|  | 
 | /* Float object implementation */ | 
 |  | 
 | /* XXX There should be overflow checks here, but it's hard to check | 
 |    for any kind of float exception without losing portability. */ | 
 |  | 
 | #include "Python.h" | 
 |  | 
 | #include <ctype.h> | 
 |  | 
 | #ifdef i860 | 
 | /* Cray APP has bogus definition of HUGE_VAL in <math.h> */ | 
 | #undef HUGE_VAL | 
 | #endif | 
 |  | 
 | #if defined(HUGE_VAL) && !defined(CHECK) | 
 | #define CHECK(x) if (errno != 0) ; \ | 
 | 	else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \ | 
 | 	else errno = ERANGE | 
 | #endif | 
 |  | 
 | #ifndef CHECK | 
 | #define CHECK(x) /* Don't know how to check */ | 
 | #endif | 
 |  | 
 | #if !defined(__STDC__) && !defined(macintosh) | 
 | extern double fmod(double, double); | 
 | extern double pow(double, double); | 
 | #endif | 
 |  | 
 | #ifdef sun | 
 | /* On SunOS4.1 only libm.a exists. Make sure that references to all | 
 |    needed math functions exist in the executable, so that dynamic | 
 |    loading of mathmodule does not fail. */ | 
 | double (*_Py_math_funcs_hack[])() = { | 
 | 	acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, | 
 | 	fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh | 
 | }; | 
 | #endif | 
 |  | 
 | /* Special free list -- see comments for same code in intobject.c. */ | 
 | #define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */ | 
 | #define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */ | 
 | #define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject)) | 
 |  | 
 | struct _floatblock { | 
 | 	struct _floatblock *next; | 
 | 	PyFloatObject objects[N_FLOATOBJECTS]; | 
 | }; | 
 |  | 
 | typedef struct _floatblock PyFloatBlock; | 
 |  | 
 | static PyFloatBlock *block_list = NULL; | 
 | static PyFloatObject *free_list = NULL; | 
 |  | 
 | static PyFloatObject * | 
 | fill_free_list(void) | 
 | { | 
 | 	PyFloatObject *p, *q; | 
 | 	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */ | 
 | 	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock)); | 
 | 	if (p == NULL) | 
 | 		return (PyFloatObject *) PyErr_NoMemory(); | 
 | 	((PyFloatBlock *)p)->next = block_list; | 
 | 	block_list = (PyFloatBlock *)p; | 
 | 	p = &((PyFloatBlock *)p)->objects[0]; | 
 | 	q = p + N_FLOATOBJECTS; | 
 | 	while (--q > p) | 
 | 		q->ob_type = (struct _typeobject *)(q-1); | 
 | 	q->ob_type = NULL; | 
 | 	return p + N_FLOATOBJECTS - 1; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyFloat_FromDouble(double fval) | 
 | { | 
 | 	register PyFloatObject *op; | 
 | 	if (free_list == NULL) { | 
 | 		if ((free_list = fill_free_list()) == NULL) | 
 | 			return NULL; | 
 | 	} | 
 | 	/* PyObject_New is inlined */ | 
 | 	op = free_list; | 
 | 	free_list = (PyFloatObject *)op->ob_type; | 
 | 	PyObject_INIT(op, &PyFloat_Type); | 
 | 	op->ob_fval = fval; | 
 | 	return (PyObject *) op; | 
 | } | 
 |  | 
 | /************************************************************************** | 
 | RED_FLAG 22-Sep-2000 tim | 
 | PyFloat_FromString's pend argument is braindead.  Prior to this RED_FLAG, | 
 |  | 
 | 1.  If v was a regular string, *pend was set to point to its terminating | 
 |     null byte.  That's useless (the caller can find that without any | 
 |     help from this function!). | 
 |  | 
 | 2.  If v was a Unicode string, or an object convertible to a character | 
 |     buffer, *pend was set to point into stack trash (the auto temp | 
 |     vector holding the character buffer).  That was downright dangerous. | 
 |  | 
 | Since we can't change the interface of a public API function, pend is | 
 | still supported but now *officially* useless:  if pend is not NULL, | 
 | *pend is set to NULL. | 
 | **************************************************************************/ | 
 | PyObject * | 
 | PyFloat_FromString(PyObject *v, char **pend) | 
 | { | 
 | 	const char *s, *last, *end; | 
 | 	double x; | 
 | 	char buffer[256]; /* for errors */ | 
 | 	char s_buffer[256]; /* for objects convertible to a char buffer */ | 
 | 	int len; | 
 |  | 
 | 	if (pend) | 
 | 		*pend = NULL; | 
 | 	if (PyString_Check(v)) { | 
 | 		s = PyString_AS_STRING(v); | 
 | 		len = PyString_GET_SIZE(v); | 
 | 	} | 
 | 	else if (PyUnicode_Check(v)) { | 
 | 		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 				"Unicode float() literal too long to convert"); | 
 | 			return NULL; | 
 | 		} | 
 | 		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), | 
 | 					    PyUnicode_GET_SIZE(v), | 
 | 					    s_buffer,  | 
 | 					    NULL)) | 
 | 			return NULL; | 
 | 		s = s_buffer; | 
 | 		len = (int)strlen(s); | 
 | 	} | 
 | 	else if (PyObject_AsCharBuffer(v, &s, &len)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"float() needs a string argument"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	last = s + len; | 
 | 	while (*s && isspace(Py_CHARMASK(*s))) | 
 | 		s++; | 
 | 	if (*s == '\0') { | 
 | 		PyErr_SetString(PyExc_ValueError, "empty string for float()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	/* We don't care about overflow or underflow.  If the platform supports | 
 | 	 * them, infinities and signed zeroes (on underflow) are fine. | 
 | 	 * However, strtod can return 0 for denormalized numbers, where atof | 
 | 	 * does not.  So (alas!) we special-case a zero result.  Note that | 
 | 	 * whether strtod sets errno on underflow is not defined, so we can't | 
 | 	 * key off errno. | 
 |          */ | 
 | 	PyFPE_START_PROTECT("strtod", return NULL) | 
 | 	x = strtod(s, (char **)&end); | 
 | 	PyFPE_END_PROTECT(x) | 
 | 	errno = 0; | 
 | 	/* Believe it or not, Solaris 2.6 can move end *beyond* the null | 
 | 	   byte at the end of the string, when the input is inf(inity). */ | 
 | 	if (end > last) | 
 | 		end = last; | 
 | 	if (end == s) { | 
 | 		sprintf(buffer, "invalid literal for float(): %.200s", s); | 
 | 		PyErr_SetString(PyExc_ValueError, buffer); | 
 | 		return NULL; | 
 | 	} | 
 | 	/* Since end != s, the platform made *some* kind of sense out | 
 | 	   of the input.  Trust it. */ | 
 | 	while (*end && isspace(Py_CHARMASK(*end))) | 
 | 		end++; | 
 | 	if (*end != '\0') { | 
 | 		sprintf(buffer, "invalid literal for float(): %.200s", s); | 
 | 		PyErr_SetString(PyExc_ValueError, buffer); | 
 | 		return NULL; | 
 | 	} | 
 | 	else if (end != last) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"null byte in argument for float()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (x == 0.0) { | 
 | 		/* See above -- may have been strtod being anal | 
 | 		   about denorms. */ | 
 | 		PyFPE_START_PROTECT("atof", return NULL) | 
 | 		x = atof(s); | 
 | 		PyFPE_END_PROTECT(x) | 
 | 		errno = 0;    /* whether atof ever set errno is undefined */ | 
 | 	} | 
 | 	return PyFloat_FromDouble(x); | 
 | } | 
 |  | 
 | static void | 
 | float_dealloc(PyFloatObject *op) | 
 | { | 
 | 	op->ob_type = (struct _typeobject *)free_list; | 
 | 	free_list = op; | 
 | } | 
 |  | 
 | double | 
 | PyFloat_AsDouble(PyObject *op) | 
 | { | 
 | 	PyNumberMethods *nb; | 
 | 	PyFloatObject *fo; | 
 | 	double val; | 
 | 	 | 
 | 	if (op && PyFloat_Check(op)) | 
 | 		return PyFloat_AS_DOUBLE((PyFloatObject*) op); | 
 | 	 | 
 | 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || | 
 | 	    nb->nb_float == NULL) { | 
 | 		PyErr_BadArgument(); | 
 | 		return -1; | 
 | 	} | 
 | 	 | 
 | 	fo = (PyFloatObject*) (*nb->nb_float) (op); | 
 | 	if (fo == NULL) | 
 | 		return -1; | 
 | 	if (!PyFloat_Check(fo)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"nb_float should return float object"); | 
 | 		return -1; | 
 | 	} | 
 | 	 | 
 | 	val = PyFloat_AS_DOUBLE(fo); | 
 | 	Py_DECREF(fo); | 
 | 	 | 
 | 	return val; | 
 | } | 
 |  | 
 | /* Methods */ | 
 |  | 
 | void | 
 | PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision) | 
 | { | 
 | 	register char *cp; | 
 | 	/* Subroutine for float_repr and float_print. | 
 | 	   We want float numbers to be recognizable as such, | 
 | 	   i.e., they should contain a decimal point or an exponent. | 
 | 	   However, %g may print the number as an integer; | 
 | 	   in such cases, we append ".0" to the string. */ | 
 | 	sprintf(buf, "%.*g", precision, v->ob_fval); | 
 | 	cp = buf; | 
 | 	if (*cp == '-') | 
 | 		cp++; | 
 | 	for (; *cp != '\0'; cp++) { | 
 | 		/* Any non-digit means it's not an integer; | 
 | 		   this takes care of NAN and INF as well. */ | 
 | 		if (!isdigit(Py_CHARMASK(*cp))) | 
 | 			break; | 
 | 	} | 
 | 	if (*cp == '\0') { | 
 | 		*cp++ = '.'; | 
 | 		*cp++ = '0'; | 
 | 		*cp++ = '\0'; | 
 | 	} | 
 | } | 
 |  | 
 | /* Precisions used by repr() and str(), respectively. | 
 |  | 
 |    The repr() precision (17 significant decimal digits) is the minimal number | 
 |    that is guaranteed to have enough precision so that if the number is read | 
 |    back in the exact same binary value is recreated.  This is true for IEEE | 
 |    floating point by design, and also happens to work for all other modern | 
 |    hardware. | 
 |  | 
 |    The str() precision is chosen so that in most cases, the rounding noise | 
 |    created by various operations is suppressed, while giving plenty of | 
 |    precision for practical use. | 
 |  | 
 | */ | 
 |  | 
 | #define PREC_REPR	17 | 
 | #define PREC_STR	12 | 
 |  | 
 | void | 
 | PyFloat_AsString(char *buf, PyFloatObject *v) | 
 | { | 
 | 	PyFloat_AsStringEx(buf, v, PREC_STR); | 
 | } | 
 |  | 
 | /* ARGSUSED */ | 
 | static int | 
 | float_print(PyFloatObject *v, FILE *fp, int flags) | 
 |      /* flags -- not used but required by interface */ | 
 | { | 
 | 	char buf[100]; | 
 | 	PyFloat_AsStringEx(buf, v, flags&Py_PRINT_RAW ? PREC_STR : PREC_REPR); | 
 | 	fputs(buf, fp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_repr(PyFloatObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	PyFloat_AsStringEx(buf, v, PREC_REPR); | 
 | 	return PyString_FromString(buf); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_str(PyFloatObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	PyFloat_AsStringEx(buf, v, PREC_STR); | 
 | 	return PyString_FromString(buf); | 
 | } | 
 |  | 
 | static int | 
 | float_compare(PyFloatObject *v, PyFloatObject *w) | 
 | { | 
 | 	double i = v->ob_fval; | 
 | 	double j = w->ob_fval; | 
 | 	return (i < j) ? -1 : (i > j) ? 1 : 0; | 
 | } | 
 |  | 
 |  | 
 | static long | 
 | float_hash(PyFloatObject *v) | 
 | { | 
 | 	return _Py_HashDouble(v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_add(PyFloatObject *v, PyFloatObject *w) | 
 | { | 
 | 	double result; | 
 | 	PyFPE_START_PROTECT("add", return 0) | 
 | 	result = v->ob_fval + w->ob_fval; | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_sub(PyFloatObject *v, PyFloatObject *w) | 
 | { | 
 | 	double result; | 
 | 	PyFPE_START_PROTECT("subtract", return 0) | 
 | 	result = v->ob_fval - w->ob_fval; | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_mul(PyFloatObject *v, PyFloatObject *w) | 
 | { | 
 | 	double result; | 
 |  | 
 | 	PyFPE_START_PROTECT("multiply", return 0) | 
 | 	result = v->ob_fval * w->ob_fval; | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_div(PyFloatObject *v, PyFloatObject *w) | 
 | { | 
 | 	double result; | 
 | 	if (w->ob_fval == 0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float division"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("divide", return 0) | 
 | 	result = v->ob_fval / w->ob_fval; | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_rem(PyFloatObject *v, PyFloatObject *w) | 
 | { | 
 | 	double vx, wx; | 
 | 	double mod; | 
 | 	wx = w->ob_fval; | 
 | 	if (wx == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("modulo", return 0) | 
 | 	vx = v->ob_fval; | 
 | 	mod = fmod(vx, wx); | 
 | 	/* note: checking mod*wx < 0 is incorrect -- underflows to | 
 | 	   0 if wx < sqrt(smallest nonzero double) */ | 
 | 	if (mod && ((wx < 0) != (mod < 0))) { | 
 | 		mod += wx; | 
 | 	} | 
 | 	PyFPE_END_PROTECT(mod) | 
 | 	return PyFloat_FromDouble(mod); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_divmod(PyFloatObject *v, PyFloatObject *w) | 
 | { | 
 | 	double vx, wx; | 
 | 	double div, mod, floordiv; | 
 | 	wx = w->ob_fval; | 
 | 	if (wx == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("divmod", return 0) | 
 | 	vx = v->ob_fval; | 
 | 	mod = fmod(vx, wx); | 
 | 	/* fmod is typically exact, so vx-mod is *mathematically* an | 
 | 	   exact multiple of wx.  But this is fp arithmetic, and fp | 
 | 	   vx - mod is an approximation; the result is that div may | 
 | 	   not be an exact integral value after the division, although | 
 | 	   it will always be very close to one. | 
 | 	*/ | 
 | 	div = (vx - mod) / wx; | 
 | 	/* note: checking mod*wx < 0 is incorrect -- underflows to | 
 | 	   0 if wx < sqrt(smallest nonzero double) */ | 
 | 	if (mod && ((wx < 0) != (mod < 0))) { | 
 | 		mod += wx; | 
 | 		div -= 1.0; | 
 | 	} | 
 | 	/* snap quotient to nearest integral value */ | 
 | 	floordiv = floor(div); | 
 | 	if (div - floordiv > 0.5) | 
 | 		floordiv += 1.0; | 
 | 	PyFPE_END_PROTECT(div) | 
 | 	return Py_BuildValue("(dd)", floordiv, mod); | 
 | } | 
 |  | 
 | static double powu(double x, long n) | 
 | { | 
 | 	double r = 1.; | 
 | 	double p = x; | 
 | 	long mask = 1; | 
 | 	while (mask > 0 && n >= mask) { | 
 | 		if (n & mask) | 
 | 			r *= p; | 
 | 		mask <<= 1; | 
 | 		p *= p; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_pow(PyFloatObject *v, PyObject *w, PyFloatObject *z) | 
 | { | 
 | 	double iv, iw, ix; | 
 | 	long intw; | 
 |  /* XXX Doesn't handle overflows if z!=None yet; it may never do so :( | 
 |   * The z parameter is really only going to be useful for integers and | 
 |   * long integers.  Maybe something clever with logarithms could be done. | 
 |   * [AMK] | 
 |   */ | 
 | 	iv = v->ob_fval; | 
 | 	iw = ((PyFloatObject *)w)->ob_fval; | 
 | 	intw = (long)iw; | 
 |  | 
 | 	/* Sort out special cases here instead of relying on pow() */ | 
 | 	if (iw == 0) { 		/* x**0 is 1, even 0**0 */ | 
 | 		PyFPE_START_PROTECT("pow", return NULL) | 
 | 		if ((PyObject *)z != Py_None) { | 
 | 			ix = fmod(1.0, z->ob_fval); | 
 | 			if (ix != 0 && z->ob_fval < 0) | 
 | 				ix += z->ob_fval; | 
 | 		} | 
 | 		else | 
 | 			ix = 1.0; | 
 | 		PyFPE_END_PROTECT(ix) | 
 | 		return PyFloat_FromDouble(ix);  | 
 | 	} | 
 | 	if (iv == 0.0) { | 
 | 		if (iw < 0.0) { | 
 | 			PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 				   "0.0 to a negative power"); | 
 | 			return NULL; | 
 | 		} | 
 | 		return PyFloat_FromDouble(0.0); | 
 | 	} | 
 |  | 
 | 	if (iw == intw && intw > LONG_MIN) { | 
 | 		/* ruled out LONG_MIN because -LONG_MIN isn't representable */ | 
 | 		errno = 0; | 
 | 		PyFPE_START_PROTECT("pow", return NULL) | 
 | 		if (intw > 0) | 
 | 			ix = powu(iv, intw); | 
 | 		else | 
 | 			ix = 1./powu(iv, -intw); | 
 | 		PyFPE_END_PROTECT(ix) | 
 | 	} | 
 | 	else { | 
 | 		/* Sort out special cases here instead of relying on pow() */ | 
 | 		if (iv < 0.0) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 				   "negative number to a float power"); | 
 | 			return NULL; | 
 | 		} | 
 | 		errno = 0; | 
 | 		PyFPE_START_PROTECT("pow", return NULL) | 
 | 		ix = pow(iv, iw); | 
 | 		PyFPE_END_PROTECT(ix) | 
 | 	} | 
 | 	CHECK(ix); | 
 | 	if (errno != 0) { | 
 | 		/* XXX could it be another type of error? */ | 
 | 		PyErr_SetFromErrno(PyExc_OverflowError); | 
 | 		return NULL; | 
 | 	} | 
 | 	if ((PyObject *)z != Py_None) { | 
 | 		PyFPE_START_PROTECT("pow", return NULL) | 
 | 		ix = fmod(ix, z->ob_fval);	/* XXX To Be Rewritten */ | 
 | 		if (ix != 0 && | 
 | 		    ((iv < 0 && z->ob_fval > 0) || | 
 | 		     (iv > 0 && z->ob_fval < 0) | 
 | 		    )) { | 
 | 		     ix += z->ob_fval; | 
 | 		} | 
 | 		PyFPE_END_PROTECT(ix) | 
 | 	} | 
 | 	return PyFloat_FromDouble(ix); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_neg(PyFloatObject *v) | 
 | { | 
 | 	return PyFloat_FromDouble(-v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_pos(PyFloatObject *v) | 
 | { | 
 | 	Py_INCREF(v); | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_abs(PyFloatObject *v) | 
 | { | 
 | 	if (v->ob_fval < 0) | 
 | 		return float_neg(v); | 
 | 	else | 
 | 		return float_pos(v); | 
 | } | 
 |  | 
 | static int | 
 | float_nonzero(PyFloatObject *v) | 
 | { | 
 | 	return v->ob_fval != 0.0; | 
 | } | 
 |  | 
 | static int | 
 | float_coerce(PyObject **pv, PyObject **pw) | 
 | { | 
 | 	if (PyInt_Check(*pw)) { | 
 | 		long x = PyInt_AsLong(*pw); | 
 | 		*pw = PyFloat_FromDouble((double)x); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (PyLong_Check(*pw)) { | 
 | 		*pw = PyFloat_FromDouble(PyLong_AsDouble(*pw)); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; /* Can't do it */ | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_int(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN | 
 | 	          : (x = floor(x)) > (double)LONG_MAX) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"float too large to convert"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyInt_FromLong((long)x); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_long(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	return PyLong_FromDouble(x); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_float(PyObject *v) | 
 | { | 
 | 	Py_INCREF(v); | 
 | 	return v; | 
 | } | 
 |  | 
 |  | 
 | static PyNumberMethods float_as_number = { | 
 | 	(binaryfunc)float_add, /*nb_add*/ | 
 | 	(binaryfunc)float_sub, /*nb_subtract*/ | 
 | 	(binaryfunc)float_mul, /*nb_multiply*/ | 
 | 	(binaryfunc)float_div, /*nb_divide*/ | 
 | 	(binaryfunc)float_rem, /*nb_remainder*/ | 
 | 	(binaryfunc)float_divmod, /*nb_divmod*/ | 
 | 	(ternaryfunc)float_pow, /*nb_power*/ | 
 | 	(unaryfunc)float_neg, /*nb_negative*/ | 
 | 	(unaryfunc)float_pos, /*nb_positive*/ | 
 | 	(unaryfunc)float_abs, /*nb_absolute*/ | 
 | 	(inquiry)float_nonzero, /*nb_nonzero*/ | 
 | 	0,		/*nb_invert*/ | 
 | 	0,		/*nb_lshift*/ | 
 | 	0,		/*nb_rshift*/ | 
 | 	0,		/*nb_and*/ | 
 | 	0,		/*nb_xor*/ | 
 | 	0,		/*nb_or*/ | 
 | 	(coercion)float_coerce, /*nb_coerce*/ | 
 | 	(unaryfunc)float_int, /*nb_int*/ | 
 | 	(unaryfunc)float_long, /*nb_long*/ | 
 | 	(unaryfunc)float_float, /*nb_float*/ | 
 | 	0,		/*nb_oct*/ | 
 | 	0,		/*nb_hex*/ | 
 | }; | 
 |  | 
 | PyTypeObject PyFloat_Type = { | 
 | 	PyObject_HEAD_INIT(&PyType_Type) | 
 | 	0, | 
 | 	"float", | 
 | 	sizeof(PyFloatObject), | 
 | 	0, | 
 | 	(destructor)float_dealloc, /*tp_dealloc*/ | 
 | 	(printfunc)float_print, /*tp_print*/ | 
 | 	0,			/*tp_getattr*/ | 
 | 	0,			/*tp_setattr*/ | 
 | 	(cmpfunc)float_compare, /*tp_compare*/ | 
 | 	(reprfunc)float_repr,	/*tp_repr*/ | 
 | 	&float_as_number,	/*tp_as_number*/ | 
 | 	0,			/*tp_as_sequence*/ | 
 | 	0,			/*tp_as_mapping*/ | 
 | 	(hashfunc)float_hash,	/*tp_hash*/ | 
 |         0,			/*tp_call*/ | 
 |         (reprfunc)float_str,	/*tp_str*/ | 
 | }; | 
 |  | 
 | void | 
 | PyFloat_Fini(void) | 
 | { | 
 | 	PyFloatObject *p; | 
 | 	PyFloatBlock *list, *next; | 
 | 	int i; | 
 | 	int bc, bf;	/* block count, number of freed blocks */ | 
 | 	int frem, fsum;	/* remaining unfreed floats per block, total */ | 
 |  | 
 | 	bc = 0; | 
 | 	bf = 0; | 
 | 	fsum = 0; | 
 | 	list = block_list; | 
 | 	block_list = NULL; | 
 | 	free_list = NULL; | 
 | 	while (list != NULL) { | 
 | 		bc++; | 
 | 		frem = 0; | 
 | 		for (i = 0, p = &list->objects[0]; | 
 | 		     i < N_FLOATOBJECTS; | 
 | 		     i++, p++) { | 
 | 			if (PyFloat_Check(p) && p->ob_refcnt != 0) | 
 | 				frem++; | 
 | 		} | 
 | 		next = list->next; | 
 | 		if (frem) { | 
 | 			list->next = block_list; | 
 | 			block_list = list; | 
 | 			for (i = 0, p = &list->objects[0]; | 
 | 			     i < N_FLOATOBJECTS; | 
 | 			     i++, p++) { | 
 | 				if (!PyFloat_Check(p) || p->ob_refcnt == 0) { | 
 | 					p->ob_type = (struct _typeobject *) | 
 | 						free_list; | 
 | 					free_list = p; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			PyMem_FREE(list); /* XXX PyObject_FREE ??? */ | 
 | 			bf++; | 
 | 		} | 
 | 		fsum += frem; | 
 | 		list = next; | 
 | 	} | 
 | 	if (!Py_VerboseFlag) | 
 | 		return; | 
 | 	fprintf(stderr, "# cleanup floats"); | 
 | 	if (!fsum) { | 
 | 		fprintf(stderr, "\n"); | 
 | 	} | 
 | 	else { | 
 | 		fprintf(stderr, | 
 | 			": %d unfreed float%s in %d out of %d block%s\n", | 
 | 			fsum, fsum == 1 ? "" : "s", | 
 | 			bc - bf, bc, bc == 1 ? "" : "s"); | 
 | 	} | 
 | 	if (Py_VerboseFlag > 1) { | 
 | 		list = block_list; | 
 | 		while (list != NULL) { | 
 | 			for (i = 0, p = &list->objects[0]; | 
 | 			     i < N_FLOATOBJECTS; | 
 | 			     i++, p++) { | 
 | 				if (PyFloat_Check(p) && p->ob_refcnt != 0) { | 
 | 					char buf[100]; | 
 | 					PyFloat_AsString(buf, p); | 
 | 					fprintf(stderr, | 
 | 			     "#   <float at %p, refcnt=%d, val=%s>\n", | 
 | 						p, p->ob_refcnt, buf); | 
 | 				} | 
 | 			} | 
 | 			list = list->next; | 
 | 		} | 
 | 	} | 
 | } |