| /* Math module -- standard C math library functions, pi and e */ | 
 |  | 
 | /* Here are some comments from Tim Peters, extracted from the | 
 |    discussion attached to http://bugs.python.org/issue1640.  They | 
 |    describe the general aims of the math module with respect to | 
 |    special values, IEEE-754 floating-point exceptions, and Python | 
 |    exceptions. | 
 |  | 
 | These are the "spirit of 754" rules: | 
 |  | 
 | 1. If the mathematical result is a real number, but of magnitude too | 
 | large to approximate by a machine float, overflow is signaled and the | 
 | result is an infinity (with the appropriate sign). | 
 |  | 
 | 2. If the mathematical result is a real number, but of magnitude too | 
 | small to approximate by a machine float, underflow is signaled and the | 
 | result is a zero (with the appropriate sign). | 
 |  | 
 | 3. At a singularity (a value x such that the limit of f(y) as y | 
 | approaches x exists and is an infinity), "divide by zero" is signaled | 
 | and the result is an infinity (with the appropriate sign).  This is | 
 | complicated a little by that the left-side and right-side limits may | 
 | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 | 
 | from the positive or negative directions.  In that specific case, the | 
 | sign of the zero determines the result of 1/0. | 
 |  | 
 | 4. At a point where a function has no defined result in the extended | 
 | reals (i.e., the reals plus an infinity or two), invalid operation is | 
 | signaled and a NaN is returned. | 
 |  | 
 | And these are what Python has historically /tried/ to do (but not | 
 | always successfully, as platform libm behavior varies a lot): | 
 |  | 
 | For #1, raise OverflowError. | 
 |  | 
 | For #2, return a zero (with the appropriate sign if that happens by | 
 | accident ;-)). | 
 |  | 
 | For #3 and #4, raise ValueError.  It may have made sense to raise | 
 | Python's ZeroDivisionError in #3, but historically that's only been | 
 | raised for division by zero and mod by zero. | 
 |  | 
 | */ | 
 |  | 
 | /* | 
 |    In general, on an IEEE-754 platform the aim is to follow the C99 | 
 |    standard, including Annex 'F', whenever possible.  Where the | 
 |    standard recommends raising the 'divide-by-zero' or 'invalid' | 
 |    floating-point exceptions, Python should raise a ValueError.  Where | 
 |    the standard recommends raising 'overflow', Python should raise an | 
 |    OverflowError.  In all other circumstances a value should be | 
 |    returned. | 
 |  */ | 
 |  | 
 | #include "Python.h" | 
 | #include "longintrepr.h" /* just for SHIFT */ | 
 |  | 
 | #ifdef _OSF_SOURCE | 
 | /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ | 
 | extern double copysign(double, double); | 
 | #endif | 
 |  | 
 | /* | 
 |    sin(pi*x), giving accurate results for all finite x (especially x | 
 |    integral or close to an integer).  This is here for use in the | 
 |    reflection formula for the gamma function.  It conforms to IEEE | 
 |    754-2008 for finite arguments, but not for infinities or nans. | 
 | */ | 
 |  | 
 | static const double pi = 3.141592653589793238462643383279502884197; | 
 |  | 
 | static double | 
 | sinpi(double x) | 
 | { | 
 | 	double y, r; | 
 | 	int n; | 
 | 	/* this function should only ever be called for finite arguments */ | 
 | 	assert(Py_IS_FINITE(x)); | 
 | 	y = fmod(fabs(x), 2.0); | 
 | 	n = (int)round(2.0*y); | 
 | 	assert(0 <= n && n <= 4); | 
 | 	switch (n) { | 
 | 	case 0: | 
 | 		r = sin(pi*y); | 
 | 		break; | 
 | 	case 1: | 
 | 		r = cos(pi*(y-0.5)); | 
 | 		break; | 
 | 	case 2: | 
 | 		/* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give | 
 | 		   -0.0 instead of 0.0 when y == 1.0. */ | 
 | 		r = sin(pi*(1.0-y)); | 
 | 		break; | 
 | 	case 3: | 
 | 		r = -cos(pi*(y-1.5)); | 
 | 		break; | 
 | 	case 4: | 
 | 		r = sin(pi*(y-2.0)); | 
 | 		break; | 
 | 	default: | 
 | 		assert(0);  /* should never get here */ | 
 | 		r = -1.23e200; /* silence gcc warning */ | 
 | 	} | 
 | 	return copysign(1.0, x)*r; | 
 | } | 
 |  | 
 | /* Implementation of the real gamma function.  In extensive but non-exhaustive | 
 |    random tests, this function proved accurate to within <= 10 ulps across the | 
 |    entire float domain.  Note that accuracy may depend on the quality of the | 
 |    system math functions, the pow function in particular.  Special cases | 
 |    follow C99 annex F.  The parameters and method are tailored to platforms | 
 |    whose double format is the IEEE 754 binary64 format. | 
 |  | 
 |    Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 | 
 |    and g=6.024680040776729583740234375; these parameters are amongst those | 
 |    used by the Boost library.  Following Boost (again), we re-express the | 
 |    Lanczos sum as a rational function, and compute it that way.  The | 
 |    coefficients below were computed independently using MPFR, and have been | 
 |    double-checked against the coefficients in the Boost source code. | 
 |  | 
 |    For x < 0.0 we use the reflection formula. | 
 |  | 
 |    There's one minor tweak that deserves explanation: Lanczos' formula for | 
 |    Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x | 
 |    values, x+g-0.5 can be represented exactly.  However, in cases where it | 
 |    can't be represented exactly the small error in x+g-0.5 can be magnified | 
 |    significantly by the pow and exp calls, especially for large x.  A cheap | 
 |    correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error | 
 |    involved in the computation of x+g-0.5 (that is, e = computed value of | 
 |    x+g-0.5 - exact value of x+g-0.5).  Here's the proof: | 
 |  | 
 |    Correction factor | 
 |    ----------------- | 
 |    Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 | 
 |    double, and e is tiny.  Then: | 
 |  | 
 |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) | 
 |      = pow(y, x-0.5)/exp(y) * C, | 
 |  | 
 |    where the correction_factor C is given by | 
 |  | 
 |      C = pow(1-e/y, x-0.5) * exp(e) | 
 |  | 
 |    Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: | 
 |  | 
 |      C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y | 
 |  | 
 |    But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and | 
 |  | 
 |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), | 
 |  | 
 |    Note that for accuracy, when computing r*C it's better to do | 
 |  | 
 |      r + e*g/y*r; | 
 |  | 
 |    than | 
 |  | 
 |      r * (1 + e*g/y); | 
 |  | 
 |    since the addition in the latter throws away most of the bits of | 
 |    information in e*g/y. | 
 | */ | 
 |  | 
 | #define LANCZOS_N 13 | 
 | static const double lanczos_g = 6.024680040776729583740234375; | 
 | static const double lanczos_g_minus_half = 5.524680040776729583740234375; | 
 | static const double lanczos_num_coeffs[LANCZOS_N] = { | 
 | 	23531376880.410759688572007674451636754734846804940, | 
 | 	42919803642.649098768957899047001988850926355848959, | 
 | 	35711959237.355668049440185451547166705960488635843, | 
 | 	17921034426.037209699919755754458931112671403265390, | 
 | 	6039542586.3520280050642916443072979210699388420708, | 
 | 	1439720407.3117216736632230727949123939715485786772, | 
 | 	248874557.86205415651146038641322942321632125127801, | 
 | 	31426415.585400194380614231628318205362874684987640, | 
 | 	2876370.6289353724412254090516208496135991145378768, | 
 | 	186056.26539522349504029498971604569928220784236328, | 
 | 	8071.6720023658162106380029022722506138218516325024, | 
 | 	210.82427775157934587250973392071336271166969580291, | 
 | 	2.5066282746310002701649081771338373386264310793408 | 
 | }; | 
 |  | 
 | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ | 
 | static const double lanczos_den_coeffs[LANCZOS_N] = { | 
 | 	0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, | 
 | 	13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; | 
 |  | 
 | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ | 
 | #define NGAMMA_INTEGRAL 23 | 
 | static const double gamma_integral[NGAMMA_INTEGRAL] = { | 
 | 	1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, | 
 | 	3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, | 
 | 	1307674368000.0, 20922789888000.0, 355687428096000.0, | 
 | 	6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, | 
 | 	51090942171709440000.0, 1124000727777607680000.0, | 
 | }; | 
 |  | 
 | /* Lanczos' sum L_g(x), for positive x */ | 
 |  | 
 | static double | 
 | lanczos_sum(double x) | 
 | { | 
 | 	double num = 0.0, den = 0.0; | 
 | 	int i; | 
 | 	assert(x > 0.0); | 
 | 	/* evaluate the rational function lanczos_sum(x).  For large | 
 | 	   x, the obvious algorithm risks overflow, so we instead | 
 | 	   rescale the denominator and numerator of the rational | 
 | 	   function by x**(1-LANCZOS_N) and treat this as a | 
 | 	   rational function in 1/x.  This also reduces the error for | 
 | 	   larger x values.  The choice of cutoff point (5.0 below) is | 
 | 	   somewhat arbitrary; in tests, smaller cutoff values than | 
 | 	   this resulted in lower accuracy. */ | 
 | 	if (x < 5.0) { | 
 | 		for (i = LANCZOS_N; --i >= 0; ) { | 
 | 			num = num * x + lanczos_num_coeffs[i]; | 
 | 			den = den * x + lanczos_den_coeffs[i]; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		for (i = 0; i < LANCZOS_N; i++) { | 
 | 			num = num / x + lanczos_num_coeffs[i]; | 
 | 			den = den / x + lanczos_den_coeffs[i]; | 
 | 		} | 
 | 	} | 
 | 	return num/den; | 
 | } | 
 |  | 
 | static double | 
 | m_tgamma(double x) | 
 | { | 
 | 	double absx, r, y, z, sqrtpow; | 
 |  | 
 | 	/* special cases */ | 
 | 	if (!Py_IS_FINITE(x)) { | 
 | 		if (Py_IS_NAN(x) || x > 0.0) | 
 | 			return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */ | 
 | 		else { | 
 | 			errno = EDOM; | 
 | 			return Py_NAN;  /* tgamma(-inf) = nan, invalid */ | 
 | 		} | 
 | 	} | 
 | 	if (x == 0.0) { | 
 | 		errno = EDOM; | 
 | 		return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */ | 
 | 	} | 
 |  | 
 | 	/* integer arguments */ | 
 | 	if (x == floor(x)) { | 
 | 		if (x < 0.0) { | 
 | 			errno = EDOM;  /* tgamma(n) = nan, invalid for */ | 
 | 			return Py_NAN; /* negative integers n */ | 
 | 		} | 
 | 		if (x <= NGAMMA_INTEGRAL) | 
 | 			return gamma_integral[(int)x - 1]; | 
 | 	} | 
 | 	absx = fabs(x); | 
 |  | 
 | 	/* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */ | 
 | 	if (absx < 1e-20) { | 
 | 		r = 1.0/x; | 
 | 		if (Py_IS_INFINITY(r)) | 
 | 			errno = ERANGE; | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	/* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for | 
 | 	   x > 200, and underflows to +-0.0 for x < -200, not a negative | 
 | 	   integer. */ | 
 | 	if (absx > 200.0) { | 
 | 		if (x < 0.0) { | 
 | 			return 0.0/sinpi(x); | 
 | 		} | 
 | 		else { | 
 | 			errno = ERANGE; | 
 | 			return Py_HUGE_VAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	y = absx + lanczos_g_minus_half; | 
 | 	/* compute error in sum */ | 
 | 	if (absx > lanczos_g_minus_half) { | 
 | 		/* note: the correction can be foiled by an optimizing | 
 | 		   compiler that (incorrectly) thinks that an expression like | 
 | 		   a + b - a - b can be optimized to 0.0.  This shouldn't | 
 | 		   happen in a standards-conforming compiler. */ | 
 | 		double q = y - absx; | 
 | 		z = q - lanczos_g_minus_half; | 
 | 	} | 
 | 	else { | 
 | 		double q = y - lanczos_g_minus_half; | 
 | 		z = q - absx; | 
 | 	} | 
 | 	z = z * lanczos_g / y; | 
 | 	if (x < 0.0) { | 
 | 		r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx); | 
 | 		r -= z * r; | 
 | 		if (absx < 140.0) { | 
 | 			r /= pow(y, absx - 0.5); | 
 | 		} | 
 | 		else { | 
 | 			sqrtpow = pow(y, absx / 2.0 - 0.25); | 
 | 			r /= sqrtpow; | 
 | 			r /= sqrtpow; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		r = lanczos_sum(absx) / exp(y); | 
 | 		r += z * r; | 
 | 		if (absx < 140.0) { | 
 | 			r *= pow(y, absx - 0.5); | 
 | 		} | 
 | 		else { | 
 | 			sqrtpow = pow(y, absx / 2.0 - 0.25); | 
 | 			r *= sqrtpow; | 
 | 			r *= sqrtpow; | 
 | 		} | 
 | 	} | 
 | 	if (Py_IS_INFINITY(r)) | 
 | 		errno = ERANGE; | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |    wrapper for atan2 that deals directly with special cases before | 
 |    delegating to the platform libm for the remaining cases.  This | 
 |    is necessary to get consistent behaviour across platforms. | 
 |    Windows, FreeBSD and alpha Tru64 are amongst platforms that don't | 
 |    always follow C99. | 
 | */ | 
 |  | 
 | static double | 
 | m_atan2(double y, double x) | 
 | { | 
 | 	if (Py_IS_NAN(x) || Py_IS_NAN(y)) | 
 | 		return Py_NAN; | 
 | 	if (Py_IS_INFINITY(y)) { | 
 | 		if (Py_IS_INFINITY(x)) { | 
 | 			if (copysign(1., x) == 1.) | 
 | 				/* atan2(+-inf, +inf) == +-pi/4 */ | 
 | 				return copysign(0.25*Py_MATH_PI, y); | 
 | 			else | 
 | 				/* atan2(+-inf, -inf) == +-pi*3/4 */ | 
 | 				return copysign(0.75*Py_MATH_PI, y); | 
 | 		} | 
 | 		/* atan2(+-inf, x) == +-pi/2 for finite x */ | 
 | 		return copysign(0.5*Py_MATH_PI, y); | 
 | 	} | 
 | 	if (Py_IS_INFINITY(x) || y == 0.) { | 
 | 		if (copysign(1., x) == 1.) | 
 | 			/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ | 
 | 			return copysign(0., y); | 
 | 		else | 
 | 			/* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ | 
 | 			return copysign(Py_MATH_PI, y); | 
 | 	} | 
 | 	return atan2(y, x); | 
 | } | 
 |  | 
 | /* | 
 |     Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), | 
 |     log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with | 
 |     special values directly, passing positive non-special values through to | 
 |     the system log/log10. | 
 |  */ | 
 |  | 
 | static double | 
 | m_log(double x) | 
 | { | 
 | 	if (Py_IS_FINITE(x)) { | 
 | 		if (x > 0.0) | 
 | 			return log(x); | 
 | 		errno = EDOM; | 
 | 		if (x == 0.0) | 
 | 			return -Py_HUGE_VAL; /* log(0) = -inf */ | 
 | 		else | 
 | 			return Py_NAN; /* log(-ve) = nan */ | 
 | 	} | 
 | 	else if (Py_IS_NAN(x)) | 
 | 		return x; /* log(nan) = nan */ | 
 | 	else if (x > 0.0) | 
 | 		return x; /* log(inf) = inf */ | 
 | 	else { | 
 | 		errno = EDOM; | 
 | 		return Py_NAN; /* log(-inf) = nan */ | 
 | 	} | 
 | } | 
 |  | 
 | static double | 
 | m_log10(double x) | 
 | { | 
 | 	if (Py_IS_FINITE(x)) { | 
 | 		if (x > 0.0) | 
 | 			return log10(x); | 
 | 		errno = EDOM; | 
 | 		if (x == 0.0) | 
 | 			return -Py_HUGE_VAL; /* log10(0) = -inf */ | 
 | 		else | 
 | 			return Py_NAN; /* log10(-ve) = nan */ | 
 | 	} | 
 | 	else if (Py_IS_NAN(x)) | 
 | 		return x; /* log10(nan) = nan */ | 
 | 	else if (x > 0.0) | 
 | 		return x; /* log10(inf) = inf */ | 
 | 	else { | 
 | 		errno = EDOM; | 
 | 		return Py_NAN; /* log10(-inf) = nan */ | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Call is_error when errno != 0, and where x is the result libm | 
 |  * returned.  is_error will usually set up an exception and return | 
 |  * true (1), but may return false (0) without setting up an exception. | 
 |  */ | 
 | static int | 
 | is_error(double x) | 
 | { | 
 | 	int result = 1;	/* presumption of guilt */ | 
 | 	assert(errno);	/* non-zero errno is a precondition for calling */ | 
 | 	if (errno == EDOM) | 
 | 		PyErr_SetString(PyExc_ValueError, "math domain error"); | 
 |  | 
 | 	else if (errno == ERANGE) { | 
 | 		/* ANSI C generally requires libm functions to set ERANGE | 
 | 		 * on overflow, but also generally *allows* them to set | 
 | 		 * ERANGE on underflow too.  There's no consistency about | 
 | 		 * the latter across platforms. | 
 | 		 * Alas, C99 never requires that errno be set. | 
 | 		 * Here we suppress the underflow errors (libm functions | 
 | 		 * should return a zero on underflow, and +- HUGE_VAL on | 
 | 		 * overflow, so testing the result for zero suffices to | 
 | 		 * distinguish the cases). | 
 | 		 * | 
 | 		 * On some platforms (Ubuntu/ia64) it seems that errno can be | 
 | 		 * set to ERANGE for subnormal results that do *not* underflow | 
 | 		 * to zero.  So to be safe, we'll ignore ERANGE whenever the | 
 | 		 * function result is less than one in absolute value. | 
 | 		 */ | 
 | 		if (fabs(x) < 1.0) | 
 | 			result = 0; | 
 | 		else | 
 | 			PyErr_SetString(PyExc_OverflowError, | 
 | 					"math range error"); | 
 | 	} | 
 | 	else | 
 |                 /* Unexpected math error */ | 
 | 		PyErr_SetFromErrno(PyExc_ValueError); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |    math_1 is used to wrap a libm function f that takes a double | 
 |    arguments and returns a double. | 
 |  | 
 |    The error reporting follows these rules, which are designed to do | 
 |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
 |    platforms. | 
 |  | 
 |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
 |    - an infinite result from finite inputs causes OverflowError to be | 
 |      raised if can_overflow is 1, or raises ValueError if can_overflow | 
 |      is 0. | 
 |    - if the result is finite and errno == EDOM then ValueError is | 
 |      raised | 
 |    - if the result is finite and nonzero and errno == ERANGE then | 
 |      OverflowError is raised | 
 |  | 
 |    The last rule is used to catch overflow on platforms which follow | 
 |    C89 but for which HUGE_VAL is not an infinity. | 
 |  | 
 |    For the majority of one-argument functions these rules are enough | 
 |    to ensure that Python's functions behave as specified in 'Annex F' | 
 |    of the C99 standard, with the 'invalid' and 'divide-by-zero' | 
 |    floating-point exceptions mapping to Python's ValueError and the | 
 |    'overflow' floating-point exception mapping to OverflowError. | 
 |    math_1 only works for functions that don't have singularities *and* | 
 |    the possibility of overflow; fortunately, that covers everything we | 
 |    care about right now. | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_1(PyObject *arg, double (*func) (double), int can_overflow) | 
 | { | 
 | 	double x, r; | 
 | 	x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("in math_1", return 0); | 
 | 	r = (*func)(x); | 
 | 	PyFPE_END_PROTECT(r); | 
 | 	if (Py_IS_NAN(r)) { | 
 | 		if (!Py_IS_NAN(x)) | 
 | 			errno = EDOM; | 
 | 		else | 
 | 			errno = 0; | 
 | 	} | 
 | 	else if (Py_IS_INFINITY(r)) { | 
 | 		if (Py_IS_FINITE(x)) | 
 | 			errno = can_overflow ? ERANGE : EDOM; | 
 | 		else | 
 | 			errno = 0; | 
 | 	} | 
 | 	if (errno && is_error(r)) | 
 | 		return NULL; | 
 | 	else | 
 | 		return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | /* variant of math_1, to be used when the function being wrapped is known to | 
 |    set errno properly (that is, errno = EDOM for invalid or divide-by-zero, | 
 |    errno = ERANGE for overflow). */ | 
 |  | 
 | static PyObject * | 
 | math_1a(PyObject *arg, double (*func) (double)) | 
 | { | 
 | 	double x, r; | 
 | 	x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("in math_1a", return 0); | 
 | 	r = (*func)(x); | 
 | 	PyFPE_END_PROTECT(r); | 
 | 	if (errno && is_error(r)) | 
 | 		return NULL; | 
 | 	return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | /* | 
 |    math_2 is used to wrap a libm function f that takes two double | 
 |    arguments and returns a double. | 
 |  | 
 |    The error reporting follows these rules, which are designed to do | 
 |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
 |    platforms. | 
 |  | 
 |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
 |    - an infinite result from finite inputs causes OverflowError to be | 
 |      raised. | 
 |    - if the result is finite and errno == EDOM then ValueError is | 
 |      raised | 
 |    - if the result is finite and nonzero and errno == ERANGE then | 
 |      OverflowError is raised | 
 |  | 
 |    The last rule is used to catch overflow on platforms which follow | 
 |    C89 but for which HUGE_VAL is not an infinity. | 
 |  | 
 |    For most two-argument functions (copysign, fmod, hypot, atan2) | 
 |    these rules are enough to ensure that Python's functions behave as | 
 |    specified in 'Annex F' of the C99 standard, with the 'invalid' and | 
 |    'divide-by-zero' floating-point exceptions mapping to Python's | 
 |    ValueError and the 'overflow' floating-point exception mapping to | 
 |    OverflowError. | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_2(PyObject *args, double (*func) (double, double), char *funcname) | 
 | { | 
 | 	PyObject *ox, *oy; | 
 | 	double x, y, r; | 
 | 	if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) | 
 | 		return NULL; | 
 | 	x = PyFloat_AsDouble(ox); | 
 | 	y = PyFloat_AsDouble(oy); | 
 | 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("in math_2", return 0); | 
 | 	r = (*func)(x, y); | 
 | 	PyFPE_END_PROTECT(r); | 
 | 	if (Py_IS_NAN(r)) { | 
 | 		if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 | 			errno = EDOM; | 
 | 		else | 
 | 			errno = 0; | 
 | 	} | 
 | 	else if (Py_IS_INFINITY(r)) { | 
 | 		if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) | 
 | 			errno = ERANGE; | 
 | 		else | 
 | 			errno = 0; | 
 | 	} | 
 | 	if (errno && is_error(r)) | 
 | 		return NULL; | 
 | 	else | 
 | 		return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | #define FUNC1(funcname, func, can_overflow, docstring)			\ | 
 | 	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 | 		return math_1(args, func, can_overflow);		    \ | 
 | 	}\ | 
 |         PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | #define FUNC1A(funcname, func, docstring)				\ | 
 | 	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 | 		return math_1a(args, func);				\ | 
 | 	}\ | 
 |         PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | #define FUNC2(funcname, func, docstring) \ | 
 | 	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 | 		return math_2(args, func, #funcname); \ | 
 | 	}\ | 
 |         PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | FUNC1(acos, acos, 0, | 
 |       "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") | 
 | FUNC1(acosh, acosh, 0, | 
 |       "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.") | 
 | FUNC1(asin, asin, 0, | 
 |       "asin(x)\n\nReturn the arc sine (measured in radians) of x.") | 
 | FUNC1(asinh, asinh, 0, | 
 |       "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.") | 
 | FUNC1(atan, atan, 0, | 
 |       "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") | 
 | FUNC2(atan2, m_atan2, | 
 |       "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" | 
 |       "Unlike atan(y/x), the signs of both x and y are considered.") | 
 | FUNC1(atanh, atanh, 0, | 
 |       "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.") | 
 | FUNC1(ceil, ceil, 0, | 
 |       "ceil(x)\n\nReturn the ceiling of x as a float.\n" | 
 |       "This is the smallest integral value >= x.") | 
 | FUNC2(copysign, copysign, | 
 |       "copysign(x, y)\n\nReturn x with the sign of y.") | 
 | FUNC1(cos, cos, 0, | 
 |       "cos(x)\n\nReturn the cosine of x (measured in radians).") | 
 | FUNC1(cosh, cosh, 1, | 
 |       "cosh(x)\n\nReturn the hyperbolic cosine of x.") | 
 | FUNC1(exp, exp, 1, | 
 |       "exp(x)\n\nReturn e raised to the power of x.") | 
 | FUNC1(fabs, fabs, 0, | 
 |       "fabs(x)\n\nReturn the absolute value of the float x.") | 
 | FUNC1(floor, floor, 0, | 
 |       "floor(x)\n\nReturn the floor of x as a float.\n" | 
 |       "This is the largest integral value <= x.") | 
 | FUNC1A(gamma, m_tgamma, | 
 |       "gamma(x)\n\nGamma function at x.") | 
 | FUNC1(log1p, log1p, 1, | 
 |       "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n" | 
 |       "The result is computed in a way which is accurate for x near zero.") | 
 | FUNC1(sin, sin, 0, | 
 |       "sin(x)\n\nReturn the sine of x (measured in radians).") | 
 | FUNC1(sinh, sinh, 1, | 
 |       "sinh(x)\n\nReturn the hyperbolic sine of x.") | 
 | FUNC1(sqrt, sqrt, 0, | 
 |       "sqrt(x)\n\nReturn the square root of x.") | 
 | FUNC1(tan, tan, 0, | 
 |       "tan(x)\n\nReturn the tangent of x (measured in radians).") | 
 | FUNC1(tanh, tanh, 0, | 
 |       "tanh(x)\n\nReturn the hyperbolic tangent of x.") | 
 |  | 
 | /* Precision summation function as msum() by Raymond Hettinger in | 
 |    <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, | 
 |    enhanced with the exact partials sum and roundoff from Mark | 
 |    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. | 
 |    See those links for more details, proofs and other references. | 
 |  | 
 |    Note 1: IEEE 754R floating point semantics are assumed, | 
 |    but the current implementation does not re-establish special | 
 |    value semantics across iterations (i.e. handling -Inf + Inf). | 
 |  | 
 |    Note 2:  No provision is made for intermediate overflow handling; | 
 |    therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while | 
 |    sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the | 
 |    overflow of the first partial sum. | 
 |  | 
 |    Note 3: The intermediate values lo, yr, and hi are declared volatile so | 
 |    aggressive compilers won't algebraically reduce lo to always be exactly 0.0. | 
 |    Also, the volatile declaration forces the values to be stored in memory as | 
 |    regular doubles instead of extended long precision (80-bit) values.  This | 
 |    prevents double rounding because any addition or subtraction of two doubles | 
 |    can be resolved exactly into double-sized hi and lo values.  As long as the  | 
 |    hi value gets forced into a double before yr and lo are computed, the extra | 
 |    bits in downstream extended precision operations (x87 for example) will be | 
 |    exactly zero and therefore can be losslessly stored back into a double, | 
 |    thereby preventing double rounding. | 
 |  | 
 |    Note 4: A similar implementation is in Modules/cmathmodule.c. | 
 |    Be sure to update both when making changes. | 
 |  | 
 |    Note 5: The signature of math.fsum() differs from __builtin__.sum() | 
 |    because the start argument doesn't make sense in the context of | 
 |    accurate summation.  Since the partials table is collapsed before | 
 |    returning a result, sum(seq2, start=sum(seq1)) may not equal the | 
 |    accurate result returned by sum(itertools.chain(seq1, seq2)). | 
 | */ | 
 |  | 
 | #define NUM_PARTIALS  32  /* initial partials array size, on stack */ | 
 |  | 
 | /* Extend the partials array p[] by doubling its size. */ | 
 | static int                          /* non-zero on error */ | 
 | _fsum_realloc(double **p_ptr, Py_ssize_t  n, | 
 |              double  *ps,    Py_ssize_t *m_ptr) | 
 | { | 
 | 	void *v = NULL; | 
 | 	Py_ssize_t m = *m_ptr; | 
 |  | 
 | 	m += m;  /* double */ | 
 | 	if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) { | 
 | 		double *p = *p_ptr; | 
 | 		if (p == ps) { | 
 | 			v = PyMem_Malloc(sizeof(double) * m); | 
 | 			if (v != NULL) | 
 | 				memcpy(v, ps, sizeof(double) * n); | 
 | 		} | 
 | 		else | 
 | 			v = PyMem_Realloc(p, sizeof(double) * m); | 
 | 	} | 
 | 	if (v == NULL) {        /* size overflow or no memory */ | 
 | 		PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); | 
 | 		return 1; | 
 | 	} | 
 | 	*p_ptr = (double*) v; | 
 | 	*m_ptr = m; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Full precision summation of a sequence of floats. | 
 |  | 
 |    def msum(iterable): | 
 |        partials = []  # sorted, non-overlapping partial sums | 
 |        for x in iterable: | 
 |            i = 0 | 
 |            for y in partials: | 
 |                if abs(x) < abs(y): | 
 |                    x, y = y, x | 
 |                hi = x + y | 
 |                lo = y - (hi - x) | 
 |                if lo: | 
 |                    partials[i] = lo | 
 |                    i += 1 | 
 |                x = hi | 
 |            partials[i:] = [x] | 
 |        return sum_exact(partials) | 
 |  | 
 |    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo | 
 |    are exactly equal to x+y.  The inner loop applies hi/lo summation to each | 
 |    partial so that the list of partial sums remains exact. | 
 |  | 
 |    Sum_exact() adds the partial sums exactly and correctly rounds the final | 
 |    result (using the round-half-to-even rule).  The items in partials remain | 
 |    non-zero, non-special, non-overlapping and strictly increasing in | 
 |    magnitude, but possibly not all having the same sign. | 
 |  | 
 |    Depends on IEEE 754 arithmetic guarantees and half-even rounding. | 
 | */ | 
 |  | 
 | static PyObject* | 
 | math_fsum(PyObject *self, PyObject *seq) | 
 | { | 
 | 	PyObject *item, *iter, *sum = NULL; | 
 | 	Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; | 
 | 	double x, y, t, ps[NUM_PARTIALS], *p = ps; | 
 | 	double xsave, special_sum = 0.0, inf_sum = 0.0; | 
 | 	volatile double hi, yr, lo; | 
 |  | 
 | 	iter = PyObject_GetIter(seq); | 
 | 	if (iter == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) | 
 |  | 
 | 	for(;;) {           /* for x in iterable */ | 
 | 		assert(0 <= n && n <= m); | 
 | 		assert((m == NUM_PARTIALS && p == ps) || | 
 | 		       (m >  NUM_PARTIALS && p != NULL)); | 
 |  | 
 | 		item = PyIter_Next(iter); | 
 | 		if (item == NULL) { | 
 | 			if (PyErr_Occurred()) | 
 | 				goto _fsum_error; | 
 | 			break; | 
 | 		} | 
 | 		x = PyFloat_AsDouble(item); | 
 | 		Py_DECREF(item); | 
 | 		if (PyErr_Occurred()) | 
 | 			goto _fsum_error; | 
 |  | 
 | 		xsave = x; | 
 | 		for (i = j = 0; j < n; j++) {       /* for y in partials */ | 
 | 			y = p[j]; | 
 | 			if (fabs(x) < fabs(y)) { | 
 | 				t = x; x = y; y = t; | 
 | 			} | 
 | 			hi = x + y; | 
 | 			yr = hi - x; | 
 | 			lo = y - yr; | 
 | 			if (lo != 0.0) | 
 | 				p[i++] = lo; | 
 | 			x = hi; | 
 | 		} | 
 |  | 
 | 		n = i;                              /* ps[i:] = [x] */ | 
 | 		if (x != 0.0) { | 
 | 			if (! Py_IS_FINITE(x)) { | 
 | 				/* a nonfinite x could arise either as | 
 | 				   a result of intermediate overflow, or | 
 | 				   as a result of a nan or inf in the | 
 | 				   summands */ | 
 | 				if (Py_IS_FINITE(xsave)) { | 
 | 					PyErr_SetString(PyExc_OverflowError, | 
 | 					      "intermediate overflow in fsum"); | 
 | 					goto _fsum_error; | 
 | 				} | 
 | 				if (Py_IS_INFINITY(xsave)) | 
 | 					inf_sum += xsave; | 
 | 				special_sum += xsave; | 
 | 				/* reset partials */ | 
 | 				n = 0; | 
 | 			} | 
 | 			else if (n >= m && _fsum_realloc(&p, n, ps, &m)) | 
 | 				goto _fsum_error; | 
 | 			else | 
 | 				p[n++] = x; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (special_sum != 0.0) { | 
 | 		if (Py_IS_NAN(inf_sum)) | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 					"-inf + inf in fsum"); | 
 | 		else | 
 | 			sum = PyFloat_FromDouble(special_sum); | 
 | 		goto _fsum_error; | 
 | 	} | 
 |  | 
 | 	hi = 0.0; | 
 | 	if (n > 0) { | 
 | 		hi = p[--n]; | 
 | 		/* sum_exact(ps, hi) from the top, stop when the sum becomes | 
 | 		   inexact. */ | 
 | 		while (n > 0) { | 
 | 			x = hi; | 
 | 			y = p[--n]; | 
 | 			assert(fabs(y) < fabs(x)); | 
 | 			hi = x + y; | 
 | 			yr = hi - x; | 
 | 			lo = y - yr; | 
 | 			if (lo != 0.0) | 
 | 				break; | 
 | 		} | 
 | 		/* Make half-even rounding work across multiple partials. | 
 | 		   Needed so that sum([1e-16, 1, 1e16]) will round-up the last | 
 | 		   digit to two instead of down to zero (the 1e-16 makes the 1 | 
 | 		   slightly closer to two).  With a potential 1 ULP rounding | 
 | 		   error fixed-up, math.fsum() can guarantee commutativity. */ | 
 | 		if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || | 
 | 			      (lo > 0.0 && p[n-1] > 0.0))) { | 
 | 			y = lo * 2.0; | 
 | 			x = hi + y; | 
 | 			yr = x - hi; | 
 | 			if (y == yr) | 
 | 				hi = x; | 
 | 		} | 
 | 	} | 
 | 	sum = PyFloat_FromDouble(hi); | 
 |  | 
 | _fsum_error: | 
 | 	PyFPE_END_PROTECT(hi) | 
 | 	Py_DECREF(iter); | 
 | 	if (p != ps) | 
 | 		PyMem_Free(p); | 
 | 	return sum; | 
 | } | 
 |  | 
 | #undef NUM_PARTIALS | 
 |  | 
 | PyDoc_STRVAR(math_fsum_doc, | 
 | "fsum(iterable)\n\n\ | 
 | Return an accurate floating point sum of values in the iterable.\n\ | 
 | Assumes IEEE-754 floating point arithmetic."); | 
 |  | 
 | static PyObject * | 
 | math_factorial(PyObject *self, PyObject *arg) | 
 | { | 
 | 	long i, x; | 
 | 	PyObject *result, *iobj, *newresult; | 
 |  | 
 | 	if (PyFloat_Check(arg)) { | 
 | 		double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); | 
 | 		if (dx != floor(dx)) { | 
 | 			PyErr_SetString(PyExc_ValueError,  | 
 | 				"factorial() only accepts integral values"); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	x = PyInt_AsLong(arg); | 
 | 	if (x == -1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	if (x < 0) { | 
 | 		PyErr_SetString(PyExc_ValueError,  | 
 | 			"factorial() not defined for negative values"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	result = (PyObject *)PyInt_FromLong(1); | 
 | 	if (result == NULL) | 
 | 		return NULL; | 
 | 	for (i=1 ; i<=x ; i++) { | 
 | 		iobj = (PyObject *)PyInt_FromLong(i); | 
 | 		if (iobj == NULL) | 
 | 			goto error; | 
 | 		newresult = PyNumber_Multiply(result, iobj); | 
 | 		Py_DECREF(iobj); | 
 | 		if (newresult == NULL) | 
 | 			goto error; | 
 | 		Py_DECREF(result); | 
 | 		result = newresult; | 
 | 	} | 
 | 	return result; | 
 |  | 
 | error: | 
 | 	Py_DECREF(result); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_factorial_doc, | 
 | "factorial(x) -> Integral\n" | 
 | "\n" | 
 | "Find x!. Raise a ValueError if x is negative or non-integral."); | 
 |  | 
 | static PyObject * | 
 | math_trunc(PyObject *self, PyObject *number) | 
 | { | 
 | 	return PyObject_CallMethod(number, "__trunc__", NULL); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_trunc_doc, | 
 | "trunc(x:Real) -> Integral\n" | 
 | "\n" | 
 | "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method."); | 
 |  | 
 | static PyObject * | 
 | math_frexp(PyObject *self, PyObject *arg) | 
 | { | 
 | 	int i; | 
 | 	double x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	/* deal with special cases directly, to sidestep platform | 
 | 	   differences */ | 
 | 	if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { | 
 | 		i = 0; | 
 | 	} | 
 | 	else { | 
 | 		PyFPE_START_PROTECT("in math_frexp", return 0); | 
 | 		x = frexp(x, &i); | 
 | 		PyFPE_END_PROTECT(x); | 
 | 	} | 
 | 	return Py_BuildValue("(di)", x, i); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_frexp_doc, | 
 | "frexp(x)\n" | 
 | "\n" | 
 | "Return the mantissa and exponent of x, as pair (m, e).\n" | 
 | "m is a float and e is an int, such that x = m * 2.**e.\n" | 
 | "If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0."); | 
 |  | 
 | static PyObject * | 
 | math_ldexp(PyObject *self, PyObject *args) | 
 | { | 
 | 	double x, r; | 
 | 	PyObject *oexp; | 
 | 	long exp; | 
 | 	if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp)) | 
 | 		return NULL; | 
 |  | 
 | 	if (PyLong_Check(oexp)) { | 
 | 		/* on overflow, replace exponent with either LONG_MAX | 
 | 		   or LONG_MIN, depending on the sign. */ | 
 | 		exp = PyLong_AsLong(oexp); | 
 | 		if (exp == -1 && PyErr_Occurred()) { | 
 | 			if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | 
 | 				if (Py_SIZE(oexp) < 0) { | 
 | 					exp = LONG_MIN; | 
 | 				} | 
 | 				else { | 
 | 					exp = LONG_MAX; | 
 | 				} | 
 | 				PyErr_Clear(); | 
 | 			} | 
 | 			else { | 
 | 				/* propagate any unexpected exception */ | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	else if (PyInt_Check(oexp)) { | 
 | 		exp = PyInt_AS_LONG(oexp); | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"Expected an int or long as second argument " | 
 | 				"to ldexp."); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (x == 0. || !Py_IS_FINITE(x)) { | 
 | 		/* NaNs, zeros and infinities are returned unchanged */ | 
 | 		r = x; | 
 | 		errno = 0; | 
 | 	} else if (exp > INT_MAX) { | 
 | 		/* overflow */ | 
 | 		r = copysign(Py_HUGE_VAL, x); | 
 | 		errno = ERANGE; | 
 | 	} else if (exp < INT_MIN) { | 
 | 		/* underflow to +-0 */ | 
 | 		r = copysign(0., x); | 
 | 		errno = 0; | 
 | 	} else { | 
 | 		errno = 0; | 
 | 		PyFPE_START_PROTECT("in math_ldexp", return 0); | 
 | 		r = ldexp(x, (int)exp); | 
 | 		PyFPE_END_PROTECT(r); | 
 | 		if (Py_IS_INFINITY(r)) | 
 | 			errno = ERANGE; | 
 | 	} | 
 |  | 
 | 	if (errno && is_error(r)) | 
 | 		return NULL; | 
 | 	return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_ldexp_doc, | 
 | "ldexp(x, i)\n\n\ | 
 | Return x * (2**i)."); | 
 |  | 
 | static PyObject * | 
 | math_modf(PyObject *self, PyObject *arg) | 
 | { | 
 | 	double y, x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	/* some platforms don't do the right thing for NaNs and | 
 | 	   infinities, so we take care of special cases directly. */ | 
 | 	if (!Py_IS_FINITE(x)) { | 
 | 		if (Py_IS_INFINITY(x)) | 
 | 			return Py_BuildValue("(dd)", copysign(0., x), x); | 
 | 		else if (Py_IS_NAN(x)) | 
 | 			return Py_BuildValue("(dd)", x, x); | 
 | 	}           | 
 |  | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("in math_modf", return 0); | 
 | 	x = modf(x, &y); | 
 | 	PyFPE_END_PROTECT(x); | 
 | 	return Py_BuildValue("(dd)", x, y); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_modf_doc, | 
 | "modf(x)\n" | 
 | "\n" | 
 | "Return the fractional and integer parts of x.  Both results carry the sign\n" | 
 | "of x and are floats."); | 
 |  | 
 | /* A decent logarithm is easy to compute even for huge longs, but libm can't | 
 |    do that by itself -- loghelper can.  func is log or log10, and name is | 
 |    "log" or "log10".  Note that overflow isn't possible:  a long can contain | 
 |    no more than INT_MAX * SHIFT bits, so has value certainly less than | 
 |    2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is | 
 |    small enough to fit in an IEEE single.  log and log10 are even smaller. | 
 | */ | 
 |  | 
 | static PyObject* | 
 | loghelper(PyObject* arg, double (*func)(double), char *funcname) | 
 | { | 
 | 	/* If it is long, do it ourselves. */ | 
 | 	if (PyLong_Check(arg)) { | 
 | 		double x; | 
 | 		int e; | 
 | 		x = _PyLong_AsScaledDouble(arg, &e); | 
 | 		if (x <= 0.0) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 					"math domain error"); | 
 | 			return NULL; | 
 | 		} | 
 | 		/* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~= | 
 | 		   log(x) + log(2) * e * PyLong_SHIFT. | 
 | 		   CAUTION:  e*PyLong_SHIFT may overflow using int arithmetic, | 
 | 		   so force use of double. */ | 
 | 		x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0); | 
 | 		return PyFloat_FromDouble(x); | 
 | 	} | 
 |  | 
 | 	/* Else let libm handle it by itself. */ | 
 | 	return math_1(arg, func, 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | math_log(PyObject *self, PyObject *args) | 
 | { | 
 | 	PyObject *arg; | 
 | 	PyObject *base = NULL; | 
 | 	PyObject *num, *den; | 
 | 	PyObject *ans; | 
 |  | 
 | 	if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base)) | 
 | 		return NULL; | 
 |  | 
 | 	num = loghelper(arg, m_log, "log"); | 
 | 	if (num == NULL || base == NULL) | 
 | 		return num; | 
 |  | 
 | 	den = loghelper(base, m_log, "log"); | 
 | 	if (den == NULL) { | 
 | 		Py_DECREF(num); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ans = PyNumber_Divide(num, den); | 
 | 	Py_DECREF(num); | 
 | 	Py_DECREF(den); | 
 | 	return ans; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_log_doc, | 
 | "log(x[, base])\n\n\ | 
 | Return the logarithm of x to the given base.\n\ | 
 | If the base not specified, returns the natural logarithm (base e) of x."); | 
 |  | 
 | static PyObject * | 
 | math_log10(PyObject *self, PyObject *arg) | 
 | { | 
 | 	return loghelper(arg, m_log10, "log10"); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_log10_doc, | 
 | "log10(x)\n\nReturn the base 10 logarithm of x."); | 
 |  | 
 | static PyObject * | 
 | math_fmod(PyObject *self, PyObject *args) | 
 | { | 
 | 	PyObject *ox, *oy; | 
 | 	double r, x, y; | 
 | 	if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) | 
 | 		return NULL; | 
 | 	x = PyFloat_AsDouble(ox); | 
 | 	y = PyFloat_AsDouble(oy); | 
 | 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	/* fmod(x, +/-Inf) returns x for finite x. */ | 
 | 	if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) | 
 | 		return PyFloat_FromDouble(x); | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("in math_fmod", return 0); | 
 | 	r = fmod(x, y); | 
 | 	PyFPE_END_PROTECT(r); | 
 | 	if (Py_IS_NAN(r)) { | 
 | 		if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 | 			errno = EDOM; | 
 | 		else | 
 | 			errno = 0; | 
 | 	} | 
 | 	if (errno && is_error(r)) | 
 | 		return NULL; | 
 | 	else | 
 | 		return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_fmod_doc, | 
 | "fmod(x, y)\n\nReturn fmod(x, y), according to platform C." | 
 | "  x % y may differ."); | 
 |  | 
 | static PyObject * | 
 | math_hypot(PyObject *self, PyObject *args) | 
 | { | 
 | 	PyObject *ox, *oy; | 
 | 	double r, x, y; | 
 | 	if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) | 
 | 		return NULL; | 
 | 	x = PyFloat_AsDouble(ox); | 
 | 	y = PyFloat_AsDouble(oy); | 
 | 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	/* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ | 
 | 	if (Py_IS_INFINITY(x)) | 
 | 		return PyFloat_FromDouble(fabs(x)); | 
 | 	if (Py_IS_INFINITY(y)) | 
 | 		return PyFloat_FromDouble(fabs(y)); | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("in math_hypot", return 0); | 
 | 	r = hypot(x, y); | 
 | 	PyFPE_END_PROTECT(r); | 
 | 	if (Py_IS_NAN(r)) { | 
 | 		if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 | 			errno = EDOM; | 
 | 		else | 
 | 			errno = 0; | 
 | 	} | 
 | 	else if (Py_IS_INFINITY(r)) { | 
 | 		if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) | 
 | 			errno = ERANGE; | 
 | 		else | 
 | 			errno = 0; | 
 | 	} | 
 | 	if (errno && is_error(r)) | 
 | 		return NULL; | 
 | 	else | 
 | 		return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_hypot_doc, | 
 | "hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); | 
 |  | 
 | /* pow can't use math_2, but needs its own wrapper: the problem is | 
 |    that an infinite result can arise either as a result of overflow | 
 |    (in which case OverflowError should be raised) or as a result of | 
 |    e.g. 0.**-5. (for which ValueError needs to be raised.) | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_pow(PyObject *self, PyObject *args) | 
 | { | 
 | 	PyObject *ox, *oy; | 
 | 	double r, x, y; | 
 | 	int odd_y; | 
 |  | 
 | 	if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) | 
 | 		return NULL; | 
 | 	x = PyFloat_AsDouble(ox); | 
 | 	y = PyFloat_AsDouble(oy); | 
 | 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 | 		return NULL; | 
 |  | 
 | 	/* deal directly with IEEE specials, to cope with problems on various | 
 | 	   platforms whose semantics don't exactly match C99 */ | 
 | 	r = 0.; /* silence compiler warning */ | 
 | 	if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { | 
 | 		errno = 0; | 
 | 		if (Py_IS_NAN(x)) | 
 | 			r = y == 0. ? 1. : x; /* NaN**0 = 1 */ | 
 | 		else if (Py_IS_NAN(y)) | 
 | 			r = x == 1. ? 1. : y; /* 1**NaN = 1 */ | 
 | 		else if (Py_IS_INFINITY(x)) { | 
 | 			odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; | 
 | 			if (y > 0.) | 
 | 				r = odd_y ? x : fabs(x); | 
 | 			else if (y == 0.) | 
 | 				r = 1.; | 
 | 			else /* y < 0. */ | 
 | 				r = odd_y ? copysign(0., x) : 0.; | 
 | 		} | 
 | 		else if (Py_IS_INFINITY(y)) { | 
 | 			if (fabs(x) == 1.0) | 
 | 				r = 1.; | 
 | 			else if (y > 0. && fabs(x) > 1.0) | 
 | 				r = y; | 
 | 			else if (y < 0. && fabs(x) < 1.0) { | 
 | 				r = -y; /* result is +inf */ | 
 | 				if (x == 0.) /* 0**-inf: divide-by-zero */ | 
 | 					errno = EDOM; | 
 | 			} | 
 | 			else | 
 | 				r = 0.; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* let libm handle finite**finite */ | 
 | 		errno = 0; | 
 | 		PyFPE_START_PROTECT("in math_pow", return 0); | 
 | 		r = pow(x, y); | 
 | 		PyFPE_END_PROTECT(r); | 
 | 		/* a NaN result should arise only from (-ve)**(finite | 
 | 		   non-integer); in this case we want to raise ValueError. */ | 
 | 		if (!Py_IS_FINITE(r)) { | 
 | 			if (Py_IS_NAN(r)) { | 
 | 				errno = EDOM; | 
 | 			} | 
 | 			/*  | 
 | 			   an infinite result here arises either from: | 
 | 			   (A) (+/-0.)**negative (-> divide-by-zero) | 
 | 			   (B) overflow of x**y with x and y finite | 
 | 			*/ | 
 | 			else if (Py_IS_INFINITY(r)) { | 
 | 				if (x == 0.) | 
 | 					errno = EDOM; | 
 | 				else | 
 | 					errno = ERANGE; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (errno && is_error(r)) | 
 | 		return NULL; | 
 | 	else | 
 | 		return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_pow_doc, | 
 | "pow(x, y)\n\nReturn x**y (x to the power of y)."); | 
 |  | 
 | static const double degToRad = Py_MATH_PI / 180.0; | 
 | static const double radToDeg = 180.0 / Py_MATH_PI; | 
 |  | 
 | static PyObject * | 
 | math_degrees(PyObject *self, PyObject *arg) | 
 | { | 
 | 	double x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyFloat_FromDouble(x * radToDeg); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_degrees_doc, | 
 | "degrees(x)\n\n\ | 
 | Convert angle x from radians to degrees."); | 
 |  | 
 | static PyObject * | 
 | math_radians(PyObject *self, PyObject *arg) | 
 | { | 
 | 	double x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyFloat_FromDouble(x * degToRad); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_radians_doc, | 
 | "radians(x)\n\n\ | 
 | Convert angle x from degrees to radians."); | 
 |  | 
 | static PyObject * | 
 | math_isnan(PyObject *self, PyObject *arg) | 
 | { | 
 | 	double x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyBool_FromLong((long)Py_IS_NAN(x)); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_isnan_doc, | 
 | "isnan(x) -> bool\n\n\ | 
 | Check if float x is not a number (NaN)."); | 
 |  | 
 | static PyObject * | 
 | math_isinf(PyObject *self, PyObject *arg) | 
 | { | 
 | 	double x = PyFloat_AsDouble(arg); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyBool_FromLong((long)Py_IS_INFINITY(x)); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_isinf_doc, | 
 | "isinf(x) -> bool\n\n\ | 
 | Check if float x is infinite (positive or negative)."); | 
 |  | 
 | static PyMethodDef math_methods[] = { | 
 | 	{"acos",	math_acos,	METH_O,		math_acos_doc}, | 
 | 	{"acosh",	math_acosh,	METH_O,		math_acosh_doc}, | 
 | 	{"asin",	math_asin,	METH_O,		math_asin_doc}, | 
 | 	{"asinh",	math_asinh,	METH_O,		math_asinh_doc}, | 
 | 	{"atan",	math_atan,	METH_O,		math_atan_doc}, | 
 | 	{"atan2",	math_atan2,	METH_VARARGS,	math_atan2_doc}, | 
 | 	{"atanh",	math_atanh,	METH_O,		math_atanh_doc}, | 
 | 	{"ceil",	math_ceil,	METH_O,		math_ceil_doc}, | 
 | 	{"copysign",	math_copysign,	METH_VARARGS,	math_copysign_doc}, | 
 | 	{"cos",		math_cos,	METH_O,		math_cos_doc}, | 
 | 	{"cosh",	math_cosh,	METH_O,		math_cosh_doc}, | 
 | 	{"degrees",	math_degrees,	METH_O,		math_degrees_doc}, | 
 | 	{"exp",		math_exp,	METH_O,		math_exp_doc}, | 
 | 	{"fabs",	math_fabs,	METH_O,		math_fabs_doc}, | 
 | 	{"factorial",	math_factorial,	METH_O,		math_factorial_doc}, | 
 | 	{"floor",	math_floor,	METH_O,		math_floor_doc}, | 
 | 	{"fmod",	math_fmod,	METH_VARARGS,	math_fmod_doc}, | 
 | 	{"frexp",	math_frexp,	METH_O,		math_frexp_doc}, | 
 | 	{"fsum",	math_fsum,	METH_O,		math_fsum_doc}, | 
 | 	{"gamma",	math_gamma,	METH_O,		math_gamma_doc}, | 
 | 	{"hypot",	math_hypot,	METH_VARARGS,	math_hypot_doc}, | 
 | 	{"isinf",	math_isinf,	METH_O,		math_isinf_doc}, | 
 | 	{"isnan",	math_isnan,	METH_O,		math_isnan_doc}, | 
 | 	{"ldexp",	math_ldexp,	METH_VARARGS,	math_ldexp_doc}, | 
 | 	{"log",		math_log,	METH_VARARGS,	math_log_doc}, | 
 | 	{"log1p",	math_log1p,	METH_O,		math_log1p_doc}, | 
 | 	{"log10",	math_log10,	METH_O,		math_log10_doc}, | 
 | 	{"modf",	math_modf,	METH_O,		math_modf_doc}, | 
 | 	{"pow",		math_pow,	METH_VARARGS,	math_pow_doc}, | 
 | 	{"radians",	math_radians,	METH_O,		math_radians_doc}, | 
 | 	{"sin",		math_sin,	METH_O,		math_sin_doc}, | 
 | 	{"sinh",	math_sinh,	METH_O,		math_sinh_doc}, | 
 | 	{"sqrt",	math_sqrt,	METH_O,		math_sqrt_doc}, | 
 | 	{"tan",		math_tan,	METH_O,		math_tan_doc}, | 
 | 	{"tanh",	math_tanh,	METH_O,		math_tanh_doc}, | 
 | 	{"trunc",	math_trunc,	METH_O,		math_trunc_doc}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 |  | 
 | PyDoc_STRVAR(module_doc, | 
 | "This module is always available.  It provides access to the\n" | 
 | "mathematical functions defined by the C standard."); | 
 |  | 
 | PyMODINIT_FUNC | 
 | initmath(void) | 
 | { | 
 | 	PyObject *m; | 
 |  | 
 | 	m = Py_InitModule3("math", math_methods, module_doc); | 
 | 	if (m == NULL) | 
 | 		goto finally; | 
 |  | 
 | 	PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); | 
 | 	PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); | 
 |  | 
 |     finally: | 
 | 	return; | 
 | } |