
| case STORE_FAST: |
| return -1; |
| case DELETE_FAST: |
| return 0; |
| |
| case RAISE_VARARGS: |
| return -oparg; |
| #define NARGS(o) (((o) % 256) + 2*((o) / 256)) |
| case CALL_FUNCTION: |
| return -NARGS(oparg); |
| case CALL_FUNCTION_VAR: |
| case CALL_FUNCTION_KW: |
| return -NARGS(oparg)-1; |
| case CALL_FUNCTION_VAR_KW: |
| return -NARGS(oparg)-2; |
| #undef NARGS |
| case MAKE_FUNCTION: |
| return -oparg; |
| case BUILD_SLICE: |
| if (oparg == 3) |
| return -2; |
| else |
| return -1; |
| |
| case MAKE_CLOSURE: |
| return -oparg; |
| case LOAD_CLOSURE: |
| return 1; |
| case LOAD_DEREF: |
| return 1; |
| case STORE_DEREF: |
| return -1; |
| default: |
| fprintf(stderr, "opcode = %d\n", opcode); |
| Py_FatalError("opcode_stack_effect()"); |
| |
| } |
| return 0; /* not reachable */ |
| } |
| |
| /* Add an opcode with no argument. |
| Returns 0 on failure, 1 on success. |
| */ |
| |
| static int |
| compiler_addop(struct compiler *c, int opcode) |
| { |
| basicblock *b; |
| struct instr *i; |
| int off; |
| off = compiler_next_instr(c, c->u->u_curblock); |
| if (off < 0) |
| return 0; |
| b = c->u->u_curblock; |
| i = &b->b_instr[off]; |
| i->i_opcode = opcode; |
| i->i_hasarg = 0; |
| if (opcode == RETURN_VALUE) |
| b->b_return = 1; |
| compiler_set_lineno(c, off); |
| return 1; |
| } |
| |
| static int |
| compiler_add_o(struct compiler *c, PyObject *dict, PyObject *o) |
| { |
| PyObject *t, *v; |
| Py_ssize_t arg; |
| |
| /* necessary to make sure types aren't coerced (e.g., int and long) */ |
| t = PyTuple_Pack(2, o, o->ob_type); |
| if (t == NULL) |
| return -1; |
| |
| v = PyDict_GetItem(dict, t); |
| if (!v) { |
| arg = PyDict_Size(dict); |
| v = PyInt_FromLong(arg); |
| if (!v) { |
| Py_DECREF(t); |
| return -1; |
| } |
| if (PyDict_SetItem(dict, t, v) < 0) { |
| Py_DECREF(t); |
| Py_DECREF(v); |
| return -1; |
| } |
| Py_DECREF(v); |
| } |
| else |
| arg = PyInt_AsLong(v); |
| Py_DECREF(t); |
| return arg; |
| } |
| |
| static int |
| compiler_addop_o(struct compiler *c, int opcode, PyObject *dict, |
| PyObject *o) |
| { |
| int arg = compiler_add_o(c, dict, o); |
| if (arg < 0) |
| return 0; |
| return compiler_addop_i(c, opcode, arg); |
| } |
| |
| static int |
| compiler_addop_name(struct compiler *c, int opcode, PyObject *dict, |
| PyObject *o) |
| { |
| int arg; |
| PyObject *mangled = _Py_Mangle(c->u->u_private, o); |
| if (!mangled) |
| return 0; |
| arg = compiler_add_o(c, dict, mangled); |
| Py_DECREF(mangled); |
| if (arg < 0) |
| return 0; |
| return compiler_addop_i(c, opcode, arg); |
| } |
| |
| /* Add an opcode with an integer argument. |
| Returns 0 on failure, 1 on success. |
| */ |
| |
| static int |
| compiler_addop_i(struct compiler *c, int opcode, int oparg) |
| { |
| struct instr *i; |
| int off; |
| off = compiler_next_instr(c, c->u->u_curblock); |
| if (off < 0) |
| return 0; |
| i = &c->u->u_curblock->b_instr[off]; |
| i->i_opcode = opcode; |
| i->i_oparg = oparg; |
| i->i_hasarg = 1; |
| compiler_set_lineno(c, off); |
| return 1; |
| } |
| |
| static int |
| compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute) |
| { |
| struct instr *i; |
| int off; |
| |
| assert(b != NULL); |
| off = compiler_next_instr(c, c->u->u_curblock); |
| if (off < 0) |
| return 0; |
| i = &c->u->u_curblock->b_instr[off]; |
| i->i_opcode = opcode; |
| i->i_target = b; |
| i->i_hasarg = 1; |
| if (absolute) |
| i->i_jabs = 1; |
| else |
| i->i_jrel = 1; |
| compiler_set_lineno(c, off); |
| return 1; |
| } |
| |
| /* The distinction between NEW_BLOCK and NEXT_BLOCK is subtle. (I'd |
| like to find better names.) NEW_BLOCK() creates a new block and sets |
| it as the current block. NEXT_BLOCK() also creates an implicit jump |
| from the current block to the new block. |
| */ |
| |
| /* XXX The returns inside these macros make it impossible to decref |
| objects created in the local function. |
| */ |
| |
| |
| #define NEW_BLOCK(C) { \ |
| if (compiler_use_new_block((C)) == NULL) \ |
| return 0; \ |
| } |
| |
| #define NEXT_BLOCK(C) { \ |
| if (compiler_next_block((C)) == NULL) \ |
| return 0; \ |
| } |
| |
| #define ADDOP(C, OP) { \ |
| if (!compiler_addop((C), (OP))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_IN_SCOPE(C, OP) { \ |
| if (!compiler_addop((C), (OP))) { \ |
| compiler_exit_scope(c); \ |
| return 0; \ |
| } \ |
| } |
| |
| #define ADDOP_O(C, OP, O, TYPE) { \ |
| if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_NAME(C, OP, O, TYPE) { \ |
| if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_I(C, OP, O) { \ |
| if (!compiler_addop_i((C), (OP), (O))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_JABS(C, OP, O) { \ |
| if (!compiler_addop_j((C), (OP), (O), 1)) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_JREL(C, OP, O) { \ |
| if (!compiler_addop_j((C), (OP), (O), 0)) \ |
| return 0; \ |
| } |
| |
| /* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use |
| the ASDL name to synthesize the name of the C type and the visit function. |
| */ |
| |
| #define VISIT(C, TYPE, V) {\ |
| if (!compiler_visit_ ## TYPE((C), (V))) \ |
| return 0; \ |
| } |
| |
| #define VISIT_IN_SCOPE(C, TYPE, V) {\ |
| if (!compiler_visit_ ## TYPE((C), (V))) { \ |
| compiler_exit_scope(c); \ |
| return 0; \ |
| } \ |
| } |
| |
| #define VISIT_SLICE(C, V, CTX) {\ |
| if (!compiler_visit_slice((C), (V), (CTX))) \ |
| return 0; \ |
| } |
| |
| #define VISIT_SEQ(C, TYPE, SEQ) { \ |
| int _i; \ |
| asdl_seq *seq = (SEQ); /* avoid variable capture */ \ |
| for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ |
| TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ |
| if (!compiler_visit_ ## TYPE((C), elt)) \ |
| return 0; \ |
| } \ |
| } |
| |
| #define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \ |
| int _i; \ |
| asdl_seq *seq = (SEQ); /* avoid variable capture */ \ |
| for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ |
| TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ |
| if (!compiler_visit_ ## TYPE((C), elt)) { \ |
| compiler_exit_scope(c); \ |
| return 0; \ |
| } \ |
| } \ |
| } |
| |
| static int |
| compiler_isdocstring(stmt_ty s) |
| { |
| if (s->kind != Expr_kind) |
| return 0; |
| return s->v.Expr.value->kind == Str_kind; |
| } |
| |
| /* Compile a sequence of statements, checking for a docstring. */ |
| |
| static int |
| compiler_body(struct compiler *c, asdl_seq *stmts) |
| { |
| int i = 0; |
| stmt_ty st; |
| |
| if (!asdl_seq_LEN(stmts)) |
| return 1; |
| st = (stmt_ty)asdl_seq_GET(stmts, 0); |
| if (compiler_isdocstring(st)) { |
| i = 1; |
| VISIT(c, expr, st->v.Expr.value); |
| if (!compiler_nameop(c, __doc__, Store)) |
| return 0; |
| } |
| for (; i < asdl_seq_LEN(stmts); i++) |
| VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i)); |
| return 1; |
| } |
| |
| static PyCodeObject * |
| compiler_mod(struct compiler *c, mod_ty mod) |
| { |
| PyCodeObject *co; |
| int addNone = 1; |
| static PyObject *module; |
| if (!module) { |
| module = PyString_FromString("<module>"); |
| if (!module) |
| return NULL; |
| } |
| /* Use 0 for firstlineno initially, will fixup in assemble(). */ |
| if (!compiler_enter_scope(c, module, mod, 0)) |
| return NULL; |
| switch (mod->kind) { |
| case Module_kind: |
| if (!compiler_body(c, mod->v.Module.body)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| break; |
| case Interactive_kind: |
| c->c_interactive = 1; |
| VISIT_SEQ_IN_SCOPE(c, stmt, |
| mod->v.Interactive.body); |
| break; |
| case Expression_kind: |
| VISIT_IN_SCOPE(c, expr, mod->v.Expression.body); |
| addNone = 0; |
| break; |
| case Suite_kind: |
| PyErr_SetString(PyExc_SystemError, |
| "suite should not be possible"); |
| return 0; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "module kind %d should not be possible", |
| mod->kind); |
| return 0; |
| } |
| co = assemble(c, addNone); |
| compiler_exit_scope(c); |
| return co; |
| } |
| |
| /* The test for LOCAL must come before the test for FREE in order to |
| handle classes where name is both local and free. The local var is |
| a method and the free var is a free var referenced within a method. |
| */ |
| |
| static int |
| get_ref_type(struct compiler *c, PyObject *name) |
| { |
| int scope = PyST_GetScope(c->u->u_ste, name); |
| if (scope == 0) { |
| char buf[350]; |
| PyOS_snprintf(buf, sizeof(buf), |
| "unknown scope for %.100s in %.100s(%s) in %s\n" |
| "symbols: %s\nlocals: %s\nglobals: %s\n", |
| PyString_AS_STRING(name), |
| PyString_AS_STRING(c->u->u_name), |
| PyObject_REPR(c->u->u_ste->ste_id), |
| c->c_filename, |
| PyObject_REPR(c->u->u_ste->ste_symbols), |
| PyObject_REPR(c->u->u_varnames), |
| PyObject_REPR(c->u->u_names) |
| ); |
| Py_FatalError(buf); |
| } |
| |
| return scope; |
| } |
| |
| static int |
| compiler_lookup_arg(PyObject *dict, PyObject *name) |
| { |
| PyObject *k, *v; |
| k = PyTuple_Pack(2, name, name->ob_type); |
| if (k == NULL) |
| return -1; |
| v = PyDict_GetItem(dict, k); |
| Py_DECREF(k); |
| if (v == NULL) |
| return -1; |
| return PyInt_AS_LONG(v); |
| } |
| |
| static int |
| compiler_make_closure(struct compiler *c, PyCodeObject *co, int args) |
| { |
| int i, free = PyCode_GetNumFree(co); |
| if (free == 0) { |
| ADDOP_O(c, LOAD_CONST, (PyObject*)co, consts); |
| ADDOP_I(c, MAKE_FUNCTION, args); |
| return 1; |
| } |
| for (i = 0; i < free; ++i) { |
| /* Bypass com_addop_varname because it will generate |
| LOAD_DEREF but LOAD_CLOSURE is needed. |
| */ |
| PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i); |
| int arg, reftype; |
| |
| /* Special case: If a class contains a method with a |
| free variable that has the same name as a method, |
| the name will be considered free *and* local in the |
| class. It should be handled by the closure, as |
| well as by the normal name loookup logic. |
| */ |
| reftype = get_ref_type(c, name); |
| if (reftype == CELL) |
| arg = compiler_lookup_arg(c->u->u_cellvars, name); |
| else /* (reftype == FREE) */ |
| arg = compiler_lookup_arg(c->u->u_freevars, name); |
| if (arg == -1) { |
| printf("lookup %s in %s %d %d\n" |
| "freevars of %s: %s\n", |
| PyObject_REPR(name), |
| PyString_AS_STRING(c->u->u_name), |
| reftype, arg, |
| PyString_AS_STRING(co->co_name), |
| PyObject_REPR(co->co_freevars)); |
| Py_FatalError("compiler_make_closure()"); |
| } |
| ADDOP_I(c, LOAD_CLOSURE, arg); |
| } |
| ADDOP_I(c, BUILD_TUPLE, free); |
| ADDOP_O(c, LOAD_CONST, (PyObject*)co, consts); |
| ADDOP_I(c, MAKE_CLOSURE, args); |
| return 1; |
| } |
| |
| static int |
| compiler_decorators(struct compiler *c, asdl_seq* decos) |
| { |
| int i; |
| |
| if (!decos) |
| return 1; |
| |
| for (i = 0; i < asdl_seq_LEN(decos); i++) { |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i)); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_arguments(struct compiler *c, arguments_ty args) |
| { |
| int i; |
| int n = asdl_seq_LEN(args->args); |
| /* Correctly handle nested argument lists */ |
| for (i = 0; i < n; i++) { |
| expr_ty arg = (expr_ty)asdl_seq_GET(args->args, i); |
| if (arg->kind == Tuple_kind) { |
| PyObject *id = PyString_FromFormat(".%d", i); |
| if (id == NULL) { |
| return 0; |
| } |
| if (!compiler_nameop(c, id, Load)) { |
| Py_DECREF(id); |
| return 0; |
| } |
| Py_DECREF(id); |
| VISIT(c, expr, arg); |
| } |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_function(struct compiler *c, stmt_ty s) |
| { |
| PyCodeObject *co; |
| PyObject *first_const = Py_None; |
| arguments_ty args = s->v.FunctionDef.args; |
| asdl_seq* decos = s->v.FunctionDef.decorators; |
| stmt_ty st; |
| int i, n, docstring; |
| |
| assert(s->kind == FunctionDef_kind); |
| |
| if (!compiler_decorators(c, decos)) |
| return 0; |
| if (args->defaults) |
| VISIT_SEQ(c, expr, args->defaults); |
| if (!compiler_enter_scope(c, s->v.FunctionDef.name, (void *)s, |
| s->lineno)) |
| return 0; |
| |
| st = (stmt_ty)asdl_seq_GET(s->v.FunctionDef.body, 0); |
| docstring = compiler_isdocstring(st); |
| if (docstring) |
| first_const = st->v.Expr.value->v.Str.s; |
| if (compiler_add_o(c, c->u->u_consts, first_const) < 0) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| |
| /* unpack nested arguments */ |
| compiler_arguments(c, args); |
| |
| c->u->u_argcount = asdl_seq_LEN(args->args); |
| n = asdl_seq_LEN(s->v.FunctionDef.body); |
| /* if there was a docstring, we need to skip the first statement */ |
| for (i = docstring; i < n; i++) { |
| st = (stmt_ty)asdl_seq_GET(s->v.FunctionDef.body, i); |
| VISIT_IN_SCOPE(c, stmt, st); |
| } |
| co = assemble(c, 1); |
| compiler_exit_scope(c); |
| if (co == NULL) |
| return 0; |
| |
| compiler_make_closure(c, co, asdl_seq_LEN(args->defaults)); |
| Py_DECREF(co); |
| |
| for (i = 0; i < asdl_seq_LEN(decos); i++) { |
| ADDOP_I(c, CALL_FUNCTION, 1); |
| } |
| |
| return compiler_nameop(c, s->v.FunctionDef.name, Store); |
| } |
| |
| static int |
| compiler_class(struct compiler *c, stmt_ty s) |
| { |
| int n; |
| PyCodeObject *co; |
| PyObject *str; |
| /* push class name on stack, needed by BUILD_CLASS */ |
| ADDOP_O(c, LOAD_CONST, s->v.ClassDef.name, consts); |
| /* push the tuple of base classes on the stack */ |
| n = asdl_seq_LEN(s->v.ClassDef.bases); |
| if (n > 0) |
| VISIT_SEQ(c, expr, s->v.ClassDef.bases); |
| ADDOP_I(c, BUILD_TUPLE, n); |
| if (!compiler_enter_scope(c, s->v.ClassDef.name, (void *)s, |
| s->lineno)) |
| return 0; |
| c->u->u_private = s->v.ClassDef.name; |
| Py_INCREF(c->u->u_private); |
| str = PyString_InternFromString("__name__"); |
| if (!str || !compiler_nameop(c, str, Load)) { |
| Py_XDECREF(str); |
| compiler_exit_scope(c); |
| return 0; |
| } |
| |
| Py_DECREF(str); |
| str = PyString_InternFromString("__module__"); |
| if (!str || !compiler_nameop(c, str, Store)) { |
| Py_XDECREF(str); |
| compiler_exit_scope(c); |
| return 0; |
| } |
| Py_DECREF(str); |
| |
| if (!compiler_body(c, s->v.ClassDef.body)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| |
| ADDOP_IN_SCOPE(c, LOAD_LOCALS); |
| ADDOP_IN_SCOPE(c, RETURN_VALUE); |
| co = assemble(c, 1); |
| compiler_exit_scope(c); |
| if (co == NULL) |
| return 0; |
| |
| compiler_make_closure(c, co, 0); |
| Py_DECREF(co); |
| |
| ADDOP_I(c, CALL_FUNCTION, 0); |
| ADDOP(c, BUILD_CLASS); |
| if (!compiler_nameop(c, s->v.ClassDef.name, Store)) |
| return 0; |
| return 1; |
| } |
| |
| static int |
| compiler_ifexp(struct compiler *c, expr_ty e) |
| { |
| basicblock *end, *next; |
| |
| assert(e->kind == IfExp_kind); |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| next = compiler_new_block(c); |
| if (next == NULL) |
| return 0; |
| VISIT(c, expr, e->v.IfExp.test); |
| ADDOP_JREL(c, JUMP_IF_FALSE, next); |
| ADDOP(c, POP_TOP); |
| VISIT(c, expr, e->v.IfExp.body); |
| ADDOP_JREL(c, JUMP_FORWARD, end); |
| compiler_use_next_block(c, next); |
| ADDOP(c, POP_TOP); |
| VISIT(c, expr, e->v.IfExp.orelse); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_lambda(struct compiler *c, expr_ty e) |
| { |
| PyCodeObject *co; |
| static identifier name; |
| arguments_ty args = e->v.Lambda.args; |
| assert(e->kind == Lambda_kind); |
| |
| if (!name) { |
| name = PyString_InternFromString("<lambda>"); |
| if (!name) |
| return 0; |
| } |
| |
| if (args->defaults) |
| VISIT_SEQ(c, expr, args->defaults); |
| if (!compiler_enter_scope(c, name, (void *)e, e->lineno)) |
| return 0; |
| |
| /* unpack nested arguments */ |
| compiler_arguments(c, args); |
| |
| c->u->u_argcount = asdl_seq_LEN(args->args); |
| VISIT_IN_SCOPE(c, expr, e->v.Lambda.body); |
| ADDOP_IN_SCOPE(c, RETURN_VALUE); |
| co = assemble(c, 1); |
| compiler_exit_scope(c); |
| if (co == NULL) |
| return 0; |
| |
| compiler_make_closure(c, co, asdl_seq_LEN(args->defaults)); |
| Py_DECREF(co); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_print(struct compiler *c, stmt_ty s) |
| { |
| int i, n; |
| bool dest; |
| |
| assert(s->kind == Print_kind); |
| n = asdl_seq_LEN(s->v.Print.values); |
| dest = false; |
| if (s->v.Print.dest) { |
| VISIT(c, expr, s->v.Print.dest); |
| dest = true; |
| } |
| for (i = 0; i < n; i++) { |
| expr_ty e = (expr_ty)asdl_seq_GET(s->v.Print.values, i); |
| if (dest) { |
| ADDOP(c, DUP_TOP); |
| VISIT(c, expr, e); |
| ADDOP(c, ROT_TWO); |
| ADDOP(c, PRINT_ITEM_TO); |
| } |
| else { |
| VISIT(c, expr, e); |
| ADDOP(c, PRINT_ITEM); |
| } |
| } |
| if (s->v.Print.nl) { |
| if (dest) |
| ADDOP(c, PRINT_NEWLINE_TO) |
| else |
| ADDOP(c, PRINT_NEWLINE) |
| } |
| else if (dest) |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| static int |
| compiler_if(struct compiler *c, stmt_ty s) |
| { |
| basicblock *end, *next; |
| int constant; |
| assert(s->kind == If_kind); |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| next = compiler_new_block(c); |
| if (next == NULL) |
| return 0; |
| |
| constant = expr_constant(s->v.If.test); |
| /* constant = 0: "if 0" |
| * constant = 1: "if 1", "if 2", ... |
| * constant = -1: rest */ |
| if (constant == 0) { |
| if (s->v.If.orelse) |
| VISIT_SEQ(c, stmt, s->v.If.orelse); |
| } else if (constant == 1) { |
| VISIT_SEQ(c, stmt, s->v.If.body); |
| } else { |
| VISIT(c, expr, s->v.If.test); |
| ADDOP_JREL(c, JUMP_IF_FALSE, next); |
| ADDOP(c, POP_TOP); |
| VISIT_SEQ(c, stmt, s->v.If.body); |
| ADDOP_JREL(c, JUMP_FORWARD, end); |
| compiler_use_next_block(c, next); |
| ADDOP(c, POP_TOP); |
| if (s->v.If.orelse) |
| VISIT_SEQ(c, stmt, s->v.If.orelse); |
| } |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_for(struct compiler *c, stmt_ty s) |
| { |
| basicblock *start, *cleanup, *end; |
| |
| start = compiler_new_block(c); |
| cleanup = compiler_new_block(c); |
| end = compiler_new_block(c); |
| if (start == NULL || end == NULL || cleanup == NULL) |
| return 0; |
| ADDOP_JREL(c, SETUP_LOOP, end); |
| if (!compiler_push_fblock(c, LOOP, start)) |
| return 0; |
| VISIT(c, expr, s->v.For.iter); |
| ADDOP(c, GET_ITER); |
| compiler_use_next_block(c, start); |
| /* XXX(nnorwitz): is there a better way to handle this? |
| for loops are special, we want to be able to trace them |
| each time around, so we need to set an extra line number. */ |
| c->u->u_lineno_set = false; |
| ADDOP_JREL(c, FOR_ITER, cleanup); |
| VISIT(c, expr, s->v.For.target); |
| VISIT_SEQ(c, stmt, s->v.For.body); |
| ADDOP_JABS(c, JUMP_ABSOLUTE, start); |
| compiler_use_next_block(c, cleanup); |
| ADDOP(c, POP_BLOCK); |
| compiler_pop_fblock(c, LOOP, start); |
| VISIT_SEQ(c, stmt, s->v.For.orelse); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_while(struct compiler *c, stmt_ty s) |
| { |
| basicblock *loop, *orelse, *end, *anchor = NULL; |
| int constant = expr_constant(s->v.While.test); |
| |
| if (constant == 0) |
| return 1; |
| loop = compiler_new_block(c); |
| end = compiler_new_block(c); |
| if (constant == -1) { |
| anchor = compiler_new_block(c); |
| if (anchor == NULL) |
| return 0; |
| } |
| if (loop == NULL || end == NULL) |
| return 0; |
| if (s->v.While.orelse) { |
| orelse = compiler_new_block(c); |
| if (orelse == NULL) |
| return 0; |
| } |
| else |
| orelse = NULL; |
| |
| ADDOP_JREL(c, SETUP_LOOP, end); |
| compiler_use_next_block(c, loop); |
| if (!compiler_push_fblock(c, LOOP, loop)) |
| return 0; |
| if (constant == -1) { |
| VISIT(c, expr, s->v.While.test); |
| ADDOP_JREL(c, JUMP_IF_FALSE, anchor); |
| ADDOP(c, POP_TOP); |
| } |
| VISIT_SEQ(c, stmt, s->v.While.body); |
| ADDOP_JABS(c, JUMP_ABSOLUTE, loop); |
| |
| /* XXX should the two POP instructions be in a separate block |
| if there is no else clause ? |
| */ |
| |
| if (constant == -1) { |
| compiler_use_next_block(c, anchor); |
| ADDOP(c, POP_TOP); |
| ADDOP(c, POP_BLOCK); |
| } |
| compiler_pop_fblock(c, LOOP, loop); |
| if (orelse != NULL) /* what if orelse is just pass? */ |
| VISIT_SEQ(c, stmt, s->v.While.orelse); |
| compiler_use_next_block(c, end); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_continue(struct compiler *c) |
| { |
| static const char LOOP_ERROR_MSG[] = "'continue' not properly in loop"; |
| static const char IN_FINALLY_ERROR_MSG[] = |
| "'continue' not supported inside 'finally' clause"; |
| int i; |
| |
| if (!c->u->u_nfblocks) |
| return compiler_error(c, LOOP_ERROR_MSG); |
| i = c->u->u_nfblocks - 1; |
| switch (c->u->u_fblock[i].fb_type) { |
| case LOOP: |
| ADDOP_JABS(c, JUMP_ABSOLUTE, c->u->u_fblock[i].fb_block); |
| break; |
| case EXCEPT: |
| case FINALLY_TRY: |
| while (--i >= 0 && c->u->u_fblock[i].fb_type != LOOP) { |
| /* Prevent try: ... finally: |
| try: continue ... or |
| try: ... except: continue */ |
| if (c->u->u_fblock[i].fb_type == FINALLY_END) |
| return compiler_error(c, IN_FINALLY_ERROR_MSG); |
| } |
| if (i == -1) |
| return compiler_error(c, LOOP_ERROR_MSG); |
| ADDOP_JABS(c, CONTINUE_LOOP, c->u->u_fblock[i].fb_block); |
| break; |
| case FINALLY_END: |
| return compiler_error(c, IN_FINALLY_ERROR_MSG); |
| } |
| |
| return 1; |
| } |
| |
| /* Code generated for "try: <body> finally: <finalbody>" is as follows: |
| |
| SETUP_FINALLY L |
| <code for body> |
| POP_BLOCK |
| LOAD_CONST <None> |
| L: <code for finalbody> |
| END_FINALLY |
| |
| The special instructions use the block stack. Each block |
| stack entry contains the instruction that created it (here |
| SETUP_FINALLY), the level of the value stack at the time the |
| block stack entry was created, and a label (here L). |
| |
| SETUP_FINALLY: |
| Pushes the current value stack level and the label |
| onto the block stack. |
| POP_BLOCK: |
| Pops en entry from the block stack, and pops the value |
| stack until its level is the same as indicated on the |
| block stack. (The label is ignored.) |
| END_FINALLY: |
| Pops a variable number of entries from the *value* stack |
| and re-raises the exception they specify. The number of |
| entries popped depends on the (pseudo) exception type. |
| |
| The block stack is unwound when an exception is raised: |
| when a SETUP_FINALLY entry is found, the exception is pushed |
| onto the value stack (and the exception condition is cleared), |
| and the interpreter jumps to the label gotten from the block |
| stack. |
| */ |
| |
| static int |
| compiler_try_finally(struct compiler *c, stmt_ty s) |
| { |
| basicblock *body, *end; |
| body = compiler_new_block(c); |
| end = compiler_new_block(c); |
| if (body == NULL || end == NULL) |
| return 0; |
| |
| ADDOP_JREL(c, SETUP_FINALLY, end); |
| compiler_use_next_block(c, body); |
| if (!compiler_push_fblock(c, FINALLY_TRY, body)) |
| return 0; |
| VISIT_SEQ(c, stmt, s->v.TryFinally.body); |
| ADDOP(c, POP_BLOCK); |
| compiler_pop_fblock(c, FINALLY_TRY, body); |
| |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| compiler_use_next_block(c, end); |
| if (!compiler_push_fblock(c, FINALLY_END, end)) |
| return 0; |
| VISIT_SEQ(c, stmt, s->v.TryFinally.finalbody); |
| ADDOP(c, END_FINALLY); |
| compiler_pop_fblock(c, FINALLY_END, end); |
| |
| return 1; |
| } |
| |
| /* |
| Code generated for "try: S except E1, V1: S1 except E2, V2: S2 ...": |
| (The contents of the value stack is shown in [], with the top |
| at the right; 'tb' is trace-back info, 'val' the exception's |
| associated value, and 'exc' the exception.) |
| |
| Value stack Label Instruction Argument |
| [] SETUP_EXCEPT L1 |
| [] <code for S> |
| [] POP_BLOCK |
| [] JUMP_FORWARD L0 |
| |
| [tb, val, exc] L1: DUP ) |
| [tb, val, exc, exc] <evaluate E1> ) |
| [tb, val, exc, exc, E1] COMPARE_OP EXC_MATCH ) only if E1 |
| [tb, val, exc, 1-or-0] JUMP_IF_FALSE L2 ) |
| [tb, val, exc, 1] POP ) |
| [tb, val, exc] POP |
| [tb, val] <assign to V1> (or POP if no V1) |
| [tb] POP |
| [] <code for S1> |
| JUMP_FORWARD L0 |
| |
| [tb, val, exc, 0] L2: POP |
| [tb, val, exc] DUP |
| .............................etc....................... |
| |
| [tb, val, exc, 0] Ln+1: POP |
| [tb, val, exc] END_FINALLY # re-raise exception |
| |
| [] L0: <next statement> |
| |
| Of course, parts are not generated if Vi or Ei is not present. |
| */ |
| static int |
| compiler_try_except(struct compiler *c, stmt_ty s) |
| { |
| basicblock *body, *orelse, *except, *end; |
| int i, n; |
| |
| body = compiler_new_block(c); |
| except = compiler_new_block(c); |
| orelse = compiler_new_block(c); |
| end = compiler_new_block(c); |
| if (body == NULL || except == NULL || orelse == NULL || end == NULL) |
| return 0; |
| ADDOP_JREL(c, SETUP_EXCEPT, except); |
| compiler_use_next_block(c, body); |
| if (!compiler_push_fblock(c, EXCEPT, body)) |
| return 0; |
| VISIT_SEQ(c, stmt, s->v.TryExcept.body); |
| ADDOP(c, POP_BLOCK); |
| compiler_pop_fblock(c, EXCEPT, body); |
| ADDOP_JREL(c, JUMP_FORWARD, orelse); |
| n = asdl_seq_LEN(s->v.TryExcept.handlers); |
| compiler_use_next_block(c, except); |
| for (i = 0; i < n; i++) { |
| excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( |
| s->v.TryExcept.handlers, i); |
| if (!handler->type && i < n-1) |
| return compiler_error(c, "default 'except:' must be last"); |
| c->u->u_lineno_set = false; |
| c->u->u_lineno = handler->lineno; |
| except = compiler_new_block(c); |
| if (except == NULL) |
| return 0; |
| if (handler->type) { |
| ADDOP(c, DUP_TOP); |
| VISIT(c, expr, handler->type); |
| ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH); |
| ADDOP_JREL(c, JUMP_IF_FALSE, except); |
| ADDOP(c, POP_TOP); |
| } |
| ADDOP(c, POP_TOP); |
| if (handler->name) { |
| VISIT(c, expr, handler->name); |
| } |
| else { |
| ADDOP(c, POP_TOP); |
| } |
| ADDOP(c, POP_TOP); |
| VISIT_SEQ(c, stmt, handler->body); |
| ADDOP_JREL(c, JUMP_FORWARD, end); |
| compiler_use_next_block(c, except); |
| if (handler->type) |
| ADDOP(c, POP_TOP); |
| } |
| ADDOP(c, END_FINALLY); |
| compiler_use_next_block(c, orelse); |
| VISIT_SEQ(c, stmt, s->v.TryExcept.orelse); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_import_as(struct compiler *c, identifier name, identifier asname) |
| { |
| /* The IMPORT_NAME opcode was already generated. This function |
| merely needs to bind the result to a name. |
| |
| If there is a dot in name, we need to split it and emit a |
| LOAD_ATTR for each name. |
| */ |
| const char *src = PyString_AS_STRING(name); |
| const char *dot = strchr(src, '.'); |
| if (dot) { |
| /* Consume the base module name to get the first attribute */ |
| src = dot + 1; |
| while (dot) { |
| /* NB src is only defined when dot != NULL */ |
| PyObject *attr; |
| dot = strchr(src, '.'); |
| attr = PyString_FromStringAndSize(src, |
| dot ? dot - src : strlen(src)); |
| if (!attr) |
| return -1; |
| ADDOP_O(c, LOAD_ATTR, attr, names); |
| Py_DECREF(attr); |
| src = dot + 1; |
| } |
| } |
| return compiler_nameop(c, asname, Store); |
| } |
| |
| static int |
| compiler_import(struct compiler *c, stmt_ty s) |
| { |
| /* The Import node stores a module name like a.b.c as a single |
| string. This is convenient for all cases except |
| import a.b.c as d |
| where we need to parse that string to extract the individual |
| module names. |
| XXX Perhaps change the representation to make this case simpler? |
| */ |
| int i, n = asdl_seq_LEN(s->v.Import.names); |
| |
| for (i = 0; i < n; i++) { |
| alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i); |
| int r; |
| PyObject *level; |
| |
| if (c->c_flags && (c->c_flags->cf_flags & CO_FUTURE_ABSOLUTE_IMPORT)) |
| level = PyInt_FromLong(0); |
| else |
| level = PyInt_FromLong(-1); |
| |
| if (level == NULL) |
| return 0; |
| |
| ADDOP_O(c, LOAD_CONST, level, consts); |
| Py_DECREF(level); |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| ADDOP_NAME(c, IMPORT_NAME, alias->name, names); |
| |
| if (alias->asname) { |
| r = compiler_import_as(c, alias->name, alias->asname); |
| if (!r) |
| return r; |
| } |
| else { |
| identifier tmp = alias->name; |
| const char *base = PyString_AS_STRING(alias->name); |
| char *dot = strchr(base, '.'); |
| if (dot) |
| tmp = PyString_FromStringAndSize(base, |
| dot - base); |
| r = compiler_nameop(c, tmp, Store); |
| if (dot) { |
| Py_DECREF(tmp); |
| } |
| if (!r) |
| return r; |
| } |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_from_import(struct compiler *c, stmt_ty s) |
| { |
| int i, n = asdl_seq_LEN(s->v.ImportFrom.names); |
| |
| PyObject *names = PyTuple_New(n); |
| PyObject *level; |
| |
| if (!names) |
| return 0; |
| |
| if (s->v.ImportFrom.level == 0 && c->c_flags && |
| !(c->c_flags->cf_flags & CO_FUTURE_ABSOLUTE_IMPORT)) |
| level = PyInt_FromLong(-1); |
| else |
| level = PyInt_FromLong(s->v.ImportFrom.level); |
| |
| if (!level) { |
| Py_DECREF(names); |
| return 0; |
| } |
| |
| /* build up the names */ |
| for (i = 0; i < n; i++) { |
| alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); |
| Py_INCREF(alias->name); |
| PyTuple_SET_ITEM(names, i, alias->name); |
| } |
| |
| if (s->lineno > c->c_future->ff_lineno) { |
| if (!strcmp(PyString_AS_STRING(s->v.ImportFrom.module), |
| "__future__")) { |
| Py_DECREF(level); |
| Py_DECREF(names); |
| return compiler_error(c, |
| "from __future__ imports must occur " |
| "at the beginning of the file"); |
| |
| } |
| } |
| |
| ADDOP_O(c, LOAD_CONST, level, consts); |
| Py_DECREF(level); |
| ADDOP_O(c, LOAD_CONST, names, consts); |
| Py_DECREF(names); |
| ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names); |
| for (i = 0; i < n; i++) { |
| alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); |
| identifier store_name; |
| |
| if (i == 0 && *PyString_AS_STRING(alias->name) == '*') { |
| assert(n == 1); |
| ADDOP(c, IMPORT_STAR); |
| return 1; |
| } |
| |
| ADDOP_NAME(c, IMPORT_FROM, alias->name, names); |
| store_name = alias->name; |
| if (alias->asname) |
| store_name = alias->asname; |
| |
| if (!compiler_nameop(c, store_name, Store)) { |
| Py_DECREF(names); |
| return 0; |
| } |
| } |
| /* remove imported module */ |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| static int |
| compiler_assert(struct compiler *c, stmt_ty s) |
| { |
| static PyObject *assertion_error = NULL; |
| basicblock *end; |
| |
| if (Py_OptimizeFlag) |
| return 1; |
| if (assertion_error == NULL) { |
| assertion_error = PyString_FromString("AssertionError"); |
| if (assertion_error == NULL) |
| return 0; |
| } |
| VISIT(c, expr, s->v.Assert.test); |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| ADDOP_JREL(c, JUMP_IF_TRUE, end); |
| ADDOP(c, POP_TOP); |
| ADDOP_O(c, LOAD_GLOBAL, assertion_error, names); |
| if (s->v.Assert.msg) { |
| VISIT(c, expr, s->v.Assert.msg); |
| ADDOP_I(c, RAISE_VARARGS, 2); |
| } |
| else { |
| ADDOP_I(c, RAISE_VARARGS, 1); |
| } |
| compiler_use_next_block(c, end); |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| static int |
| compiler_visit_stmt(struct compiler *c, stmt_ty s) |
| { |
| int i, n; |
| |
| /* Always assign a lineno to the next instruction for a stmt. */ |
| c->u->u_lineno = s->lineno; |
| c->u->u_lineno_set = false; |
| |
| switch (s->kind) { |
| case FunctionDef_kind: |
| return compiler_function(c, s); |
| case ClassDef_kind: |
| return compiler_class(c, s); |
| case Return_kind: |
| if (c->u->u_ste->ste_type != FunctionBlock) |
| return compiler_error(c, "'return' outside function"); |
| if (s->v.Return.value) { |
| VISIT(c, expr, s->v.Return.value); |
| } |
| else |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| ADDOP(c, RETURN_VALUE); |
| break; |
| case Delete_kind: |
| VISIT_SEQ(c, expr, s->v.Delete.targets) |
| break; |
| case Assign_kind: |
| n = asdl_seq_LEN(s->v.Assign.targets); |
| VISIT(c, expr, s->v.Assign.value); |
| for (i = 0; i < n; i++) { |
| if (i < n - 1) |
| ADDOP(c, DUP_TOP); |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(s->v.Assign.targets, i)); |
| } |
| break; |
| case AugAssign_kind: |
| return compiler_augassign(c, s); |
| case Print_kind: |
| return compiler_print(c, s); |
| case For_kind: |
| return compiler_for(c, s); |
| case While_kind: |
| return compiler_while(c, s); |
| case If_kind: |
| return compiler_if(c, s); |
| case Raise_kind: |
| n = 0; |
| if (s->v.Raise.type) { |
| VISIT(c, expr, s->v.Raise.type); |
| n++; |
| if (s->v.Raise.inst) { |
| VISIT(c, expr, s->v.Raise.inst); |
| n++; |
| if (s->v.Raise.tback) { |
| VISIT(c, expr, s->v.Raise.tback); |
| n++; |
| } |
| } |
| } |
| ADDOP_I(c, RAISE_VARARGS, n); |
| break; |
| case TryExcept_kind: |
| return compiler_try_except(c, s); |
| case TryFinally_kind: |
| return compiler_try_finally(c, s); |
| case Assert_kind: |
| return compiler_assert(c, s); |
| case Import_kind: |
| return compiler_import(c, s); |
| case ImportFrom_kind: |
| return compiler_from_import(c, s); |
| case Exec_kind: |
| VISIT(c, expr, s->v.Exec.body); |
| if (s->v.Exec.globals) { |
| VISIT(c, expr, s->v.Exec.globals); |
| if (s->v.Exec.locals) { |
| VISIT(c, expr, s->v.Exec.locals); |
| } else { |
| ADDOP(c, DUP_TOP); |
| } |
| } else { |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| ADDOP(c, DUP_TOP); |
| } |
| ADDOP(c, EXEC_STMT); |
| break; |
| case Global_kind: |
| break; |
| case Expr_kind: |
| if (c->c_interactive && c->c_nestlevel <= 1) { |
| VISIT(c, expr, s->v.Expr.value); |
| ADDOP(c, PRINT_EXPR); |
| } |
| else if (s->v.Expr.value->kind != Str_kind && |
| s->v.Expr.value->kind != Num_kind) { |
| VISIT(c, expr, s->v.Expr.value); |
| ADDOP(c, POP_TOP); |
| } |
| break; |
| case Pass_kind: |
| break; |
| case Break_kind: |
| if (!compiler_in_loop(c)) |
| return compiler_error(c, "'break' outside loop"); |
| ADDOP(c, BREAK_LOOP); |
| break; |
| case Continue_kind: |
| return compiler_continue(c); |
| case With_kind: |
| return compiler_with(c, s); |
| } |
| return 1; |
| } |
| |
| static int |
| unaryop(unaryop_ty op) |
| { |
| switch (op) { |
| case Invert: |
| return UNARY_INVERT; |
| case Not: |
| return UNARY_NOT; |
| case UAdd: |
| return UNARY_POSITIVE; |
| case USub: |
| return UNARY_NEGATIVE; |
| } |
| return 0; |
| } |
| |
| static int |
| binop(struct compiler *c, operator_ty op) |
| { |
| switch (op) { |
| case Add: |
| return BINARY_ADD; |
| case Sub: |
| return BINARY_SUBTRACT; |
| case Mult: |
| return BINARY_MULTIPLY; |
| case Div: |
| if (c->c_flags && c->c_flags->cf_flags & CO_FUTURE_DIVISION) |
| return BINARY_TRUE_DIVIDE; |
| else |
| return BINARY_DIVIDE; |
| case Mod: |
| return BINARY_MODULO; |
| case Pow: |
| return BINARY_POWER; |
| case LShift: |
| return BINARY_LSHIFT; |
| case RShift: |
| return BINARY_RSHIFT; |
| case BitOr: |
| return BINARY_OR; |
| case BitXor: |
| return BINARY_XOR; |
| case BitAnd: |
| return BINARY_AND; |
| case FloorDiv: |
| return BINARY_FLOOR_DIVIDE; |
| } |
| return 0; |
| } |
| |
| static int |
| cmpop(cmpop_ty op) |
| { |
| switch (op) { |
| case Eq: |
| return PyCmp_EQ; |
| case NotEq: |
| return PyCmp_NE; |
| case Lt: |
| return PyCmp_LT; |
| case LtE: |
| return PyCmp_LE; |
| case Gt: |
| return PyCmp_GT; |
| case GtE: |
| return PyCmp_GE; |
| case Is: |
| return PyCmp_IS; |
| case IsNot: |
| return PyCmp_IS_NOT; |
| case In: |
| return PyCmp_IN; |
| case NotIn: |
| return PyCmp_NOT_IN; |
| } |
| return PyCmp_BAD; |
| } |
| |
| static int |
| inplace_binop(struct compiler *c, operator_ty op) |
| { |
| switch (op) { |
| case Add: |
| return INPLACE_ADD; |
| case Sub: |
| return INPLACE_SUBTRACT; |
| case Mult: |
| return INPLACE_MULTIPLY; |
| case Div: |
| if (c->c_flags && c->c_flags->cf_flags & CO_FUTURE_DIVISION) |
| return INPLACE_TRUE_DIVIDE; |
| else |
| return INPLACE_DIVIDE; |
| case Mod: |
| return INPLACE_MODULO; |
| case Pow: |
| return INPLACE_POWER; |
| case LShift: |
| return INPLACE_LSHIFT; |
| case RShift: |
| return INPLACE_RSHIFT; |
| case BitOr: |
| return INPLACE_OR; |
| case BitXor: |
| return INPLACE_XOR; |
| case BitAnd: |
| return INPLACE_AND; |
| case FloorDiv: |
| return INPLACE_FLOOR_DIVIDE; |
| } |
| PyErr_Format(PyExc_SystemError, |
| "inplace binary op %d should not be possible", op); |
| return 0; |
| } |
| |
| static int |
| compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx) |
| { |
| int op, scope, arg; |
| enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype; |
| |
| PyObject *dict = c->u->u_names; |
| PyObject *mangled; |
| /* XXX AugStore isn't used anywhere! */ |
| |
| /* First check for assignment to __debug__. Param? */ |
| if ((ctx == Store || ctx == AugStore || ctx == Del) |
| && !strcmp(PyString_AS_STRING(name), "__debug__")) { |
| return compiler_error(c, "can not assign to __debug__"); |
| } |
| |
| mangled = _Py_Mangle(c->u->u_private, name); |
| if (!mangled) |
| return 0; |
| |
| op = 0; |
| optype = OP_NAME; |
| scope = PyST_GetScope(c->u->u_ste, mangled); |
| switch (scope) { |
| case FREE: |
| dict = c->u->u_freevars; |
| optype = OP_DEREF; |
| break; |
| case CELL: |
| dict = c->u->u_cellvars; |
| optype = OP_DEREF; |
| break; |
| case LOCAL: |
| if (c->u->u_ste->ste_type == FunctionBlock) |
| optype = OP_FAST; |
| break; |
| case GLOBAL_IMPLICIT: |
| if (c->u->u_ste->ste_type == FunctionBlock && |
| !c->u->u_ste->ste_unoptimized) |
| optype = OP_GLOBAL; |
| break; |
| case GLOBAL_EXPLICIT: |
| optype = OP_GLOBAL; |
| break; |
| default: |
| /* scope can be 0 */ |
| break; |
| } |
| |
| /* XXX Leave assert here, but handle __doc__ and the like better */ |
| assert(scope || PyString_AS_STRING(name)[0] == '_'); |
| |
| switch (optype) { |
| case OP_DEREF: |
| switch (ctx) { |
| case Load: op = LOAD_DEREF; break; |
| case Store: op = STORE_DEREF; break; |
| case AugLoad: |
| case AugStore: |
| break; |
| case Del: |
| PyErr_Format(PyExc_SyntaxError, |
| "can not delete variable '%s' referenced " |
| "in nested scope", |
| PyString_AS_STRING(name)); |
| Py_DECREF(mangled); |
| return 0; |
| case Param: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "param invalid for deref variable"); |
| return 0; |
| } |
| break; |
| case OP_FAST: |
| switch (ctx) { |
| case Load: op = LOAD_FAST; break; |
| case Store: op = STORE_FAST; break; |
| case Del: op = DELETE_FAST; break; |
| case AugLoad: |
| case AugStore: |
| break; |
| case Param: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "param invalid for local variable"); |
| return 0; |
| } |
| ADDOP_O(c, op, mangled, varnames); |
| Py_DECREF(mangled); |
| return 1; |
| case OP_GLOBAL: |
| switch (ctx) { |
| case Load: op = LOAD_GLOBAL; break; |
| case Store: op = STORE_GLOBAL; break; |
| case Del: op = DELETE_GLOBAL; break; |
| case AugLoad: |
| case AugStore: |
| break; |
| case Param: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "param invalid for global variable"); |
| return 0; |
| } |
| break; |
| case OP_NAME: |
| switch (ctx) { |
| case Load: op = LOAD_NAME; break; |
| case Store: op = STORE_NAME; break; |
| case Del: op = DELETE_NAME; break; |
| case AugLoad: |
| case AugStore: |
| break; |
| case Param: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "param invalid for name variable"); |
| return 0; |
| } |
| break; |
| } |
| |
| assert(op); |
| arg = compiler_add_o(c, dict, mangled); |
| Py_DECREF(mangled); |
| if (arg < 0) |
| return 0; |
| return compiler_addop_i(c, op, arg); |
| } |
| |
| static int |
| compiler_boolop(struct compiler *c, expr_ty e) |
| { |
| basicblock *end; |
| int jumpi, i, n; |
| asdl_seq *s; |
| |
| assert(e->kind == BoolOp_kind); |
| if (e->v.BoolOp.op == And) |
| jumpi = JUMP_IF_FALSE; |
| else |
| jumpi = JUMP_IF_TRUE; |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| s = e->v.BoolOp.values; |
| n = asdl_seq_LEN(s) - 1; |
| assert(n >= 0); |
| for (i = 0; i < n; ++i) { |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i)); |
| ADDOP_JREL(c, jumpi, end); |
| ADDOP(c, POP_TOP) |
| } |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n)); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_list(struct compiler *c, expr_ty e) |
| { |
| int n = asdl_seq_LEN(e->v.List.elts); |
| if (e->v.List.ctx == Store) { |
| ADDOP_I(c, UNPACK_SEQUENCE, n); |
| } |
| VISIT_SEQ(c, expr, e->v.List.elts); |
| if (e->v.List.ctx == Load) { |
| ADDOP_I(c, BUILD_LIST, n); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_tuple(struct compiler *c, expr_ty e) |
| { |
| int n = asdl_seq_LEN(e->v.Tuple.elts); |
| if (e->v.Tuple.ctx == Store) { |
| ADDOP_I(c, UNPACK_SEQUENCE, n); |
| } |
| VISIT_SEQ(c, expr, e->v.Tuple.elts); |
| if (e->v.Tuple.ctx == Load) { |
| ADDOP_I(c, BUILD_TUPLE, n); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_compare(struct compiler *c, expr_ty e) |
| { |
| int i, n; |
| basicblock *cleanup = NULL; |
| |
| /* XXX the logic can be cleaned up for 1 or multiple comparisons */ |
| VISIT(c, expr, e->v.Compare.left); |
| n = asdl_seq_LEN(e->v.Compare.ops); |
| assert(n > 0); |
| if (n > 1) { |
| cleanup = compiler_new_block(c); |
| if (cleanup == NULL) |
| return 0; |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0)); |
| } |
| for (i = 1; i < n; i++) { |
| ADDOP(c, DUP_TOP); |
| ADDOP(c, ROT_THREE); |
| ADDOP_I(c, COMPARE_OP, |
| cmpop((cmpop_ty)(asdl_seq_GET( |
| e->v.Compare.ops, i - 1)))); |
| ADDOP_JREL(c, JUMP_IF_FALSE, cleanup); |
| NEXT_BLOCK(c); |
| ADDOP(c, POP_TOP); |
| if (i < (n - 1)) |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); |
| } |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n - 1)); |
| ADDOP_I(c, COMPARE_OP, |
| cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, n - 1)))); |
| if (n > 1) { |
| basicblock *end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| ADDOP_JREL(c, JUMP_FORWARD, end); |
| compiler_use_next_block(c, cleanup); |
| ADDOP(c, ROT_TWO); |
| ADDOP(c, POP_TOP); |
| compiler_use_next_block(c, end); |
| } |
| return 1; |
| } |
| #undef CMPCAST |
| |
| static int |
| compiler_call(struct compiler *c, expr_ty e) |
| { |
| int n, code = 0; |
| |
| VISIT(c, expr, e->v.Call.func); |
| n = asdl_seq_LEN(e->v.Call.args); |
| VISIT_SEQ(c, expr, e->v.Call.args); |
| if (e->v.Call.keywords) { |
| VISIT_SEQ(c, keyword, e->v.Call.keywords); |
| n |= asdl_seq_LEN(e->v.Call.keywords) << 8; |
| } |
| if (e->v.Call.starargs) { |
| VISIT(c, expr, e->v.Call.starargs); |
| code |= 1; |
| } |
| if (e->v.Call.kwargs) { |
| VISIT(c, expr, e->v.Call.kwargs); |
| code |= 2; |
| } |
| switch (code) { |
| case 0: |
| ADDOP_I(c, CALL_FUNCTION, n); |
| break; |
| case 1: |
| ADDOP_I(c, CALL_FUNCTION_VAR, n); |
| break; |
| case 2: |
| ADDOP_I(c, CALL_FUNCTION_KW, n); |
| break; |
| case 3: |
| ADDOP_I(c, CALL_FUNCTION_VAR_KW, n); |
| break; |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_listcomp_generator(struct compiler *c, PyObject *tmpname, |
| asdl_seq *generators, int gen_index, |
| expr_ty elt) |
| { |
| /* generate code for the iterator, then each of the ifs, |
| and then write to the element */ |
| |
| comprehension_ty l; |
| basicblock *start, *anchor, *skip, *if_cleanup; |
| int i, n; |
| |
| start = compiler_new_block(c); |
| skip = compiler_new_block(c); |
| if_cleanup = compiler_new_block(c); |
| anchor = compiler_new_block(c); |
| |
| if (start == NULL || skip == NULL || if_cleanup == NULL || |
| anchor == NULL) |
| return 0; |
| |
| l = (comprehension_ty)asdl_seq_GET(generators, gen_index); |
| VISIT(c, expr, l->iter); |
| ADDOP(c, GET_ITER); |
| compiler_use_next_block(c, start); |
| ADDOP_JREL(c, FOR_ITER, anchor); |
| NEXT_BLOCK(c); |
| VISIT(c, expr, l->target); |
| |
| /* XXX this needs to be cleaned up...a lot! */ |
| n = asdl_seq_LEN(l->ifs); |
| for (i = 0; i < n; i++) { |
| expr_ty e = (expr_ty)asdl_seq_GET(l->ifs, i); |
| VISIT(c, expr, e); |
| ADDOP_JREL(c, JUMP_IF_FALSE, if_cleanup); |
| NEXT_BLOCK(c); |
| ADDOP(c, POP_TOP); |
| } |
| |
| if (++gen_index < asdl_seq_LEN(generators)) |
| if (!compiler_listcomp_generator(c, tmpname, |
| generators, gen_index, elt)) |
| return 0; |
| |
| /* only append after the last for generator */ |
| if (gen_index >= asdl_seq_LEN(generators)) { |
| if (!compiler_nameop(c, tmpname, Load)) |
| return 0; |
| VISIT(c, expr, elt); |
| ADDOP(c, LIST_APPEND); |
| |
| compiler_use_next_block(c, skip); |
| } |
| for (i = 0; i < n; i++) { |
| ADDOP_I(c, JUMP_FORWARD, 1); |
| if (i == 0) |
| compiler_use_next_block(c, if_cleanup); |
| ADDOP(c, POP_TOP); |
| } |
| ADDOP_JABS(c, JUMP_ABSOLUTE, start); |
| compiler_use_next_block(c, anchor); |
| /* delete the append method added to locals */ |
| if (gen_index == 1) |
| if (!compiler_nameop(c, tmpname, Del)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int |
| compiler_listcomp(struct compiler *c, expr_ty e) |
| { |
| identifier tmp; |
| int rc = 0; |
| static identifier append; |
| asdl_seq *generators = e->v.ListComp.generators; |
| |
| assert(e->kind == ListComp_kind); |
| if (!append) { |
| append = PyString_InternFromString("append"); |
| if (!append) |
| return 0; |
| } |
| tmp = compiler_new_tmpname(c); |
| if (!tmp) |
| return 0; |
| ADDOP_I(c, BUILD_LIST, 0); |
| ADDOP(c, DUP_TOP); |
| if (compiler_nameop(c, tmp, Store)) |
| rc = compiler_listcomp_generator(c, tmp, generators, 0, |
| e->v.ListComp.elt); |
| Py_DECREF(tmp); |
| return rc; |
| } |
| |
| static int |
| compiler_genexp_generator(struct compiler *c, |
| asdl_seq *generators, int gen_index, |
| expr_ty elt) |
| { |
| /* generate code for the iterator, then each of the ifs, |
| and then write to the element */ |
| |
| comprehension_ty ge; |
| basicblock *start, *anchor, *skip, *if_cleanup, *end; |
| int i, n; |
| |
| start = compiler_new_block(c); |
| skip = compiler_new_block(c); |
| if_cleanup = compiler_new_block(c); |
| anchor = compiler_new_block(c); |
| end = compiler_new_block(c); |
| |
| if (start == NULL || skip == NULL || if_cleanup == NULL || |
| anchor == NULL || end == NULL) |
| return 0; |
| |
| ge = (comprehension_ty)asdl_seq_GET(generators, gen_index); |
| ADDOP_JREL(c, SETUP_LOOP, end); |
| if (!compiler_push_fblock(c, LOOP, start)) |
| return 0; |
| |
| if (gen_index == 0) { |
| /* Receive outermost iter as an implicit argument */ |
| c->u->u_argcount = 1; |
| ADDOP_I(c, LOAD_FAST, 0); |
| } |
| else { |
| /* Sub-iter - calculate on the fly */ |
| VISIT(c, expr, ge->iter); |
| ADDOP(c, GET_ITER); |
| } |
| compiler_use_next_block(c, start); |
| ADDOP_JREL(c, FOR_ITER, anchor); |
| NEXT_BLOCK(c); |
| VISIT(c, expr, ge->target); |
| |
| /* XXX this needs to be cleaned up...a lot! */ |
| n = asdl_seq_LEN(ge->ifs); |
| for (i = 0; i < n; i++) { |
| expr_ty e = (expr_ty)asdl_seq_GET(ge->ifs, i); |
| VISIT(c, expr, e); |
| ADDOP_JREL(c, JUMP_IF_FALSE, if_cleanup); |
| NEXT_BLOCK(c); |
| ADDOP(c, POP_TOP); |
| } |
| |
| if (++gen_index < asdl_seq_LEN(generators)) |
| if (!compiler_genexp_generator(c, generators, gen_index, elt)) |
| return 0; |
| |
| /* only append after the last 'for' generator */ |
| if (gen_index >= asdl_seq_LEN(generators)) { |
| VISIT(c, expr, elt); |
| ADDOP(c, YIELD_VALUE); |
| ADDOP(c, POP_TOP); |
| |
| compiler_use_next_block(c, skip); |
| } |
| for (i = 0; i < n; i++) { |
| ADDOP_I(c, JUMP_FORWARD, 1); |
| if (i == 0) |
| compiler_use_next_block(c, if_cleanup); |
| |
| ADDOP(c, POP_TOP); |
| } |
| ADDOP_JABS(c, JUMP_ABSOLUTE, start); |
| compiler_use_next_block(c, anchor); |
| ADDOP(c, POP_BLOCK); |
| compiler_pop_fblock(c, LOOP, start); |
| compiler_use_next_block(c, end); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_genexp(struct compiler *c, expr_ty e) |
| { |
| static identifier name; |
| PyCodeObject *co; |
| expr_ty outermost_iter = ((comprehension_ty) |
| (asdl_seq_GET(e->v.GeneratorExp.generators, |
| 0)))->iter; |
| |
| if (!name) { |
| name = PyString_FromString("<genexpr>"); |
| if (!name) |
| return 0; |
| } |
| |
| if (!compiler_enter_scope(c, name, (void *)e, e->lineno)) |
| return 0; |
| compiler_genexp_generator(c, e->v.GeneratorExp.generators, 0, |
| e->v.GeneratorExp.elt); |
| co = assemble(c, 1); |
| compiler_exit_scope(c); |
| if (co == NULL) |
| return 0; |
| |
| compiler_make_closure(c, co, 0); |
| Py_DECREF(co); |
| |
| VISIT(c, expr, outermost_iter); |
| ADDOP(c, GET_ITER); |
| ADDOP_I(c, CALL_FUNCTION, 1); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_visit_keyword(struct compiler *c, keyword_ty k) |
| { |
| ADDOP_O(c, LOAD_CONST, k->arg, consts); |
| VISIT(c, expr, k->value); |
| return 1; |
| } |
| |
| /* Test whether expression is constant. For constants, report |
| whether they are true or false. |
| |
| Return values: 1 for true, 0 for false, -1 for non-constant. |
| */ |
| |
| static int |
| expr_constant(expr_ty e) |
| { |
| switch (e->kind) { |
| case Num_kind: |
| return PyObject_IsTrue(e->v.Num.n); |
| case Str_kind: |
| return PyObject_IsTrue(e->v.Str.s); |
| case Name_kind: |
| /* __debug__ is not assignable, so we can optimize |
| * it away in if and while statements */ |
| if (strcmp(PyString_AS_STRING(e->v.Name.id), |
| "__debug__") == 0) |
| return ! Py_OptimizeFlag; |
| /* fall through */ |
| default: |
| return -1; |
| } |
| } |
| |
| /* |
| Implements the with statement from PEP 343. |
| |
| The semantics outlined in that PEP are as follows: |
| |
| with EXPR as VAR: |
| BLOCK |
| |
| It is implemented roughly as: |
| |
| context = EXPR |
| exit = context.__exit__ # not calling it |
| value = context.__enter__() |
| try: |
| VAR = value # if VAR present in the syntax |
| BLOCK |
| finally: |
| if an exception was raised: |
| exc = copy of (exception, instance, traceback) |
| else: |
| exc = (None, None, None) |
| exit(*exc) |
| */ |
| static int |
| compiler_with(struct compiler *c, stmt_ty s) |
| { |
| static identifier enter_attr, exit_attr; |
| basicblock *block, *finally; |
| identifier tmpexit, tmpvalue = NULL; |
| |
| assert(s->kind == With_kind); |
| |
| if (!enter_attr) { |
| enter_attr = PyString_InternFromString("__enter__"); |
| if (!enter_attr) |
| return 0; |
| } |
| if (!exit_attr) { |
| exit_attr = PyString_InternFromString("__exit__"); |
| if (!exit_attr) |
| return 0; |
| } |
| |
| block = compiler_new_block(c); |
| finally = compiler_new_block(c); |
| if (!block || !finally) |
| return 0; |
| |
| /* Create a temporary variable to hold context.__exit__ */ |
| tmpexit = compiler_new_tmpname(c); |
| if (tmpexit == NULL) |
| return 0; |
| PyArena_AddPyObject(c->c_arena, tmpexit); |
| |
| if (s->v.With.optional_vars) { |
| /* Create a temporary variable to hold context.__enter__(). |
| We need to do this rather than preserving it on the stack |
| because SETUP_FINALLY remembers the stack level. |
| We need to do the assignment *inside* the try/finally |
| so that context.__exit__() is called when the assignment |
| fails. But we need to call context.__enter__() *before* |
| the try/finally so that if it fails we won't call |
| context.__exit__(). |
| */ |
| tmpvalue = compiler_new_tmpname(c); |
| if (tmpvalue == NULL) |
| return 0; |
| PyArena_AddPyObject(c->c_arena, tmpvalue); |
| } |
| |
| /* Evaluate EXPR */ |
| VISIT(c, expr, s->v.With.context_expr); |
| |
| /* Squirrel away context.__exit__ */ |
| ADDOP(c, DUP_TOP); |
| ADDOP_O(c, LOAD_ATTR, exit_attr, names); |
| if (!compiler_nameop(c, tmpexit, Store)) |
| return 0; |
| |
| /* Call context.__enter__() */ |
| ADDOP_O(c, LOAD_ATTR, enter_attr, names); |
| ADDOP_I(c, CALL_FUNCTION, 0); |
| |
| if (s->v.With.optional_vars) { |
| /* Store it in tmpvalue */ |
| if (!compiler_nameop(c, tmpvalue, Store)) |
| return 0; |
| } |
| else { |
| /* Discard result from context.__enter__() */ |
| ADDOP(c, POP_TOP); |
| } |
| |
| /* Start the try block */ |
| ADDOP_JREL(c, SETUP_FINALLY, finally); |
| |
| compiler_use_next_block(c, block); |
| if (!compiler_push_fblock(c, FINALLY_TRY, block)) { |
| return 0; |
| } |
| |
| if (s->v.With.optional_vars) { |
| /* Bind saved result of context.__enter__() to VAR */ |
| if (!compiler_nameop(c, tmpvalue, Load) || |
| !compiler_nameop(c, tmpvalue, Del)) |
| return 0; |
| VISIT(c, expr, s->v.With.optional_vars); |
| } |
| |
| /* BLOCK code */ |
| VISIT_SEQ(c, stmt, s->v.With.body); |
| |
| /* End of try block; start the finally block */ |
| ADDOP(c, POP_BLOCK); |
| compiler_pop_fblock(c, FINALLY_TRY, block); |
| |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| compiler_use_next_block(c, finally); |
| if (!compiler_push_fblock(c, FINALLY_END, finally)) |
| return 0; |
| |
| /* Finally block starts; push tmpexit and issue our magic opcode. */ |
| if (!compiler_nameop(c, tmpexit, Load) || |
| !compiler_nameop(c, tmpexit, Del)) |
| return 0; |
| ADDOP(c, WITH_CLEANUP); |
| |
| /* Finally block ends. */ |
| ADDOP(c, END_FINALLY); |
| compiler_pop_fblock(c, FINALLY_END, finally); |
| return 1; |
| } |
| |
| static int |
| compiler_visit_expr(struct compiler *c, expr_ty e) |
| { |
| int i, n; |
| |
| /* If expr e has a different line number than the last expr/stmt, |
| set a new line number for the next instruction. |
| */ |
| if (e->lineno > c->u->u_lineno) { |
| c->u->u_lineno = e->lineno; |
| c->u->u_lineno_set = false; |
| } |
| switch (e->kind) { |
| case BoolOp_kind: |
| return compiler_boolop(c, e); |
| case BinOp_kind: |
| VISIT(c, expr, e->v.BinOp.left); |
| VISIT(c, expr, e->v.BinOp.right); |
| ADDOP(c, binop(c, e->v.BinOp.op)); |
| break; |
| case UnaryOp_kind: |
| VISIT(c, expr, e->v.UnaryOp.operand); |
| ADDOP(c, unaryop(e->v.UnaryOp.op)); |
| break; |
| case Lambda_kind: |
| return compiler_lambda(c, e); |
| case IfExp_kind: |
| return compiler_ifexp(c, e); |
| case Dict_kind: |
| /* XXX get rid of arg? */ |
| ADDOP_I(c, BUILD_MAP, 0); |
| n = asdl_seq_LEN(e->v.Dict.values); |
| /* We must arrange things just right for STORE_SUBSCR. |
| It wants the stack to look like (value) (dict) (key) */ |
| for (i = 0; i < n; i++) { |
| ADDOP(c, DUP_TOP); |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); |
| ADDOP(c, ROT_TWO); |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(e->v.Dict.keys, i)); |
| ADDOP(c, STORE_SUBSCR); |
| } |
| break; |
| case ListComp_kind: |
| return compiler_listcomp(c, e); |
| case GeneratorExp_kind: |
| return compiler_genexp(c, e); |
| case Yield_kind: |
| if (c->u->u_ste->ste_type != FunctionBlock) |
| return compiler_error(c, "'yield' outside function"); |
| /* |
| for (i = 0; i < c->u->u_nfblocks; i++) { |
| if (c->u->u_fblock[i].fb_type == FINALLY_TRY) |
| return compiler_error( |
| c, "'yield' not allowed in a 'try' " |
| "block with a 'finally' clause"); |
| } |
| */ |
| if (e->v.Yield.value) { |
| VISIT(c, expr, e->v.Yield.value); |
| } |
| else { |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| } |
| ADDOP(c, YIELD_VALUE); |
| break; |
| case Compare_kind: |
| return compiler_compare(c, e); |
| case Call_kind: |
| return compiler_call(c, e); |
| case Repr_kind: |
| VISIT(c, expr, e->v.Repr.value); |
| ADDOP(c, UNARY_CONVERT); |
| break; |
| case Num_kind: |
| ADDOP_O(c, LOAD_CONST, e->v.Num.n, consts); |
| break; |
| case Str_kind: |
| ADDOP_O(c, LOAD_CONST, e->v.Str.s, consts); |
| break; |
| /* The following exprs can be assignment targets. */ |
| case Attribute_kind: |
| if (e->v.Attribute.ctx != AugStore) |
| VISIT(c, expr, e->v.Attribute.value); |
| switch (e->v.Attribute.ctx) { |
| case AugLoad: |
| ADDOP(c, DUP_TOP); |
| /* Fall through to load */ |
| case Load: |
| ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names); |
| break; |
| case AugStore: |
| ADDOP(c, ROT_TWO); |
| /* Fall through to save */ |
| case Store: |
| ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names); |
| break; |
| case Del: |
| ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names); |
| break; |
| case Param: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "param invalid in attribute expression"); |
| return 0; |
| } |
| break; |
| case Subscript_kind: |
| switch (e->v.Subscript.ctx) { |
| case AugLoad: |
| VISIT(c, expr, e->v.Subscript.value); |
| VISIT_SLICE(c, e->v.Subscript.slice, AugLoad); |
| break; |
| case Load: |
| VISIT(c, expr, e->v.Subscript.value); |
| VISIT_SLICE(c, e->v.Subscript.slice, Load); |
| break; |
| case AugStore: |
| VISIT_SLICE(c, e->v.Subscript.slice, AugStore); |
| break; |
| case Store: |
| VISIT(c, expr, e->v.Subscript.value); |
| VISIT_SLICE(c, e->v.Subscript.slice, Store); |
| break; |
| case Del: |
| VISIT(c, expr, e->v.Subscript.value); |
| VISIT_SLICE(c, e->v.Subscript.slice, Del); |
| break; |
| case Param: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "param invalid in subscript expression"); |
| return 0; |
| } |
| break; |
| case Name_kind: |
| return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx); |
| /* child nodes of List and Tuple will have expr_context set */ |
| case List_kind: |
| return compiler_list(c, e); |
| case Tuple_kind: |
| return compiler_tuple(c, e); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_augassign(struct compiler *c, stmt_ty s) |
| { |
| expr_ty e = s->v.AugAssign.target; |
| expr_ty auge; |
| |
| assert(s->kind == AugAssign_kind); |
| |
| switch (e->kind) { |
| case Attribute_kind: |
| auge = Attribute(e->v.Attribute.value, e->v.Attribute.attr, |
| AugLoad, e->lineno, e->col_offset, c->c_arena); |
| if (auge == NULL) |
| return 0; |
| VISIT(c, expr, auge); |
| VISIT(c, expr, s->v.AugAssign.value); |
| ADDOP(c, inplace_binop(c, s->v.AugAssign.op)); |
| auge->v.Attribute.ctx = AugStore; |
| VISIT(c, expr, auge); |
| break; |
| case Subscript_kind: |
| auge = Subscript(e->v.Subscript.value, e->v.Subscript.slice, |
| AugLoad, e->lineno, e->col_offset, c->c_arena); |
| if (auge == NULL) |
| return 0; |
| VISIT(c, expr, auge); |
| VISIT(c, expr, s->v.AugAssign.value); |
| ADDOP(c, inplace_binop(c, s->v.AugAssign.op)); |
| auge->v.Subscript.ctx = AugStore; |
| VISIT(c, expr, auge); |
| break; |
| case Name_kind: |
| if (!compiler_nameop(c, e->v.Name.id, Load)) |
| return 0; |
| VISIT(c, expr, s->v.AugAssign.value); |
| ADDOP(c, inplace_binop(c, s->v.AugAssign.op)); |
| return compiler_nameop(c, e->v.Name.id, Store); |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "invalid node type (%d) for augmented assignment", |
| e->kind); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b) |
| { |
| struct fblockinfo *f; |
| if (c->u->u_nfblocks >= CO_MAXBLOCKS) { |
| PyErr_SetString(PyExc_SystemError, |
| "too many statically nested blocks"); |
| return 0; |
| } |
| f = &c->u->u_fblock[c->u->u_nfblocks++]; |
| f->fb_type = t; |
| f->fb_block = b; |
| return 1; |
| } |
| |
| static void |
| compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b) |
| { |
| struct compiler_unit *u = c->u; |
| assert(u->u_nfblocks > 0); |
| u->u_nfblocks--; |
| assert(u->u_fblock[u->u_nfblocks].fb_type == t); |
| assert(u->u_fblock[u->u_nfblocks].fb_block == b); |
| } |
| |
| static int |
| compiler_in_loop(struct compiler *c) { |
| int i; |
| struct compiler_unit *u = c->u; |
| for (i = 0; i < u->u_nfblocks; ++i) { |
| if (u->u_fblock[i].fb_type == LOOP) |
| return 1; |
| } |
| return 0; |
| } |
| /* Raises a SyntaxError and returns 0. |
| If something goes wrong, a different exception may be raised. |
| */ |
| |
| static int |
| compiler_error(struct compiler *c, const char *errstr) |
| { |
| PyObject *loc; |
| PyObject *u = NULL, *v = NULL; |
| |
| loc = PyErr_ProgramText(c->c_filename, c->u->u_lineno); |
| if (!loc) { |
| Py_INCREF(Py_None); |
| loc = Py_None; |
| } |
| u = Py_BuildValue("(ziOO)", c->c_filename, c->u->u_lineno, |
| Py_None, loc); |
| if (!u) |
| goto exit; |
| v = Py_BuildValue("(zO)", errstr, u); |
| if (!v) |
| goto exit; |
| PyErr_SetObject(PyExc_SyntaxError, v); |
| exit: |
| Py_DECREF(loc); |
| Py_XDECREF(u); |
| Py_XDECREF(v); |
| return 0; |
| } |
| |
| static int |
| compiler_handle_subscr(struct compiler *c, const char *kind, |
| expr_context_ty ctx) |
| { |
| int op = 0; |
| |
| /* XXX this code is duplicated */ |
| switch (ctx) { |
| case AugLoad: /* fall through to Load */ |
| case Load: op = BINARY_SUBSCR; break; |
| case AugStore:/* fall through to Store */ |
| case Store: op = STORE_SUBSCR; break; |
| case Del: op = DELETE_SUBSCR; break; |
| case Param: |
| PyErr_Format(PyExc_SystemError, |
| "invalid %s kind %d in subscript\n", |
| kind, ctx); |
| return 0; |
| } |
| if (ctx == AugLoad) { |
| ADDOP_I(c, DUP_TOPX, 2); |
| } |
| else if (ctx == AugStore) { |
| ADDOP(c, ROT_THREE); |
| } |
| ADDOP(c, op); |
| return 1; |
| } |
| |
| static int |
| compiler_slice(struct compiler *c, slice_ty s, expr_context_ty ctx) |
| { |
| int n = 2; |
| assert(s->kind == Slice_kind); |
| |
| /* only handles the cases where BUILD_SLICE is emitted */ |
| if (s->v.Slice.lower) { |
| VISIT(c, expr, s->v.Slice.lower); |
| } |
| else { |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| } |
| |
| if (s->v.Slice.upper) { |
| VISIT(c, expr, s->v.Slice.upper); |
| } |
| else { |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| } |
| |
| if (s->v.Slice.step) { |
| n++; |
| VISIT(c, expr, s->v.Slice.step); |
| } |
| ADDOP_I(c, BUILD_SLICE, n); |
| return 1; |
| } |
| |
| static int |
| compiler_simple_slice(struct compiler *c, slice_ty s, expr_context_ty ctx) |
| { |
| int op = 0, slice_offset = 0, stack_count = 0; |
| |
| assert(s->v.Slice.step == NULL); |
| if (s->v.Slice.lower) { |
| slice_offset++; |
| stack_count++; |
| if (ctx != AugStore) |
| VISIT(c, expr, s->v.Slice.lower); |
| } |
| if (s->v.Slice.upper) { |
| slice_offset += 2; |
| stack_count++; |
| if (ctx != AugStore) |
| VISIT(c, expr, s->v.Slice.upper); |
| } |
| |
| if (ctx == AugLoad) { |
| switch (stack_count) { |
| case 0: ADDOP(c, DUP_TOP); break; |
| case 1: ADDOP_I(c, DUP_TOPX, 2); break; |
| case 2: ADDOP_I(c, DUP_TOPX, 3); break; |
| } |
| } |
| else if (ctx == AugStore) { |
| switch (stack_count) { |
| case 0: ADDOP(c, ROT_TWO); break; |
| case 1: ADDOP(c, ROT_THREE); break; |
| case 2: ADDOP(c, ROT_FOUR); break; |
| } |
| } |
| |
| switch (ctx) { |
| case AugLoad: /* fall through to Load */ |
| case Load: op = SLICE; break; |
| case AugStore:/* fall through to Store */ |
| case Store: op = STORE_SLICE; break; |
| case Del: op = DELETE_SLICE; break; |
| case Param: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "param invalid in simple slice"); |
| return 0; |
| } |
| |
| ADDOP(c, op + slice_offset); |
| return 1; |
| } |
| |
| static int |
| compiler_visit_nested_slice(struct compiler *c, slice_ty s, |
| expr_context_ty ctx) |
| { |
| switch (s->kind) { |
| case Ellipsis_kind: |
| ADDOP_O(c, LOAD_CONST, Py_Ellipsis, consts); |
| break; |
| case Slice_kind: |
| return compiler_slice(c, s, ctx); |
| case Index_kind: |
| VISIT(c, expr, s->v.Index.value); |
| break; |
| case ExtSlice_kind: |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "extended slice invalid in nested slice"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| |
| static int |
| compiler_visit_slice(struct compiler *c, slice_ty s, expr_context_ty ctx) |
| { |
| char * kindname = NULL; |
| switch (s->kind) { |
| case Index_kind: |
| kindname = "index"; |
| if (ctx != AugStore) { |
| VISIT(c, expr, s->v.Index.value); |
| } |
| break; |
| case Ellipsis_kind: |
| kindname = "ellipsis"; |
| if (ctx != AugStore) { |
| ADDOP_O(c, LOAD_CONST, Py_Ellipsis, consts); |
| } |
| break; |
| case Slice_kind: |
| kindname = "slice"; |
| if (!s->v.Slice.step) |
| return compiler_simple_slice(c, s, ctx); |
| if (ctx != AugStore) { |
| if (!compiler_slice(c, s, ctx)) |
| return 0; |
| } |
| break; |
| case ExtSlice_kind: |
| kindname = "extended slice"; |
| if (ctx != AugStore) { |
| int i, n = asdl_seq_LEN(s->v.ExtSlice.dims); |
| for (i = 0; i < n; i++) { |
| slice_ty sub = (slice_ty)asdl_seq_GET( |
| s->v.ExtSlice.dims, i); |
| if (!compiler_visit_nested_slice(c, sub, ctx)) |
| return 0; |
| } |
| ADDOP_I(c, BUILD_TUPLE, n); |
| } |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "invalid subscript kind %d", s->kind); |
| return 0; |
| } |
| return compiler_handle_subscr(c, kindname, ctx); |
| } |
| |
| /* do depth-first search of basic block graph, starting with block. |
| post records the block indices in post-order. |
| |
| XXX must handle implicit jumps from one block to next |
| */ |
| |
| static void |
| dfs(struct compiler *c, basicblock *b, struct assembler *a) |
| { |
| int i; |
| struct instr *instr = NULL; |
| |
| if (b->b_seen) |
| return; |
| b->b_seen = 1; |
| if (b->b_next != NULL) |
| dfs(c, b->b_next, a); |
| for (i = 0; i < b->b_iused; i++) { |
| instr = &b->b_instr[i]; |
| if (instr->i_jrel || instr->i_jabs) |
| dfs(c, instr->i_target, a); |
| } |
| a->a_postorder[a->a_nblocks++] = b; |
| } |
| |
| static int |
| stackdepth_walk(struct compiler *c, basicblock *b, int depth, int maxdepth) |
| { |
| int i; |
| struct instr *instr; |
| if (b->b_seen || b->b_startdepth >= depth) |
| return maxdepth; |
| b->b_seen = 1; |
| b->b_startdepth = depth; |
| for (i = 0; i < b->b_iused; i++) { |
| instr = &b->b_instr[i]; |
| depth += opcode_stack_effect(instr->i_opcode, instr->i_oparg); |
| if (depth > maxdepth) |
| maxdepth = depth; |
| assert(depth >= 0); /* invalid code or bug in stackdepth() */ |
| if (instr->i_jrel || instr->i_jabs) { |
| maxdepth = stackdepth_walk(c, instr->i_target, |
| depth, maxdepth); |
| if (instr->i_opcode == JUMP_ABSOLUTE || |
| instr->i_opcode == JUMP_FORWARD) { |
| goto out; /* remaining code is dead */ |
| } |
| } |
| } |
| if (b->b_next) |
| maxdepth = stackdepth_walk(c, b->b_next, depth, maxdepth); |
| out: |
| b->b_seen = 0; |
| return maxdepth; |
| } |
| |
| /* Find the flow path that needs the largest stack. We assume that |
| * cycles in the flow graph have no net effect on the stack depth. |
| */ |
| static int |
| stackdepth(struct compiler *c) |
| { |
| basicblock *b, *entryblock; |
| entryblock = NULL; |
| for (b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| b->b_seen = 0; |
| b->b_startdepth = INT_MIN; |
| entryblock = b; |
| } |
| if (!entryblock) |
| return 0; |
| return stackdepth_walk(c, entryblock, 0, 0); |
| } |
| |
| static int |
| assemble_init(struct assembler *a, int nblocks, int firstlineno) |
| { |
| memset(a, 0, sizeof(struct assembler)); |
| a->a_lineno = firstlineno; |
| a->a_bytecode = PyString_FromStringAndSize(NULL, DEFAULT_CODE_SIZE); |
| if (!a->a_bytecode) |
| return 0; |
| a->a_lnotab = PyString_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE); |
| if (!a->a_lnotab) |
| return 0; |
| a->a_postorder = (basicblock **)PyObject_Malloc( |
| sizeof(basicblock *) * nblocks); |
| if (!a->a_postorder) { |
| PyErr_NoMemory(); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void |
| assemble_free(struct assembler *a) |
| { |
| Py_XDECREF(a->a_bytecode); |
| Py_XDECREF(a->a_lnotab); |
| if (a->a_postorder) |
| PyObject_Free(a->a_postorder); |
| } |
| |
| /* Return the size of a basic block in bytes. */ |
| |
| static int |
| instrsize(struct instr *instr) |
| { |
| if (!instr->i_hasarg) |
| return 1; |
| if (instr->i_oparg > 0xffff) |
| return 6; |
| return 3; |
| } |
| |
| static int |
| blocksize(basicblock *b) |
| { |
| int i; |
| int size = 0; |
| |
| for (i = 0; i < b->b_iused; i++) |
| size += instrsize(&b->b_instr[i]); |
| return size; |
| } |
| |
| /* All about a_lnotab. |
| |
| c_lnotab is an array of unsigned bytes disguised as a Python string. |
| It is used to map bytecode offsets to source code line #s (when needed |
| for tracebacks). |
| |
| The array is conceptually a list of |
| (bytecode offset increment, line number increment) |
| pairs. The details are important and delicate, best illustrated by example: |
| |
| byte code offset source code line number |
| 0 1 |
| 6 2 |
| 50 7 |
| 350 307 |
| 361 308 |
| |
| The first trick is that these numbers aren't stored, only the increments |
| from one row to the next (this doesn't really work, but it's a start): |
| |
| 0, 1, 6, 1, 44, 5, 300, 300, 11, 1 |
| |
| The second trick is that an unsigned byte can't hold negative values, or |
| values larger than 255, so (a) there's a deep assumption that byte code |
| offsets and their corresponding line #s both increase monotonically, and (b) |
| if at least one column jumps by more than 255 from one row to the next, more |
| than one pair is written to the table. In case #b, there's no way to know |
| from looking at the table later how many were written. That's the delicate |
| part. A user of c_lnotab desiring to find the source line number |
| corresponding to a bytecode address A should do something like this |
| |
| lineno = addr = 0 |
| for addr_incr, line_incr in c_lnotab: |
| addr += addr_incr |
| if addr > A: |
| return lineno |
| lineno += line_incr |
| |
| In order for this to work, when the addr field increments by more than 255, |
| the line # increment in each pair generated must be 0 until the remaining addr |
| increment is < 256. So, in the example above, assemble_lnotab (it used |
| to be called com_set_lineno) should not (as was actually done until 2.2) |
| expand 300, 300 to 255, 255, 45, 45, |
| but to 255, 0, 45, 255, 0, 45. |
| */ |
| |
| static int |
| assemble_lnotab(struct assembler *a, struct instr *i) |
| { |
| int d_bytecode, d_lineno; |
| int len; |
| unsigned char *lnotab; |
| |
| d_bytecode = a->a_offset - a->a_lineno_off; |
| d_lineno = i->i_lineno - a->a_lineno; |
| |
| assert(d_bytecode >= 0); |
| assert(d_lineno >= 0); |
| |
| /* XXX(nnorwitz): is there a better way to handle this? |
| for loops are special, we want to be able to trace them |
| each time around, so we need to set an extra line number. */ |
| if (d_lineno == 0 && i->i_opcode != FOR_ITER) |
| return 1; |
| |
| if (d_bytecode > 255) { |
| int j, nbytes, ncodes = d_bytecode / 255; |
| nbytes = a->a_lnotab_off + 2 * ncodes; |
| len = PyString_GET_SIZE(a->a_lnotab); |
| if (nbytes >= len) { |
| if (len * 2 < nbytes) |
| len = nbytes; |
| else |
| len *= 2; |
| if (_PyString_Resize(&a->a_lnotab, len) < 0) |
| return 0; |
| } |
| lnotab = (unsigned char *) |
| PyString_AS_STRING(a->a_lnotab) + a->a_lnotab_off; |
| for (j = 0; j < ncodes; j++) { |
| *lnotab++ = 255; |
| *lnotab++ = 0; |
| } |
| d_bytecode -= ncodes * 255; |
| a->a_lnotab_off += ncodes * 2; |
| } |
| assert(d_bytecode <= 255); |
| if (d_lineno > 255) { |
| int j, nbytes, ncodes = d_lineno / 255; |
| nbytes = a->a_lnotab_off + 2 * ncodes; |
| len = PyString_GET_SIZE(a->a_lnotab); |
| if (nbytes >= len) { |
| if (len * 2 < nbytes) |
| len = nbytes; |
| else |
| len *= 2; |
| if (_PyString_Resize(&a->a_lnotab, len) < 0) |
| return 0; |
| } |
| lnotab = (unsigned char *) |
| PyString_AS_STRING(a->a_lnotab) + a->a_lnotab_off; |
| *lnotab++ = d_bytecode; |
| *lnotab++ = 255; |
| d_bytecode = 0; |
| for (j = 1; j < ncodes; j++) { |
| *lnotab++ = 0; |
| *lnotab++ = 255; |
| } |
| d_lineno -= ncodes * 255; |
| a->a_lnotab_off += ncodes * 2; |
| } |
| |
| len = PyString_GET_SIZE(a->a_lnotab); |
| if (a->a_lnotab_off + 2 >= len) { |
| if (_PyString_Resize(&a->a_lnotab, len * 2) < 0) |
| return 0; |
| } |
| lnotab = (unsigned char *) |
| PyString_AS_STRING(a->a_lnotab) + a->a_lnotab_off; |
| |
| a->a_lnotab_off += 2; |
| if (d_bytecode) { |
| *lnotab++ = d_bytecode; |
| *lnotab++ = d_lineno; |
| } |
| else { /* First line of a block; def stmt, etc. */ |
| *lnotab++ = 0; |
| *lnotab++ = d_lineno; |
| } |
| a->a_lineno = i->i_lineno; |
| a->a_lineno_off = a->a_offset; |
| return 1; |
| } |
| |
| /* assemble_emit() |
| Extend the bytecode with a new instruction. |
| Update lnotab if necessary. |
| */ |
| |
| static int |
| assemble_emit(struct assembler *a, struct instr *i) |
| { |
| int size, arg = 0, ext = 0; |
| Py_ssize_t len = PyString_GET_SIZE(a->a_bytecode); |
| char *code; |
| |
| size = instrsize(i); |
| if (i->i_hasarg) { |
| arg = i->i_oparg; |
| ext = arg >> 16; |
| } |
| if (i->i_lineno && !assemble_lnotab(a, i)) |
| return 0; |
| if (a->a_offset + size >= len) { |
| if (_PyString_Resize(&a->a_bytecode, len * 2) < 0) |
| return 0; |
| } |
| code = PyString_AS_STRING(a->a_bytecode) + a->a_offset; |
| a->a_offset += size; |
| if (size == 6) { |
| assert(i->i_hasarg); |
| *code++ = (char)EXTENDED_ARG; |
| *code++ = ext & 0xff; |
| *code++ = ext >> 8; |
| arg &= 0xffff; |
| } |
| *code++ = i->i_opcode; |
| if (i->i_hasarg) { |
| assert(size == 3 || size == 6); |
| *code++ = arg & 0xff; |
| *code++ = arg >> 8; |
| } |
| return 1; |
| } |
| |
| static void |
| assemble_jump_offsets(struct assembler *a, struct compiler *c) |
| { |
| basicblock *b; |
| int bsize, totsize, extended_arg_count, last_extended_arg_count = 0; |
| int i; |
| |
| /* Compute the size of each block and fixup jump args. |
| Replace block pointer with position in bytecode. */ |
| start: |
| totsize = 0; |
| for (i = a->a_nblocks - 1; i >= 0; i--) { |
| b = a->a_postorder[i]; |
| bsize = blocksize(b); |
| b->b_offset = totsize; |
| totsize += bsize; |
| } |
| extended_arg_count = 0; |
| for (b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| bsize = b->b_offset; |
| for (i = 0; i < b->b_iused; i++) { |
| struct instr *instr = &b->b_instr[i]; |
| /* Relative jumps are computed relative to |
| the instruction pointer after fetching |
| the jump instruction. |
| */ |
| bsize += instrsize(instr); |
| if (instr->i_jabs) |
| instr->i_oparg = instr->i_target->b_offset; |
| else if (instr->i_jrel) { |
| int delta = instr->i_target->b_offset - bsize; |
| instr->i_oparg = delta; |
| } |
| else |
| continue; |
| if (instr->i_oparg > 0xffff) |
| extended_arg_count++; |
| } |
| } |
| |
| /* XXX: This is an awful hack that could hurt performance, but |
| on the bright side it should work until we come up |
| with a better solution. |
| |
| In the meantime, should the goto be dropped in favor |
| of a loop? |
| |
| The issue is that in the first loop blocksize() is called |
| which calls instrsize() which requires i_oparg be set |
| appropriately. There is a bootstrap problem because |
| i_oparg is calculated in the second loop above. |
| |
| So we loop until we stop seeing new EXTENDED_ARGs. |
| The only EXTENDED_ARGs that could be popping up are |
| ones in jump instructions. So this should converge |
| fairly quickly. |
| */ |
| if (last_extended_arg_count != extended_arg_count) { |
| last_extended_arg_count = extended_arg_count; |
| goto start; |
| } |
| } |
| |
| static PyObject * |
| dict_keys_inorder(PyObject *dict, int offset) |
| { |
| PyObject *tuple, *k, *v; |
| Py_ssize_t i, pos = 0, size = PyDict_Size(dict); |
| |
| tuple = PyTuple_New(size); |
| if (tuple == NULL) |
| return NULL; |
| while (PyDict_Next(dict, &pos, &k, &v)) { |
| i = PyInt_AS_LONG(v); |
| k = PyTuple_GET_ITEM(k, 0); |
| Py_INCREF(k); |
| assert((i - offset) < size); |
| assert((i - offset) >= 0); |
| PyTuple_SET_ITEM(tuple, i - offset, k); |
| } |
| return tuple; |
| } |
| |
| static int |
| compute_code_flags(struct compiler *c) |
| { |
| PySTEntryObject *ste = c->u->u_ste; |
| int flags = 0, n; |
| if (ste->ste_type != ModuleBlock) |
| flags |= CO_NEWLOCALS; |
| if (ste->ste_type == FunctionBlock) { |
| if (!ste->ste_unoptimized) |
| flags |= CO_OPTIMIZED; |
| if (ste->ste_nested) |
| flags |= CO_NESTED; |
| if (ste->ste_generator) |
| flags |= CO_GENERATOR; |
| } |
| if (ste->ste_varargs) |
| flags |= CO_VARARGS; |
| if (ste->ste_varkeywords) |
| flags |= CO_VARKEYWORDS; |
| if (ste->ste_generator) |
| flags |= CO_GENERATOR; |
| |
| /* (Only) inherit compilerflags in PyCF_MASK */ |
| flags |= (c->c_flags->cf_flags & PyCF_MASK); |
| |
| n = PyDict_Size(c->u->u_freevars); |
| if (n < 0) |
| return -1; |
| if (n == 0) { |
| n = PyDict_Size(c->u->u_cellvars); |
| if (n < 0) |
| return -1; |
| if (n == 0) { |
| flags |= CO_NOFREE; |
| } |
| } |
| |
| return flags; |
| } |
| |
| static PyCodeObject * |
| makecode(struct compiler *c, struct assembler *a) |
| { |
| PyObject *tmp; |
| PyCodeObject *co = NULL; |
| PyObject *consts = NULL; |
| PyObject *names = NULL; |
| PyObject *varnames = NULL; |
| PyObject *filename = NULL; |
| PyObject *name = NULL; |
| PyObject *freevars = NULL; |
| PyObject *cellvars = NULL; |
| PyObject *bytecode = NULL; |
| int nlocals, flags; |
| |
| tmp = dict_keys_inorder(c->u->u_consts, 0); |
| if (!tmp) |
| goto error; |
| consts = PySequence_List(tmp); /* optimize_code requires a list */ |
| Py_DECREF(tmp); |
| |
| names = dict_keys_inorder(c->u->u_names, 0); |
| varnames = dict_keys_inorder(c->u->u_varnames, 0); |
| if (!consts || !names || !varnames) |
| goto error; |
| |
| cellvars = dict_keys_inorder(c->u->u_cellvars, 0); |
| if (!cellvars) |
| goto error; |
| freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_Size(cellvars)); |
| if (!freevars) |
| goto error; |
| filename = PyString_FromString(c->c_filename); |
| if (!filename) |
| goto error; |
| |
| nlocals = PyDict_Size(c->u->u_varnames); |
| flags = compute_code_flags(c); |
| if (flags < 0) |
| goto error; |
| |
| bytecode = optimize_code(a->a_bytecode, consts, names, a->a_lnotab); |
| if (!bytecode) |
| goto error; |
| |
| tmp = PyList_AsTuple(consts); /* PyCode_New requires a tuple */ |
| if (!tmp) |
| goto error; |
| Py_DECREF(consts); |
| consts = tmp; |
| |
| co = PyCode_New(c->u->u_argcount, nlocals, stackdepth(c), flags, |
| bytecode, consts, names, varnames, |
| freevars, cellvars, |
| filename, c->u->u_name, |
| c->u->u_firstlineno, |
| a->a_lnotab); |
| error: |
| Py_XDECREF(consts); |
| Py_XDECREF(names); |
| Py_XDECREF(varnames); |
| Py_XDECREF(filename); |
| Py_XDECREF(name); |
| Py_XDECREF(freevars); |
| Py_XDECREF(cellvars); |
| Py_XDECREF(bytecode); |
| return co; |
| } |
| |
| |
| /* For debugging purposes only */ |
| #if 0 |
| static void |
| dump_instr(const struct instr *i) |
| { |
| const char *jrel = i->i_jrel ? "jrel " : ""; |
| const char *jabs = i->i_jabs ? "jabs " : ""; |
| char arg[128]; |
| |
| *arg = '\0'; |
| if (i->i_hasarg) |
| sprintf(arg, "arg: %d ", i->i_oparg); |
| |
| fprintf(stderr, "line: %d, opcode: %d %s%s%s\n", |
| i->i_lineno, i->i_opcode, arg, jabs, jrel); |
| } |
| |
| static void |
| dump_basicblock(const basicblock *b) |
| { |
| const char *seen = b->b_seen ? "seen " : ""; |
| const char *b_return = b->b_return ? "return " : ""; |
| fprintf(stderr, "used: %d, depth: %d, offset: %d %s%s\n", |
| b->b_iused, b->b_startdepth, b->b_offset, seen, b_return); |
| if (b->b_instr) { |
| int i; |
| for (i = 0; i < b->b_iused; i++) { |
| fprintf(stderr, " [%02d] ", i); |
| dump_instr(b->b_instr + i); |
| } |
| } |
| } |
| #endif |
| |
| static PyCodeObject * |
| assemble(struct compiler *c, int addNone) |
| { |
| basicblock *b, *entryblock; |
| struct assembler a; |
| int i, j, nblocks; |
| PyCodeObject *co = NULL; |
| |
| /* Make sure every block that falls off the end returns None. |
| XXX NEXT_BLOCK() isn't quite right, because if the last |
| block ends with a jump or return b_next shouldn't set. |
| */ |
| if (!c->u->u_curblock->b_return) { |
| NEXT_BLOCK(c); |
| if (addNone) |
| ADDOP_O(c, LOAD_CONST, Py_None, consts); |
| ADDOP(c, RETURN_VALUE); |
| } |
| |
| nblocks = 0; |
| entryblock = NULL; |
| for (b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| nblocks++; |
| entryblock = b; |
| } |
| |
| /* Set firstlineno if it wasn't explicitly set. */ |
| if (!c->u->u_firstlineno) { |
| if (entryblock && entryblock->b_instr) |
| c->u->u_firstlineno = entryblock->b_instr->i_lineno; |
| else |
| c->u->u_firstlineno = 1; |
| } |
| if (!assemble_init(&a, nblocks, c->u->u_firstlineno)) |
| goto error; |
| dfs(c, entryblock, &a); |
| |
| /* Can't modify the bytecode after computing jump offsets. */ |
| assemble_jump_offsets(&a, c); |
| |
| /* Emit code in reverse postorder from dfs. */ |
| for (i = a.a_nblocks - 1; i >= 0; i--) { |
| b = a.a_postorder[i]; |
| for (j = 0; j < b->b_iused; j++) |
| if (!assemble_emit(&a, &b->b_instr[j])) |
| goto error; |
| } |
| |
| if (_PyString_Resize(&a.a_lnotab, a.a_lnotab_off) < 0) |
| goto error; |
| if (_PyString_Resize(&a.a_bytecode, a.a_offset) < 0) |
| goto error; |
| |
| co = makecode(c, &a); |
| error: |
| assemble_free(&a); |
| return co; |
| } |