| /* Abstract Object Interface (many thanks to Jim Fulton) */ |
| |
| #include "Python.h" |
| #include <ctype.h> |
| #include "structmember.h" /* we need the offsetof() macro from there */ |
| #include "longintrepr.h" |
| |
| #define NEW_STYLE_NUMBER(o) PyType_HasFeature((o)->ob_type, \ |
| Py_TPFLAGS_CHECKTYPES) |
| |
| /* Shorthands to return certain errors */ |
| |
| static PyObject * |
| type_error(const char *msg) |
| { |
| PyErr_SetString(PyExc_TypeError, msg); |
| return NULL; |
| } |
| |
| static PyObject * |
| null_error(void) |
| { |
| if (!PyErr_Occurred()) |
| PyErr_SetString(PyExc_SystemError, |
| "null argument to internal routine"); |
| return NULL; |
| } |
| |
| /* Operations on any object */ |
| |
| int |
| PyObject_Cmp(PyObject *o1, PyObject *o2, int *result) |
| { |
| int r; |
| |
| if (o1 == NULL || o2 == NULL) { |
| null_error(); |
| return -1; |
| } |
| r = PyObject_Compare(o1, o2); |
| if (PyErr_Occurred()) |
| return -1; |
| *result = r; |
| return 0; |
| } |
| |
| PyObject * |
| PyObject_Type(PyObject *o) |
| { |
| PyObject *v; |
| |
| if (o == NULL) |
| return null_error(); |
| v = (PyObject *)o->ob_type; |
| Py_INCREF(v); |
| return v; |
| } |
| |
| int |
| PyObject_Size(PyObject *o) |
| { |
| PySequenceMethods *m; |
| |
| if (o == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| m = o->ob_type->tp_as_sequence; |
| if (m && m->sq_length) |
| return m->sq_length(o); |
| |
| return PyMapping_Size(o); |
| } |
| |
| #undef PyObject_Length |
| int |
| PyObject_Length(PyObject *o) |
| { |
| return PyObject_Size(o); |
| } |
| #define PyObject_Length PyObject_Size |
| |
| PyObject * |
| PyObject_GetItem(PyObject *o, PyObject *key) |
| { |
| PyMappingMethods *m; |
| |
| if (o == NULL || key == NULL) |
| return null_error(); |
| |
| m = o->ob_type->tp_as_mapping; |
| if (m && m->mp_subscript) |
| return m->mp_subscript(o, key); |
| |
| if (o->ob_type->tp_as_sequence) { |
| if (PyInt_Check(key)) |
| return PySequence_GetItem(o, PyInt_AsLong(key)); |
| else if (PyLong_Check(key)) { |
| long key_value = PyLong_AsLong(key); |
| if (key_value == -1 && PyErr_Occurred()) |
| return NULL; |
| return PySequence_GetItem(o, key_value); |
| } |
| else if (o->ob_type->tp_as_sequence->sq_item) |
| return type_error("sequence index must be integer"); |
| } |
| |
| return type_error("unsubscriptable object"); |
| } |
| |
| int |
| PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value) |
| { |
| PyMappingMethods *m; |
| |
| if (o == NULL || key == NULL || value == NULL) { |
| null_error(); |
| return -1; |
| } |
| m = o->ob_type->tp_as_mapping; |
| if (m && m->mp_ass_subscript) |
| return m->mp_ass_subscript(o, key, value); |
| |
| if (o->ob_type->tp_as_sequence) { |
| if (PyInt_Check(key)) |
| return PySequence_SetItem(o, PyInt_AsLong(key), value); |
| else if (PyLong_Check(key)) { |
| long key_value = PyLong_AsLong(key); |
| if (key_value == -1 && PyErr_Occurred()) |
| return -1; |
| return PySequence_SetItem(o, key_value, value); |
| } |
| else if (o->ob_type->tp_as_sequence->sq_ass_item) { |
| type_error("sequence index must be integer"); |
| return -1; |
| } |
| } |
| |
| type_error("object does not support item assignment"); |
| return -1; |
| } |
| |
| int |
| PyObject_DelItem(PyObject *o, PyObject *key) |
| { |
| PyMappingMethods *m; |
| |
| if (o == NULL || key == NULL) { |
| null_error(); |
| return -1; |
| } |
| m = o->ob_type->tp_as_mapping; |
| if (m && m->mp_ass_subscript) |
| return m->mp_ass_subscript(o, key, (PyObject*)NULL); |
| |
| if (o->ob_type->tp_as_sequence) { |
| if (PyInt_Check(key)) |
| return PySequence_DelItem(o, PyInt_AsLong(key)); |
| else if (PyLong_Check(key)) { |
| long key_value = PyLong_AsLong(key); |
| if (key_value == -1 && PyErr_Occurred()) |
| return -1; |
| return PySequence_DelItem(o, key_value); |
| } |
| else if (o->ob_type->tp_as_sequence->sq_ass_item) { |
| type_error("sequence index must be integer"); |
| return -1; |
| } |
| } |
| |
| type_error("object does not support item deletion"); |
| return -1; |
| } |
| |
| int |
| PyObject_DelItemString(PyObject *o, char *key) |
| { |
| PyObject *okey; |
| int ret; |
| |
| if (o == NULL || key == NULL) { |
| null_error(); |
| return -1; |
| } |
| okey = PyString_FromString(key); |
| if (okey == NULL) |
| return -1; |
| ret = PyObject_DelItem(o, okey); |
| Py_DECREF(okey); |
| return ret; |
| } |
| |
| int PyObject_AsCharBuffer(PyObject *obj, |
| const char **buffer, |
| int *buffer_len) |
| { |
| PyBufferProcs *pb; |
| const char *pp; |
| int len; |
| |
| if (obj == NULL || buffer == NULL || buffer_len == NULL) { |
| null_error(); |
| return -1; |
| } |
| pb = obj->ob_type->tp_as_buffer; |
| if (pb == NULL || |
| pb->bf_getcharbuffer == NULL || |
| pb->bf_getsegcount == NULL) { |
| PyErr_SetString(PyExc_TypeError, |
| "expected a character buffer object"); |
| return -1; |
| } |
| if ((*pb->bf_getsegcount)(obj,NULL) != 1) { |
| PyErr_SetString(PyExc_TypeError, |
| "expected a single-segment buffer object"); |
| return -1; |
| } |
| len = (*pb->bf_getcharbuffer)(obj, 0, &pp); |
| if (len < 0) |
| return -1; |
| *buffer = pp; |
| *buffer_len = len; |
| return 0; |
| } |
| |
| int |
| PyObject_CheckReadBuffer(PyObject *obj) |
| { |
| PyBufferProcs *pb = obj->ob_type->tp_as_buffer; |
| |
| if (pb == NULL || |
| pb->bf_getreadbuffer == NULL || |
| pb->bf_getsegcount == NULL || |
| (*pb->bf_getsegcount)(obj, NULL) != 1) |
| return 0; |
| return 1; |
| } |
| |
| int PyObject_AsReadBuffer(PyObject *obj, |
| const void **buffer, |
| int *buffer_len) |
| { |
| PyBufferProcs *pb; |
| void *pp; |
| int len; |
| |
| if (obj == NULL || buffer == NULL || buffer_len == NULL) { |
| null_error(); |
| return -1; |
| } |
| pb = obj->ob_type->tp_as_buffer; |
| if (pb == NULL || |
| pb->bf_getreadbuffer == NULL || |
| pb->bf_getsegcount == NULL) { |
| PyErr_SetString(PyExc_TypeError, |
| "expected a readable buffer object"); |
| return -1; |
| } |
| if ((*pb->bf_getsegcount)(obj, NULL) != 1) { |
| PyErr_SetString(PyExc_TypeError, |
| "expected a single-segment buffer object"); |
| return -1; |
| } |
| len = (*pb->bf_getreadbuffer)(obj, 0, &pp); |
| if (len < 0) |
| return -1; |
| *buffer = pp; |
| *buffer_len = len; |
| return 0; |
| } |
| |
| int PyObject_AsWriteBuffer(PyObject *obj, |
| void **buffer, |
| int *buffer_len) |
| { |
| PyBufferProcs *pb; |
| void*pp; |
| int len; |
| |
| if (obj == NULL || buffer == NULL || buffer_len == NULL) { |
| null_error(); |
| return -1; |
| } |
| pb = obj->ob_type->tp_as_buffer; |
| if (pb == NULL || |
| pb->bf_getwritebuffer == NULL || |
| pb->bf_getsegcount == NULL) { |
| PyErr_SetString(PyExc_TypeError, |
| "expected a writeable buffer object"); |
| return -1; |
| } |
| if ((*pb->bf_getsegcount)(obj, NULL) != 1) { |
| PyErr_SetString(PyExc_TypeError, |
| "expected a single-segment buffer object"); |
| return -1; |
| } |
| len = (*pb->bf_getwritebuffer)(obj,0,&pp); |
| if (len < 0) |
| return -1; |
| *buffer = pp; |
| *buffer_len = len; |
| return 0; |
| } |
| |
| /* Operations on numbers */ |
| |
| int |
| PyNumber_Check(PyObject *o) |
| { |
| return o && o->ob_type->tp_as_number && |
| (o->ob_type->tp_as_number->nb_int || |
| o->ob_type->tp_as_number->nb_float); |
| } |
| |
| /* Binary operators */ |
| |
| /* New style number protocol support */ |
| |
| #define NB_SLOT(x) offsetof(PyNumberMethods, x) |
| #define NB_BINOP(nb_methods, slot) \ |
| (*(binaryfunc*)(& ((char*)nb_methods)[slot])) |
| #define NB_TERNOP(nb_methods, slot) \ |
| (*(ternaryfunc*)(& ((char*)nb_methods)[slot])) |
| |
| /* |
| Calling scheme used for binary operations: |
| |
| v w Action |
| ------------------------------------------------------------------- |
| new new w.op(v,w)[*], v.op(v,w), w.op(v,w) |
| new old v.op(v,w), coerce(v,w), v.op(v,w) |
| old new w.op(v,w), coerce(v,w), v.op(v,w) |
| old old coerce(v,w), v.op(v,w) |
| |
| [*] only when v->ob_type != w->ob_type && w->ob_type is a subclass of |
| v->ob_type |
| |
| Legend: |
| ------- |
| * new == new style number |
| * old == old style number |
| * Action indicates the order in which operations are tried until either |
| a valid result is produced or an error occurs. |
| |
| */ |
| |
| static PyObject * |
| binary_op1(PyObject *v, PyObject *w, const int op_slot) |
| { |
| PyObject *x; |
| binaryfunc slotv = NULL; |
| binaryfunc slotw = NULL; |
| |
| if (v->ob_type->tp_as_number != NULL && NEW_STYLE_NUMBER(v)) |
| slotv = NB_BINOP(v->ob_type->tp_as_number, op_slot); |
| if (w->ob_type != v->ob_type && |
| w->ob_type->tp_as_number != NULL && NEW_STYLE_NUMBER(w)) { |
| slotw = NB_BINOP(w->ob_type->tp_as_number, op_slot); |
| if (slotw == slotv) |
| slotw = NULL; |
| } |
| if (slotv) { |
| if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) { |
| x = slotw(v, w); |
| if (x != Py_NotImplemented) |
| return x; |
| Py_DECREF(x); /* can't do it */ |
| slotw = NULL; |
| } |
| x = slotv(v, w); |
| if (x != Py_NotImplemented) |
| return x; |
| Py_DECREF(x); /* can't do it */ |
| } |
| if (slotw) { |
| x = slotw(v, w); |
| if (x != Py_NotImplemented) |
| return x; |
| Py_DECREF(x); /* can't do it */ |
| } |
| if (!NEW_STYLE_NUMBER(v) || !NEW_STYLE_NUMBER(w)) { |
| int err = PyNumber_CoerceEx(&v, &w); |
| if (err < 0) { |
| return NULL; |
| } |
| if (err == 0) { |
| PyNumberMethods *mv = v->ob_type->tp_as_number; |
| if (mv) { |
| binaryfunc slot; |
| slot = NB_BINOP(mv, op_slot); |
| if (slot) { |
| PyObject *x = slot(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| return x; |
| } |
| } |
| /* CoerceEx incremented the reference counts */ |
| Py_DECREF(v); |
| Py_DECREF(w); |
| } |
| } |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| static PyObject * |
| binop_type_error(PyObject *v, PyObject *w, const char *op_name) |
| { |
| PyErr_Format(PyExc_TypeError, |
| "unsupported operand type(s) for %s: '%s' and '%s'", |
| op_name, |
| v->ob_type->tp_name, |
| w->ob_type->tp_name); |
| return NULL; |
| } |
| |
| static PyObject * |
| binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name) |
| { |
| PyObject *result = binary_op1(v, w, op_slot); |
| if (result == Py_NotImplemented) { |
| Py_DECREF(result); |
| return binop_type_error(v, w, op_name); |
| } |
| return result; |
| } |
| |
| |
| /* |
| Calling scheme used for ternary operations: |
| |
| *** In some cases, w.op is called before v.op; see binary_op1. *** |
| |
| v w z Action |
| ------------------------------------------------------------------- |
| new new new v.op(v,w,z), w.op(v,w,z), z.op(v,w,z) |
| new old new v.op(v,w,z), z.op(v,w,z), coerce(v,w,z), v.op(v,w,z) |
| old new new w.op(v,w,z), z.op(v,w,z), coerce(v,w,z), v.op(v,w,z) |
| old old new z.op(v,w,z), coerce(v,w,z), v.op(v,w,z) |
| new new old v.op(v,w,z), w.op(v,w,z), coerce(v,w,z), v.op(v,w,z) |
| new old old v.op(v,w,z), coerce(v,w,z), v.op(v,w,z) |
| old new old w.op(v,w,z), coerce(v,w,z), v.op(v,w,z) |
| old old old coerce(v,w,z), v.op(v,w,z) |
| |
| Legend: |
| ------- |
| * new == new style number |
| * old == old style number |
| * Action indicates the order in which operations are tried until either |
| a valid result is produced or an error occurs. |
| * coerce(v,w,z) actually does: coerce(v,w), coerce(v,z), coerce(w,z) and |
| only if z != Py_None; if z == Py_None, then it is treated as absent |
| variable and only coerce(v,w) is tried. |
| |
| */ |
| |
| static PyObject * |
| ternary_op(PyObject *v, |
| PyObject *w, |
| PyObject *z, |
| const int op_slot, |
| const char *op_name) |
| { |
| PyNumberMethods *mv, *mw, *mz; |
| PyObject *x = NULL; |
| ternaryfunc slotv = NULL; |
| ternaryfunc slotw = NULL; |
| ternaryfunc slotz = NULL; |
| |
| mv = v->ob_type->tp_as_number; |
| mw = w->ob_type->tp_as_number; |
| if (mv != NULL && NEW_STYLE_NUMBER(v)) |
| slotv = NB_TERNOP(mv, op_slot); |
| if (w->ob_type != v->ob_type && |
| mw != NULL && NEW_STYLE_NUMBER(w)) { |
| slotw = NB_TERNOP(mw, op_slot); |
| if (slotw == slotv) |
| slotw = NULL; |
| } |
| if (slotv) { |
| if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) { |
| x = slotw(v, w, z); |
| if (x != Py_NotImplemented) |
| return x; |
| Py_DECREF(x); /* can't do it */ |
| slotw = NULL; |
| } |
| x = slotv(v, w, z); |
| if (x != Py_NotImplemented) |
| return x; |
| Py_DECREF(x); /* can't do it */ |
| } |
| if (slotw) { |
| x = slotw(v, w, z); |
| if (x != Py_NotImplemented) |
| return x; |
| Py_DECREF(x); /* can't do it */ |
| } |
| mz = z->ob_type->tp_as_number; |
| if (mz != NULL && NEW_STYLE_NUMBER(z)) { |
| slotz = NB_TERNOP(mz, op_slot); |
| if (slotz == slotv || slotz == slotw) |
| slotz = NULL; |
| if (slotz) { |
| x = slotz(v, w, z); |
| if (x != Py_NotImplemented) |
| return x; |
| Py_DECREF(x); /* can't do it */ |
| } |
| } |
| |
| if (!NEW_STYLE_NUMBER(v) || !NEW_STYLE_NUMBER(w) || |
| (z != Py_None && !NEW_STYLE_NUMBER(z))) { |
| /* we have an old style operand, coerce */ |
| PyObject *v1, *z1, *w2, *z2; |
| int c; |
| |
| c = PyNumber_Coerce(&v, &w); |
| if (c != 0) |
| goto error3; |
| |
| /* Special case: if the third argument is None, it is |
| treated as absent argument and not coerced. */ |
| if (z == Py_None) { |
| if (v->ob_type->tp_as_number) { |
| slotz = NB_TERNOP(v->ob_type->tp_as_number, |
| op_slot); |
| if (slotz) |
| x = slotz(v, w, z); |
| else |
| c = -1; |
| } |
| else |
| c = -1; |
| goto error2; |
| } |
| v1 = v; |
| z1 = z; |
| c = PyNumber_Coerce(&v1, &z1); |
| if (c != 0) |
| goto error2; |
| w2 = w; |
| z2 = z1; |
| c = PyNumber_Coerce(&w2, &z2); |
| if (c != 0) |
| goto error1; |
| |
| if (v1->ob_type->tp_as_number != NULL) { |
| slotv = NB_TERNOP(v1->ob_type->tp_as_number, |
| op_slot); |
| if (slotv) |
| x = slotv(v1, w2, z2); |
| else |
| c = -1; |
| } |
| else |
| c = -1; |
| |
| Py_DECREF(w2); |
| Py_DECREF(z2); |
| error1: |
| Py_DECREF(v1); |
| Py_DECREF(z1); |
| error2: |
| Py_DECREF(v); |
| Py_DECREF(w); |
| error3: |
| if (c >= 0) |
| return x; |
| } |
| |
| if (z == Py_None) |
| PyErr_Format( |
| PyExc_TypeError, |
| "unsupported operand type(s) for ** or pow(): " |
| "'%s' and '%s'", |
| v->ob_type->tp_name, |
| w->ob_type->tp_name); |
| else |
| PyErr_Format( |
| PyExc_TypeError, |
| "unsupported operand type(s) for pow(): " |
| "'%s', '%s', '%s'", |
| v->ob_type->tp_name, |
| w->ob_type->tp_name, |
| z->ob_type->tp_name); |
| return NULL; |
| } |
| |
| #define BINARY_FUNC(func, op, op_name) \ |
| PyObject * \ |
| func(PyObject *v, PyObject *w) { \ |
| return binary_op(v, w, NB_SLOT(op), op_name); \ |
| } |
| |
| BINARY_FUNC(PyNumber_Or, nb_or, "|") |
| BINARY_FUNC(PyNumber_Xor, nb_xor, "^") |
| BINARY_FUNC(PyNumber_And, nb_and, "&") |
| BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<") |
| BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>") |
| BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-") |
| BINARY_FUNC(PyNumber_Divide, nb_divide, "/") |
| BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()") |
| |
| PyObject * |
| PyNumber_Add(PyObject *v, PyObject *w) |
| { |
| PyObject *result = binary_op1(v, w, NB_SLOT(nb_add)); |
| if (result == Py_NotImplemented) { |
| PySequenceMethods *m = v->ob_type->tp_as_sequence; |
| if (m && m->sq_concat) { |
| Py_DECREF(result); |
| result = (*m->sq_concat)(v, w); |
| } |
| if (result == Py_NotImplemented) { |
| Py_DECREF(result); |
| return binop_type_error(v, w, "+"); |
| } |
| } |
| return result; |
| } |
| |
| static PyObject * |
| sequence_repeat(intargfunc repeatfunc, PyObject *seq, PyObject *n) |
| { |
| long count; |
| if (PyInt_Check(n)) { |
| count = PyInt_AsLong(n); |
| } |
| else if (PyLong_Check(n)) { |
| count = PyLong_AsLong(n); |
| if (count == -1 && PyErr_Occurred()) |
| return NULL; |
| } |
| else { |
| return type_error( |
| "can't multiply sequence by non-int"); |
| } |
| #if LONG_MAX != INT_MAX |
| if (count > INT_MAX) { |
| PyErr_SetString(PyExc_ValueError, |
| "sequence repeat count too large"); |
| return NULL; |
| } |
| else if (count < INT_MIN) |
| count = INT_MIN; |
| /* XXX Why don't I either |
| |
| - set count to -1 whenever it's negative (after all, |
| sequence repeat usually treats negative numbers |
| as zero(); or |
| |
| - raise an exception when it's less than INT_MIN? |
| |
| I'm thinking about a hypothetical use case where some |
| sequence type might use a negative value as a flag of |
| some kind. In those cases I don't want to break the |
| code by mapping all negative values to -1. But I also |
| don't want to break e.g. []*(-sys.maxint), which is |
| perfectly safe, returning []. As a compromise, I do |
| map out-of-range negative values. |
| */ |
| #endif |
| return (*repeatfunc)(seq, (int)count); |
| } |
| |
| PyObject * |
| PyNumber_Multiply(PyObject *v, PyObject *w) |
| { |
| PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply)); |
| if (result == Py_NotImplemented) { |
| PySequenceMethods *mv = v->ob_type->tp_as_sequence; |
| PySequenceMethods *mw = w->ob_type->tp_as_sequence; |
| Py_DECREF(result); |
| if (mv && mv->sq_repeat) { |
| return sequence_repeat(mv->sq_repeat, v, w); |
| } |
| else if (mw && mw->sq_repeat) { |
| return sequence_repeat(mw->sq_repeat, w, v); |
| } |
| result = binop_type_error(v, w, "*"); |
| } |
| return result; |
| } |
| |
| PyObject * |
| PyNumber_FloorDivide(PyObject *v, PyObject *w) |
| { |
| /* XXX tp_flags test */ |
| return binary_op(v, w, NB_SLOT(nb_floor_divide), "//"); |
| } |
| |
| PyObject * |
| PyNumber_TrueDivide(PyObject *v, PyObject *w) |
| { |
| /* XXX tp_flags test */ |
| return binary_op(v, w, NB_SLOT(nb_true_divide), "/"); |
| } |
| |
| PyObject * |
| PyNumber_Remainder(PyObject *v, PyObject *w) |
| { |
| return binary_op(v, w, NB_SLOT(nb_remainder), "%"); |
| } |
| |
| PyObject * |
| PyNumber_Power(PyObject *v, PyObject *w, PyObject *z) |
| { |
| return ternary_op(v, w, z, NB_SLOT(nb_power), "** or pow()"); |
| } |
| |
| /* Binary in-place operators */ |
| |
| /* The in-place operators are defined to fall back to the 'normal', |
| non in-place operations, if the in-place methods are not in place. |
| |
| - If the left hand object has the appropriate struct members, and |
| they are filled, call the appropriate function and return the |
| result. No coercion is done on the arguments; the left-hand object |
| is the one the operation is performed on, and it's up to the |
| function to deal with the right-hand object. |
| |
| - Otherwise, in-place modification is not supported. Handle it exactly as |
| a non in-place operation of the same kind. |
| |
| */ |
| |
| #define HASINPLACE(t) \ |
| PyType_HasFeature((t)->ob_type, Py_TPFLAGS_HAVE_INPLACEOPS) |
| |
| static PyObject * |
| binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot) |
| { |
| PyNumberMethods *mv = v->ob_type->tp_as_number; |
| if (mv != NULL && HASINPLACE(v)) { |
| binaryfunc slot = NB_BINOP(mv, iop_slot); |
| if (slot) { |
| PyObject *x = (slot)(v, w); |
| if (x != Py_NotImplemented) { |
| return x; |
| } |
| Py_DECREF(x); |
| } |
| } |
| return binary_op1(v, w, op_slot); |
| } |
| |
| static PyObject * |
| binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot, |
| const char *op_name) |
| { |
| PyObject *result = binary_iop1(v, w, iop_slot, op_slot); |
| if (result == Py_NotImplemented) { |
| Py_DECREF(result); |
| return binop_type_error(v, w, op_name); |
| } |
| return result; |
| } |
| |
| #define INPLACE_BINOP(func, iop, op, op_name) \ |
| PyObject * \ |
| func(PyObject *v, PyObject *w) { \ |
| return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \ |
| } |
| |
| INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=") |
| INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=") |
| INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=") |
| INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=") |
| INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=") |
| INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=") |
| INPLACE_BINOP(PyNumber_InPlaceDivide, nb_inplace_divide, nb_divide, "/=") |
| |
| PyObject * |
| PyNumber_InPlaceFloorDivide(PyObject *v, PyObject *w) |
| { |
| /* XXX tp_flags test */ |
| return binary_iop(v, w, NB_SLOT(nb_inplace_floor_divide), |
| NB_SLOT(nb_floor_divide), "//="); |
| } |
| |
| PyObject * |
| PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w) |
| { |
| /* XXX tp_flags test */ |
| return binary_iop(v, w, NB_SLOT(nb_inplace_true_divide), |
| NB_SLOT(nb_true_divide), "/="); |
| } |
| |
| PyObject * |
| PyNumber_InPlaceAdd(PyObject *v, PyObject *w) |
| { |
| PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_add), |
| NB_SLOT(nb_add)); |
| if (result == Py_NotImplemented) { |
| PySequenceMethods *m = v->ob_type->tp_as_sequence; |
| Py_DECREF(result); |
| if (m != NULL) { |
| binaryfunc f = NULL; |
| if (HASINPLACE(v)) |
| f = m->sq_inplace_concat; |
| if (f == NULL) |
| f = m->sq_concat; |
| if (f != NULL) |
| return (*f)(v, w); |
| } |
| result = binop_type_error(v, w, "+="); |
| } |
| return result; |
| } |
| |
| PyObject * |
| PyNumber_InPlaceMultiply(PyObject *v, PyObject *w) |
| { |
| PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_multiply), |
| NB_SLOT(nb_multiply)); |
| if (result == Py_NotImplemented) { |
| intargfunc f = NULL; |
| PySequenceMethods *mv = v->ob_type->tp_as_sequence; |
| PySequenceMethods *mw = w->ob_type->tp_as_sequence; |
| Py_DECREF(result); |
| if (mv != NULL) { |
| if (HASINPLACE(v)) |
| f = mv->sq_inplace_repeat; |
| if (f == NULL) |
| f = mv->sq_repeat; |
| if (f != NULL) |
| return sequence_repeat(f, v, w); |
| } |
| else if (mw != NULL) { |
| /* Note that the right hand operand should not be |
| * mutated in this case so sq_inplace_repeat is not |
| * used. */ |
| if (mw->sq_repeat) |
| return sequence_repeat(mw->sq_repeat, w, v); |
| } |
| result = binop_type_error(v, w, "*="); |
| } |
| return result; |
| } |
| |
| PyObject * |
| PyNumber_InPlaceRemainder(PyObject *v, PyObject *w) |
| { |
| return binary_iop(v, w, NB_SLOT(nb_inplace_remainder), |
| NB_SLOT(nb_remainder), "%="); |
| } |
| |
| PyObject * |
| PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z) |
| { |
| if (HASINPLACE(v) && v->ob_type->tp_as_number && |
| v->ob_type->tp_as_number->nb_inplace_power != NULL) { |
| return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**="); |
| } |
| else { |
| return ternary_op(v, w, z, NB_SLOT(nb_power), "**="); |
| } |
| } |
| |
| |
| /* Unary operators and functions */ |
| |
| PyObject * |
| PyNumber_Negative(PyObject *o) |
| { |
| PyNumberMethods *m; |
| |
| if (o == NULL) |
| return null_error(); |
| m = o->ob_type->tp_as_number; |
| if (m && m->nb_negative) |
| return (*m->nb_negative)(o); |
| |
| return type_error("bad operand type for unary -"); |
| } |
| |
| PyObject * |
| PyNumber_Positive(PyObject *o) |
| { |
| PyNumberMethods *m; |
| |
| if (o == NULL) |
| return null_error(); |
| m = o->ob_type->tp_as_number; |
| if (m && m->nb_positive) |
| return (*m->nb_positive)(o); |
| |
| return type_error("bad operand type for unary +"); |
| } |
| |
| PyObject * |
| PyNumber_Invert(PyObject *o) |
| { |
| PyNumberMethods *m; |
| |
| if (o == NULL) |
| return null_error(); |
| m = o->ob_type->tp_as_number; |
| if (m && m->nb_invert) |
| return (*m->nb_invert)(o); |
| |
| return type_error("bad operand type for unary ~"); |
| } |
| |
| PyObject * |
| PyNumber_Absolute(PyObject *o) |
| { |
| PyNumberMethods *m; |
| |
| if (o == NULL) |
| return null_error(); |
| m = o->ob_type->tp_as_number; |
| if (m && m->nb_absolute) |
| return m->nb_absolute(o); |
| |
| return type_error("bad operand type for abs()"); |
| } |
| |
| /* Add a check for embedded NULL-bytes in the argument. */ |
| static PyObject * |
| int_from_string(const char *s, int len) |
| { |
| char *end; |
| PyObject *x; |
| |
| x = PyInt_FromString((char*)s, &end, 10); |
| if (x == NULL) |
| return NULL; |
| if (end != s + len) { |
| PyErr_SetString(PyExc_ValueError, |
| "null byte in argument for int()"); |
| Py_DECREF(x); |
| return NULL; |
| } |
| return x; |
| } |
| |
| PyObject * |
| PyNumber_Int(PyObject *o) |
| { |
| PyNumberMethods *m; |
| const char *buffer; |
| int buffer_len; |
| |
| if (o == NULL) |
| return null_error(); |
| if (PyInt_CheckExact(o)) { |
| Py_INCREF(o); |
| return o; |
| } |
| m = o->ob_type->tp_as_number; |
| if (m && m->nb_int) { /* This should include subclasses of int */ |
| PyObject *res = m->nb_int(o); |
| if (res && (!PyInt_Check(res) && !PyLong_Check(res))) { |
| PyErr_Format(PyExc_TypeError, |
| "__int__ returned non-int (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| if (PyInt_Check(o)) { /* A int subclass without nb_int */ |
| PyIntObject *io = (PyIntObject*)o; |
| return PyInt_FromLong(io->ob_ival); |
| } |
| if (PyString_Check(o)) |
| return int_from_string(PyString_AS_STRING(o), |
| PyString_GET_SIZE(o)); |
| #ifdef Py_USING_UNICODE |
| if (PyUnicode_Check(o)) |
| return PyInt_FromUnicode(PyUnicode_AS_UNICODE(o), |
| PyUnicode_GET_SIZE(o), |
| 10); |
| #endif |
| if (!PyObject_AsCharBuffer(o, &buffer, &buffer_len)) |
| return int_from_string((char*)buffer, buffer_len); |
| |
| return type_error("int() argument must be a string or a number"); |
| } |
| |
| /* Add a check for embedded NULL-bytes in the argument. */ |
| static PyObject * |
| long_from_string(const char *s, int len) |
| { |
| char *end; |
| PyObject *x; |
| |
| x = PyLong_FromString((char*)s, &end, 10); |
| if (x == NULL) |
| return NULL; |
| if (end != s + len) { |
| PyErr_SetString(PyExc_ValueError, |
| "null byte in argument for long()"); |
| Py_DECREF(x); |
| return NULL; |
| } |
| return x; |
| } |
| |
| PyObject * |
| PyNumber_Long(PyObject *o) |
| { |
| PyNumberMethods *m; |
| const char *buffer; |
| int buffer_len; |
| |
| if (o == NULL) |
| return null_error(); |
| m = o->ob_type->tp_as_number; |
| if (m && m->nb_long) { /* This should include subclasses of long */ |
| PyObject *res = m->nb_long(o); |
| if (res && (!PyInt_Check(res) && !PyLong_Check(res))) { |
| PyErr_Format(PyExc_TypeError, |
| "__long__ returned non-long (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| if (PyLong_Check(o)) /* A long subclass without nb_long */ |
| return _PyLong_Copy((PyLongObject *)o); |
| if (PyString_Check(o)) |
| /* need to do extra error checking that PyLong_FromString() |
| * doesn't do. In particular long('9.5') must raise an |
| * exception, not truncate the float. |
| */ |
| return long_from_string(PyString_AS_STRING(o), |
| PyString_GET_SIZE(o)); |
| #ifdef Py_USING_UNICODE |
| if (PyUnicode_Check(o)) |
| /* The above check is done in PyLong_FromUnicode(). */ |
| return PyLong_FromUnicode(PyUnicode_AS_UNICODE(o), |
| PyUnicode_GET_SIZE(o), |
| 10); |
| #endif |
| if (!PyObject_AsCharBuffer(o, &buffer, &buffer_len)) |
| return long_from_string(buffer, buffer_len); |
| |
| return type_error("long() argument must be a string or a number"); |
| } |
| |
| PyObject * |
| PyNumber_Float(PyObject *o) |
| { |
| PyNumberMethods *m; |
| |
| if (o == NULL) |
| return null_error(); |
| m = o->ob_type->tp_as_number; |
| if (m && m->nb_float) { /* This should include subclasses of float */ |
| PyObject *res = m->nb_float(o); |
| if (res && !PyFloat_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "__float__ returned non-float (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| if (PyFloat_Check(o)) { /* A float subclass with nb_float == NULL */ |
| PyFloatObject *po = (PyFloatObject *)o; |
| return PyFloat_FromDouble(po->ob_fval); |
| } |
| return PyFloat_FromString(o, NULL); |
| } |
| |
| /* Operations on sequences */ |
| |
| int |
| PySequence_Check(PyObject *s) |
| { |
| if (s && PyInstance_Check(s)) |
| return PyObject_HasAttrString(s, "__getitem__"); |
| return s != NULL && s->ob_type->tp_as_sequence && |
| s->ob_type->tp_as_sequence->sq_item != NULL; |
| } |
| |
| int |
| PySequence_Size(PyObject *s) |
| { |
| PySequenceMethods *m; |
| |
| if (s == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_length) |
| return m->sq_length(s); |
| |
| type_error("len() of unsized object"); |
| return -1; |
| } |
| |
| #undef PySequence_Length |
| int |
| PySequence_Length(PyObject *s) |
| { |
| return PySequence_Size(s); |
| } |
| #define PySequence_Length PySequence_Size |
| |
| PyObject * |
| PySequence_Concat(PyObject *s, PyObject *o) |
| { |
| PySequenceMethods *m; |
| |
| if (s == NULL || o == NULL) |
| return null_error(); |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_concat) |
| return m->sq_concat(s, o); |
| |
| return type_error("object can't be concatenated"); |
| } |
| |
| PyObject * |
| PySequence_Repeat(PyObject *o, int count) |
| { |
| PySequenceMethods *m; |
| |
| if (o == NULL) |
| return null_error(); |
| |
| m = o->ob_type->tp_as_sequence; |
| if (m && m->sq_repeat) |
| return m->sq_repeat(o, count); |
| |
| return type_error("object can't be repeated"); |
| } |
| |
| PyObject * |
| PySequence_InPlaceConcat(PyObject *s, PyObject *o) |
| { |
| PySequenceMethods *m; |
| |
| if (s == NULL || o == NULL) |
| return null_error(); |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && HASINPLACE(s) && m->sq_inplace_concat) |
| return m->sq_inplace_concat(s, o); |
| if (m && m->sq_concat) |
| return m->sq_concat(s, o); |
| |
| return type_error("object can't be concatenated"); |
| } |
| |
| PyObject * |
| PySequence_InPlaceRepeat(PyObject *o, int count) |
| { |
| PySequenceMethods *m; |
| |
| if (o == NULL) |
| return null_error(); |
| |
| m = o->ob_type->tp_as_sequence; |
| if (m && HASINPLACE(o) && m->sq_inplace_repeat) |
| return m->sq_inplace_repeat(o, count); |
| if (m && m->sq_repeat) |
| return m->sq_repeat(o, count); |
| |
| return type_error("object can't be repeated"); |
| } |
| |
| PyObject * |
| PySequence_GetItem(PyObject *s, int i) |
| { |
| PySequenceMethods *m; |
| |
| if (s == NULL) |
| return null_error(); |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_item) { |
| if (i < 0) { |
| if (m->sq_length) { |
| int l = (*m->sq_length)(s); |
| if (l < 0) |
| return NULL; |
| i += l; |
| } |
| } |
| return m->sq_item(s, i); |
| } |
| |
| return type_error("unindexable object"); |
| } |
| |
| static PyObject * |
| sliceobj_from_intint(int i, int j) |
| { |
| PyObject *start, *end, *slice; |
| start = PyInt_FromLong((long)i); |
| if (!start) |
| return NULL; |
| end = PyInt_FromLong((long)j); |
| if (!end) { |
| Py_DECREF(start); |
| return NULL; |
| } |
| slice = PySlice_New(start, end, NULL); |
| Py_DECREF(start); |
| Py_DECREF(end); |
| return slice; |
| } |
| |
| PyObject * |
| PySequence_GetSlice(PyObject *s, int i1, int i2) |
| { |
| PySequenceMethods *m; |
| PyMappingMethods *mp; |
| |
| if (!s) return null_error(); |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_slice) { |
| if (i1 < 0 || i2 < 0) { |
| if (m->sq_length) { |
| int l = (*m->sq_length)(s); |
| if (l < 0) |
| return NULL; |
| if (i1 < 0) |
| i1 += l; |
| if (i2 < 0) |
| i2 += l; |
| } |
| } |
| return m->sq_slice(s, i1, i2); |
| } else if ((mp = s->ob_type->tp_as_mapping) && mp->mp_subscript) { |
| PyObject *res; |
| PyObject *slice = sliceobj_from_intint(i1, i2); |
| if (!slice) |
| return NULL; |
| res = mp->mp_subscript(s, slice); |
| Py_DECREF(slice); |
| return res; |
| } |
| |
| return type_error("unsliceable object"); |
| } |
| |
| int |
| PySequence_SetItem(PyObject *s, int i, PyObject *o) |
| { |
| PySequenceMethods *m; |
| |
| if (s == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_ass_item) { |
| if (i < 0) { |
| if (m->sq_length) { |
| int l = (*m->sq_length)(s); |
| if (l < 0) |
| return -1; |
| i += l; |
| } |
| } |
| return m->sq_ass_item(s, i, o); |
| } |
| |
| type_error("object does not support item assignment"); |
| return -1; |
| } |
| |
| int |
| PySequence_DelItem(PyObject *s, int i) |
| { |
| PySequenceMethods *m; |
| |
| if (s == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_ass_item) { |
| if (i < 0) { |
| if (m->sq_length) { |
| int l = (*m->sq_length)(s); |
| if (l < 0) |
| return -1; |
| i += l; |
| } |
| } |
| return m->sq_ass_item(s, i, (PyObject *)NULL); |
| } |
| |
| type_error("object doesn't support item deletion"); |
| return -1; |
| } |
| |
| int |
| PySequence_SetSlice(PyObject *s, int i1, int i2, PyObject *o) |
| { |
| PySequenceMethods *m; |
| PyMappingMethods *mp; |
| |
| if (s == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_ass_slice) { |
| if (i1 < 0 || i2 < 0) { |
| if (m->sq_length) { |
| int l = (*m->sq_length)(s); |
| if (l < 0) |
| return -1; |
| if (i1 < 0) |
| i1 += l; |
| if (i2 < 0) |
| i2 += l; |
| } |
| } |
| return m->sq_ass_slice(s, i1, i2, o); |
| } else if ((mp = s->ob_type->tp_as_mapping) && mp->mp_ass_subscript) { |
| int res; |
| PyObject *slice = sliceobj_from_intint(i1, i2); |
| if (!slice) |
| return -1; |
| res = mp->mp_ass_subscript(s, slice, o); |
| Py_DECREF(slice); |
| return res; |
| } |
| |
| type_error("object doesn't support slice assignment"); |
| return -1; |
| } |
| |
| int |
| PySequence_DelSlice(PyObject *s, int i1, int i2) |
| { |
| PySequenceMethods *m; |
| |
| if (s == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| m = s->ob_type->tp_as_sequence; |
| if (m && m->sq_ass_slice) { |
| if (i1 < 0 || i2 < 0) { |
| if (m->sq_length) { |
| int l = (*m->sq_length)(s); |
| if (l < 0) |
| return -1; |
| if (i1 < 0) |
| i1 += l; |
| if (i2 < 0) |
| i2 += l; |
| } |
| } |
| return m->sq_ass_slice(s, i1, i2, (PyObject *)NULL); |
| } |
| type_error("object doesn't support slice deletion"); |
| return -1; |
| } |
| |
| PyObject * |
| PySequence_Tuple(PyObject *v) |
| { |
| PyObject *it; /* iter(v) */ |
| int n; /* guess for result tuple size */ |
| PyObject *result; |
| int j; |
| |
| if (v == NULL) |
| return null_error(); |
| |
| /* Special-case the common tuple and list cases, for efficiency. */ |
| if (PyTuple_CheckExact(v)) { |
| /* Note that we can't know whether it's safe to return |
| a tuple *subclass* instance as-is, hence the restriction |
| to exact tuples here. In contrast, lists always make |
| a copy, so there's no need for exactness below. */ |
| Py_INCREF(v); |
| return v; |
| } |
| if (PyList_Check(v)) |
| return PyList_AsTuple(v); |
| |
| /* Get iterator. */ |
| it = PyObject_GetIter(v); |
| if (it == NULL) |
| return NULL; |
| |
| /* Guess result size and allocate space. */ |
| n = PyObject_Size(v); |
| if (n < 0) { |
| PyErr_Clear(); |
| n = 10; /* arbitrary */ |
| } |
| result = PyTuple_New(n); |
| if (result == NULL) |
| goto Fail; |
| |
| /* Fill the tuple. */ |
| for (j = 0; ; ++j) { |
| PyObject *item = PyIter_Next(it); |
| if (item == NULL) { |
| if (PyErr_Occurred()) |
| goto Fail; |
| break; |
| } |
| if (j >= n) { |
| int oldn = n; |
| /* The over-allocation strategy can grow a bit faster |
| than for lists because unlike lists the |
| over-allocation isn't permanent -- we reclaim |
| the excess before the end of this routine. |
| So, grow by ten and then add 25%. |
| */ |
| n += 10; |
| n += n >> 2; |
| if (n < oldn) { |
| /* Check for overflow */ |
| PyErr_NoMemory(); |
| Py_DECREF(item); |
| goto Fail; |
| } |
| if (_PyTuple_Resize(&result, n) != 0) { |
| Py_DECREF(item); |
| goto Fail; |
| } |
| } |
| PyTuple_SET_ITEM(result, j, item); |
| } |
| |
| /* Cut tuple back if guess was too large. */ |
| if (j < n && |
| _PyTuple_Resize(&result, j) != 0) |
| goto Fail; |
| |
| Py_DECREF(it); |
| return result; |
| |
| Fail: |
| Py_XDECREF(result); |
| Py_DECREF(it); |
| return NULL; |
| } |
| |
| PyObject * |
| PySequence_List(PyObject *v) |
| { |
| PyObject *result; /* result list */ |
| PyObject *rv; /* return value from PyList_Extend */ |
| |
| if (v == NULL) |
| return null_error(); |
| |
| result = PyList_New(0); |
| if (result == NULL) |
| return NULL; |
| |
| rv = _PyList_Extend((PyListObject *)result, v); |
| if (rv == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| Py_DECREF(rv); |
| return result; |
| } |
| |
| PyObject * |
| PySequence_Fast(PyObject *v, const char *m) |
| { |
| PyObject *it; |
| |
| if (v == NULL) |
| return null_error(); |
| |
| if (PyList_CheckExact(v) || PyTuple_CheckExact(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| |
| it = PyObject_GetIter(v); |
| if (it == NULL) { |
| if (PyErr_ExceptionMatches(PyExc_TypeError)) |
| return type_error(m); |
| return NULL; |
| } |
| |
| v = PySequence_List(it); |
| Py_DECREF(it); |
| |
| return v; |
| } |
| |
| /* Iterate over seq. Result depends on the operation: |
| PY_ITERSEARCH_COUNT: -1 if error, else # of times obj appears in seq. |
| PY_ITERSEARCH_INDEX: 0-based index of first occurence of obj in seq; |
| set ValueError and return -1 if none found; also return -1 on error. |
| Py_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on error. |
| */ |
| int |
| _PySequence_IterSearch(PyObject *seq, PyObject *obj, int operation) |
| { |
| int n; |
| int wrapped; /* for PY_ITERSEARCH_INDEX, true iff n wrapped around */ |
| PyObject *it; /* iter(seq) */ |
| |
| if (seq == NULL || obj == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| it = PyObject_GetIter(seq); |
| if (it == NULL) { |
| type_error("iterable argument required"); |
| return -1; |
| } |
| |
| n = wrapped = 0; |
| for (;;) { |
| int cmp; |
| PyObject *item = PyIter_Next(it); |
| if (item == NULL) { |
| if (PyErr_Occurred()) |
| goto Fail; |
| break; |
| } |
| |
| cmp = PyObject_RichCompareBool(obj, item, Py_EQ); |
| Py_DECREF(item); |
| if (cmp < 0) |
| goto Fail; |
| if (cmp > 0) { |
| switch (operation) { |
| case PY_ITERSEARCH_COUNT: |
| ++n; |
| if (n <= 0) { |
| PyErr_SetString(PyExc_OverflowError, |
| "count exceeds C int size"); |
| goto Fail; |
| } |
| break; |
| |
| case PY_ITERSEARCH_INDEX: |
| if (wrapped) { |
| PyErr_SetString(PyExc_OverflowError, |
| "index exceeds C int size"); |
| goto Fail; |
| } |
| goto Done; |
| |
| case PY_ITERSEARCH_CONTAINS: |
| n = 1; |
| goto Done; |
| |
| default: |
| assert(!"unknown operation"); |
| } |
| } |
| |
| if (operation == PY_ITERSEARCH_INDEX) { |
| ++n; |
| if (n <= 0) |
| wrapped = 1; |
| } |
| } |
| |
| if (operation != PY_ITERSEARCH_INDEX) |
| goto Done; |
| |
| PyErr_SetString(PyExc_ValueError, |
| "sequence.index(x): x not in sequence"); |
| /* fall into failure code */ |
| Fail: |
| n = -1; |
| /* fall through */ |
| Done: |
| Py_DECREF(it); |
| return n; |
| |
| } |
| |
| /* Return # of times o appears in s. */ |
| int |
| PySequence_Count(PyObject *s, PyObject *o) |
| { |
| return _PySequence_IterSearch(s, o, PY_ITERSEARCH_COUNT); |
| } |
| |
| /* Return -1 if error; 1 if ob in seq; 0 if ob not in seq. |
| * Use sq_contains if possible, else defer to _PySequence_IterSearch(). |
| */ |
| int |
| PySequence_Contains(PyObject *seq, PyObject *ob) |
| { |
| if (PyType_HasFeature(seq->ob_type, Py_TPFLAGS_HAVE_SEQUENCE_IN)) { |
| PySequenceMethods *sqm = seq->ob_type->tp_as_sequence; |
| if (sqm != NULL && sqm->sq_contains != NULL) |
| return (*sqm->sq_contains)(seq, ob); |
| } |
| return _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS); |
| } |
| |
| /* Backwards compatibility */ |
| #undef PySequence_In |
| int |
| PySequence_In(PyObject *w, PyObject *v) |
| { |
| return PySequence_Contains(w, v); |
| } |
| |
| int |
| PySequence_Index(PyObject *s, PyObject *o) |
| { |
| return _PySequence_IterSearch(s, o, PY_ITERSEARCH_INDEX); |
| } |
| |
| /* Operations on mappings */ |
| |
| int |
| PyMapping_Check(PyObject *o) |
| { |
| if (o && PyInstance_Check(o)) |
| return PyObject_HasAttrString(o, "__getitem__"); |
| |
| return o && o->ob_type->tp_as_mapping && |
| o->ob_type->tp_as_mapping->mp_subscript && |
| !(o->ob_type->tp_as_sequence && |
| o->ob_type->tp_as_sequence->sq_slice); |
| } |
| |
| int |
| PyMapping_Size(PyObject *o) |
| { |
| PyMappingMethods *m; |
| |
| if (o == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| m = o->ob_type->tp_as_mapping; |
| if (m && m->mp_length) |
| return m->mp_length(o); |
| |
| type_error("len() of unsized object"); |
| return -1; |
| } |
| |
| #undef PyMapping_Length |
| int |
| PyMapping_Length(PyObject *o) |
| { |
| return PyMapping_Size(o); |
| } |
| #define PyMapping_Length PyMapping_Size |
| |
| PyObject * |
| PyMapping_GetItemString(PyObject *o, char *key) |
| { |
| PyObject *okey, *r; |
| |
| if (key == NULL) |
| return null_error(); |
| |
| okey = PyString_FromString(key); |
| if (okey == NULL) |
| return NULL; |
| r = PyObject_GetItem(o, okey); |
| Py_DECREF(okey); |
| return r; |
| } |
| |
| int |
| PyMapping_SetItemString(PyObject *o, char *key, PyObject *value) |
| { |
| PyObject *okey; |
| int r; |
| |
| if (key == NULL) { |
| null_error(); |
| return -1; |
| } |
| |
| okey = PyString_FromString(key); |
| if (okey == NULL) |
| return -1; |
| r = PyObject_SetItem(o, okey, value); |
| Py_DECREF(okey); |
| return r; |
| } |
| |
| int |
| PyMapping_HasKeyString(PyObject *o, char *key) |
| { |
| PyObject *v; |
| |
| v = PyMapping_GetItemString(o, key); |
| if (v) { |
| Py_DECREF(v); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| int |
| PyMapping_HasKey(PyObject *o, PyObject *key) |
| { |
| PyObject *v; |
| |
| v = PyObject_GetItem(o, key); |
| if (v) { |
| Py_DECREF(v); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| /* Operations on callable objects */ |
| |
| /* XXX PyCallable_Check() is in object.c */ |
| |
| PyObject * |
| PyObject_CallObject(PyObject *o, PyObject *a) |
| { |
| return PyEval_CallObjectWithKeywords(o, a, NULL); |
| } |
| |
| PyObject * |
| PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) |
| { |
| ternaryfunc call; |
| |
| if ((call = func->ob_type->tp_call) != NULL) { |
| PyObject *result = (*call)(func, arg, kw); |
| if (result == NULL && !PyErr_Occurred()) |
| PyErr_SetString( |
| PyExc_SystemError, |
| "NULL result without error in PyObject_Call"); |
| return result; |
| } |
| PyErr_Format(PyExc_TypeError, "'%s' object is not callable", |
| func->ob_type->tp_name); |
| return NULL; |
| } |
| |
| PyObject * |
| PyObject_CallFunction(PyObject *callable, char *format, ...) |
| { |
| va_list va; |
| PyObject *args, *retval; |
| |
| if (callable == NULL) |
| return null_error(); |
| |
| if (format && *format) { |
| va_start(va, format); |
| args = Py_VaBuildValue(format, va); |
| va_end(va); |
| } |
| else |
| args = PyTuple_New(0); |
| |
| if (args == NULL) |
| return NULL; |
| |
| if (!PyTuple_Check(args)) { |
| PyObject *a; |
| |
| a = PyTuple_New(1); |
| if (a == NULL) |
| return NULL; |
| if (PyTuple_SetItem(a, 0, args) < 0) |
| return NULL; |
| args = a; |
| } |
| retval = PyObject_Call(callable, args, NULL); |
| |
| Py_DECREF(args); |
| |
| return retval; |
| } |
| |
| PyObject * |
| PyObject_CallMethod(PyObject *o, char *name, char *format, ...) |
| { |
| va_list va; |
| PyObject *args = NULL; |
| PyObject *func = NULL; |
| PyObject *retval = NULL; |
| |
| if (o == NULL || name == NULL) |
| return null_error(); |
| |
| func = PyObject_GetAttrString(o, name); |
| if (func == NULL) { |
| PyErr_SetString(PyExc_AttributeError, name); |
| return 0; |
| } |
| |
| if (!PyCallable_Check(func)) { |
| type_error("call of non-callable attribute"); |
| goto exit; |
| } |
| |
| if (format && *format) { |
| va_start(va, format); |
| args = Py_VaBuildValue(format, va); |
| va_end(va); |
| } |
| else |
| args = PyTuple_New(0); |
| |
| if (!args) |
| goto exit; |
| |
| if (!PyTuple_Check(args)) { |
| PyObject *a; |
| |
| a = PyTuple_New(1); |
| if (a == NULL) |
| goto exit; |
| if (PyTuple_SetItem(a, 0, args) < 0) |
| goto exit; |
| args = a; |
| } |
| |
| retval = PyObject_Call(func, args, NULL); |
| |
| exit: |
| Py_XDECREF(args); |
| Py_XDECREF(func); |
| |
| return retval; |
| } |
| |
| |
| static PyObject * |
| objargs_mktuple(va_list va) |
| { |
| int i, n = 0; |
| va_list countva; |
| PyObject *result, *tmp; |
| |
| #ifdef VA_LIST_IS_ARRAY |
| memcpy(countva, va, sizeof(va_list)); |
| #else |
| #ifdef __va_copy |
| __va_copy(countva, va); |
| #else |
| countva = va; |
| #endif |
| #endif |
| |
| while (((PyObject *)va_arg(countva, PyObject *)) != NULL) |
| ++n; |
| result = PyTuple_New(n); |
| if (result != NULL && n > 0) { |
| for (i = 0; i < n; ++i) { |
| tmp = (PyObject *)va_arg(va, PyObject *); |
| PyTuple_SET_ITEM(result, i, tmp); |
| Py_INCREF(tmp); |
| } |
| } |
| return result; |
| } |
| |
| PyObject * |
| PyObject_CallMethodObjArgs(PyObject *callable, PyObject *name, ...) |
| { |
| PyObject *args, *tmp; |
| va_list vargs; |
| |
| if (callable == NULL || name == NULL) |
| return null_error(); |
| |
| callable = PyObject_GetAttr(callable, name); |
| if (callable == NULL) |
| return NULL; |
| |
| /* count the args */ |
| va_start(vargs, name); |
| args = objargs_mktuple(vargs); |
| va_end(vargs); |
| if (args == NULL) { |
| Py_DECREF(callable); |
| return NULL; |
| } |
| tmp = PyObject_Call(callable, args, NULL); |
| Py_DECREF(args); |
| Py_DECREF(callable); |
| |
| return tmp; |
| } |
| |
| PyObject * |
| PyObject_CallFunctionObjArgs(PyObject *callable, ...) |
| { |
| PyObject *args, *tmp; |
| va_list vargs; |
| |
| if (callable == NULL) |
| return null_error(); |
| |
| /* count the args */ |
| va_start(vargs, callable); |
| args = objargs_mktuple(vargs); |
| va_end(vargs); |
| if (args == NULL) |
| return NULL; |
| tmp = PyObject_Call(callable, args, NULL); |
| Py_DECREF(args); |
| |
| return tmp; |
| } |
| |
| |
| /* isinstance(), issubclass() */ |
| |
| /* abstract_get_bases() has logically 4 return states, with a sort of 0th |
| * state that will almost never happen. |
| * |
| * 0. creating the __bases__ static string could get a MemoryError |
| * 1. getattr(cls, '__bases__') could raise an AttributeError |
| * 2. getattr(cls, '__bases__') could raise some other exception |
| * 3. getattr(cls, '__bases__') could return a tuple |
| * 4. getattr(cls, '__bases__') could return something other than a tuple |
| * |
| * Only state #3 is a non-error state and only it returns a non-NULL object |
| * (it returns the retrieved tuple). |
| * |
| * Any raised AttributeErrors are masked by clearing the exception and |
| * returning NULL. If an object other than a tuple comes out of __bases__, |
| * then again, the return value is NULL. So yes, these two situations |
| * produce exactly the same results: NULL is returned and no error is set. |
| * |
| * If some exception other than AttributeError is raised, then NULL is also |
| * returned, but the exception is not cleared. That's because we want the |
| * exception to be propagated along. |
| * |
| * Callers are expected to test for PyErr_Occurred() when the return value |
| * is NULL to decide whether a valid exception should be propagated or not. |
| * When there's no exception to propagate, it's customary for the caller to |
| * set a TypeError. |
| */ |
| static PyObject * |
| abstract_get_bases(PyObject *cls) |
| { |
| static PyObject *__bases__ = NULL; |
| PyObject *bases; |
| |
| if (__bases__ == NULL) { |
| __bases__ = PyString_FromString("__bases__"); |
| if (__bases__ == NULL) |
| return NULL; |
| } |
| bases = PyObject_GetAttr(cls, __bases__); |
| if (bases == NULL) { |
| if (PyErr_ExceptionMatches(PyExc_AttributeError)) |
| PyErr_Clear(); |
| return NULL; |
| } |
| if (!PyTuple_Check(bases)) { |
| Py_DECREF(bases); |
| return NULL; |
| } |
| return bases; |
| } |
| |
| |
| static int |
| abstract_issubclass(PyObject *derived, PyObject *cls) |
| { |
| PyObject *bases; |
| int i, n; |
| int r = 0; |
| |
| |
| if (derived == cls) |
| return 1; |
| |
| if (PyTuple_Check(cls)) { |
| /* Not a general sequence -- that opens up the road to |
| recursion and stack overflow. */ |
| n = PyTuple_GET_SIZE(cls); |
| for (i = 0; i < n; i++) { |
| if (derived == PyTuple_GET_ITEM(cls, i)) |
| return 1; |
| } |
| } |
| bases = abstract_get_bases(derived); |
| if (bases == NULL) { |
| if (PyErr_Occurred()) |
| return -1; |
| return 0; |
| } |
| n = PyTuple_GET_SIZE(bases); |
| for (i = 0; i < n; i++) { |
| r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls); |
| if (r != 0) |
| break; |
| } |
| |
| Py_DECREF(bases); |
| |
| return r; |
| } |
| |
| static int |
| check_class(PyObject *cls, const char *error) |
| { |
| PyObject *bases = abstract_get_bases(cls); |
| if (bases == NULL) { |
| /* Do not mask errors. */ |
| if (!PyErr_Occurred()) |
| PyErr_SetString(PyExc_TypeError, error); |
| return 0; |
| } |
| Py_DECREF(bases); |
| return -1; |
| } |
| |
| static int |
| recursive_isinstance(PyObject *inst, PyObject *cls, int recursion_depth) |
| { |
| PyObject *icls; |
| static PyObject *__class__ = NULL; |
| int retval = 0; |
| |
| if (__class__ == NULL) { |
| __class__ = PyString_FromString("__class__"); |
| if (__class__ == NULL) |
| return -1; |
| } |
| |
| if (PyClass_Check(cls) && PyInstance_Check(inst)) { |
| PyObject *inclass = |
| (PyObject*)((PyInstanceObject*)inst)->in_class; |
| retval = PyClass_IsSubclass(inclass, cls); |
| } |
| else if (PyType_Check(cls)) { |
| retval = PyObject_TypeCheck(inst, (PyTypeObject *)cls); |
| if (retval == 0) { |
| PyObject *c = PyObject_GetAttr(inst, __class__); |
| if (c == NULL) { |
| PyErr_Clear(); |
| } |
| else { |
| if (c != (PyObject *)(inst->ob_type) && |
| PyType_Check(c)) |
| retval = PyType_IsSubtype( |
| (PyTypeObject *)c, |
| (PyTypeObject *)cls); |
| Py_DECREF(c); |
| } |
| } |
| } |
| else if (PyTuple_Check(cls)) { |
| int i, n; |
| |
| if (!recursion_depth) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "nest level of tuple too deep"); |
| return -1; |
| } |
| |
| n = PyTuple_GET_SIZE(cls); |
| for (i = 0; i < n; i++) { |
| retval = recursive_isinstance( |
| inst, |
| PyTuple_GET_ITEM(cls, i), |
| recursion_depth-1); |
| if (retval != 0) |
| break; |
| } |
| } |
| else { |
| if (!check_class(cls, |
| "isinstance() arg 2 must be a class, type," |
| " or tuple of classes and types")) |
| return -1; |
| icls = PyObject_GetAttr(inst, __class__); |
| if (icls == NULL) { |
| PyErr_Clear(); |
| retval = 0; |
| } |
| else { |
| retval = abstract_issubclass(icls, cls); |
| Py_DECREF(icls); |
| } |
| } |
| |
| return retval; |
| } |
| |
| int |
| PyObject_IsInstance(PyObject *inst, PyObject *cls) |
| { |
| return recursive_isinstance(inst, cls, Py_GetRecursionLimit()); |
| } |
| |
| static int |
| recursive_issubclass(PyObject *derived, PyObject *cls, int recursion_depth) |
| { |
| int retval; |
| |
| if (!PyClass_Check(derived) || !PyClass_Check(cls)) { |
| if (!check_class(derived, |
| "issubclass() arg 1 must be a class")) |
| return -1; |
| |
| if (PyTuple_Check(cls)) { |
| int i; |
| int n = PyTuple_GET_SIZE(cls); |
| |
| if (!recursion_depth) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "nest level of tuple too deep"); |
| return -1; |
| } |
| for (i = 0; i < n; ++i) { |
| retval = recursive_issubclass( |
| derived, |
| PyTuple_GET_ITEM(cls, i), |
| recursion_depth-1); |
| if (retval != 0) { |
| /* either found it, or got an error */ |
| return retval; |
| } |
| } |
| return 0; |
| } |
| else { |
| if (!check_class(cls, |
| "issubclass() arg 2 must be a class" |
| " or tuple of classes")) |
| return -1; |
| } |
| |
| retval = abstract_issubclass(derived, cls); |
| } |
| else { |
| /* shortcut */ |
| if (!(retval = (derived == cls))) |
| retval = PyClass_IsSubclass(derived, cls); |
| } |
| |
| return retval; |
| } |
| |
| int |
| PyObject_IsSubclass(PyObject *derived, PyObject *cls) |
| { |
| return recursive_issubclass(derived, cls, Py_GetRecursionLimit()); |
| } |
| |
| |
| PyObject * |
| PyObject_GetIter(PyObject *o) |
| { |
| PyTypeObject *t = o->ob_type; |
| getiterfunc f = NULL; |
| if (PyType_HasFeature(t, Py_TPFLAGS_HAVE_ITER)) |
| f = t->tp_iter; |
| if (f == NULL) { |
| if (PySequence_Check(o)) |
| return PySeqIter_New(o); |
| PyErr_SetString(PyExc_TypeError, |
| "iteration over non-sequence"); |
| return NULL; |
| } |
| else { |
| PyObject *res = (*f)(o); |
| if (res != NULL && !PyIter_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "iter() returned non-iterator " |
| "of type '%.100s'", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| res = NULL; |
| } |
| return res; |
| } |
| } |
| |
| /* Return next item. |
| * If an error occurs, return NULL. PyErr_Occurred() will be true. |
| * If the iteration terminates normally, return NULL and clear the |
| * PyExc_StopIteration exception (if it was set). PyErr_Occurred() |
| * will be false. |
| * Else return the next object. PyErr_Occurred() will be false. |
| */ |
| PyObject * |
| PyIter_Next(PyObject *iter) |
| { |
| PyObject *result; |
| assert(PyIter_Check(iter)); |
| result = (*iter->ob_type->tp_iternext)(iter); |
| if (result == NULL && |
| PyErr_Occurred() && |
| PyErr_ExceptionMatches(PyExc_StopIteration)) |
| PyErr_Clear(); |
| return result; |
| } |