| /* Math module -- standard C math library functions, pi and e */ |
| |
| /* Here are some comments from Tim Peters, extracted from the |
| discussion attached to http://bugs.python.org/issue1640. They |
| describe the general aims of the math module with respect to |
| special values, IEEE-754 floating-point exceptions, and Python |
| exceptions. |
| |
| These are the "spirit of 754" rules: |
| |
| 1. If the mathematical result is a real number, but of magnitude too |
| large to approximate by a machine float, overflow is signaled and the |
| result is an infinity (with the appropriate sign). |
| |
| 2. If the mathematical result is a real number, but of magnitude too |
| small to approximate by a machine float, underflow is signaled and the |
| result is a zero (with the appropriate sign). |
| |
| 3. At a singularity (a value x such that the limit of f(y) as y |
| approaches x exists and is an infinity), "divide by zero" is signaled |
| and the result is an infinity (with the appropriate sign). This is |
| complicated a little by that the left-side and right-side limits may |
| not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 |
| from the positive or negative directions. In that specific case, the |
| sign of the zero determines the result of 1/0. |
| |
| 4. At a point where a function has no defined result in the extended |
| reals (i.e., the reals plus an infinity or two), invalid operation is |
| signaled and a NaN is returned. |
| |
| And these are what Python has historically /tried/ to do (but not |
| always successfully, as platform libm behavior varies a lot): |
| |
| For #1, raise OverflowError. |
| |
| For #2, return a zero (with the appropriate sign if that happens by |
| accident ;-)). |
| |
| For #3 and #4, raise ValueError. It may have made sense to raise |
| Python's ZeroDivisionError in #3, but historically that's only been |
| raised for division by zero and mod by zero. |
| |
| */ |
| |
| /* |
| In general, on an IEEE-754 platform the aim is to follow the C99 |
| standard, including Annex 'F', whenever possible. Where the |
| standard recommends raising the 'divide-by-zero' or 'invalid' |
| floating-point exceptions, Python should raise a ValueError. Where |
| the standard recommends raising 'overflow', Python should raise an |
| OverflowError. In all other circumstances a value should be |
| returned. |
| */ |
| |
| #include "Python.h" |
| #include "longintrepr.h" /* just for SHIFT */ |
| |
| #ifdef _OSF_SOURCE |
| /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ |
| extern double copysign(double, double); |
| #endif |
| |
| /* Call is_error when errno != 0, and where x is the result libm |
| * returned. is_error will usually set up an exception and return |
| * true (1), but may return false (0) without setting up an exception. |
| */ |
| static int |
| is_error(double x) |
| { |
| int result = 1; /* presumption of guilt */ |
| assert(errno); /* non-zero errno is a precondition for calling */ |
| if (errno == EDOM) |
| PyErr_SetString(PyExc_ValueError, "math domain error"); |
| |
| else if (errno == ERANGE) { |
| /* ANSI C generally requires libm functions to set ERANGE |
| * on overflow, but also generally *allows* them to set |
| * ERANGE on underflow too. There's no consistency about |
| * the latter across platforms. |
| * Alas, C99 never requires that errno be set. |
| * Here we suppress the underflow errors (libm functions |
| * should return a zero on underflow, and +- HUGE_VAL on |
| * overflow, so testing the result for zero suffices to |
| * distinguish the cases). |
| * |
| * On some platforms (Ubuntu/ia64) it seems that errno can be |
| * set to ERANGE for subnormal results that do *not* underflow |
| * to zero. So to be safe, we'll ignore ERANGE whenever the |
| * function result is less than one in absolute value. |
| */ |
| if (fabs(x) < 1.0) |
| result = 0; |
| else |
| PyErr_SetString(PyExc_OverflowError, |
| "math range error"); |
| } |
| else |
| /* Unexpected math error */ |
| PyErr_SetFromErrno(PyExc_ValueError); |
| return result; |
| } |
| |
| /* |
| wrapper for atan2 that deals directly with special cases before |
| delegating to the platform libm for the remaining cases. This |
| is necessary to get consistent behaviour across platforms. |
| Windows, FreeBSD and alpha Tru64 are amongst platforms that don't |
| always follow C99. |
| */ |
| |
| static double |
| m_atan2(double y, double x) |
| { |
| if (Py_IS_NAN(x) || Py_IS_NAN(y)) |
| return Py_NAN; |
| if (Py_IS_INFINITY(y)) { |
| if (Py_IS_INFINITY(x)) { |
| if (copysign(1., x) == 1.) |
| /* atan2(+-inf, +inf) == +-pi/4 */ |
| return copysign(0.25*Py_MATH_PI, y); |
| else |
| /* atan2(+-inf, -inf) == +-pi*3/4 */ |
| return copysign(0.75*Py_MATH_PI, y); |
| } |
| /* atan2(+-inf, x) == +-pi/2 for finite x */ |
| return copysign(0.5*Py_MATH_PI, y); |
| } |
| if (Py_IS_INFINITY(x) || y == 0.) { |
| if (copysign(1., x) == 1.) |
| /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ |
| return copysign(0., y); |
| else |
| /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ |
| return copysign(Py_MATH_PI, y); |
| } |
| return atan2(y, x); |
| } |
| |
| /* |
| math_1 is used to wrap a libm function f that takes a double |
| arguments and returns a double. |
| |
| The error reporting follows these rules, which are designed to do |
| the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
| platforms. |
| |
| - a NaN result from non-NaN inputs causes ValueError to be raised |
| - an infinite result from finite inputs causes OverflowError to be |
| raised if can_overflow is 1, or raises ValueError if can_overflow |
| is 0. |
| - if the result is finite and errno == EDOM then ValueError is |
| raised |
| - if the result is finite and nonzero and errno == ERANGE then |
| OverflowError is raised |
| |
| The last rule is used to catch overflow on platforms which follow |
| C89 but for which HUGE_VAL is not an infinity. |
| |
| For the majority of one-argument functions these rules are enough |
| to ensure that Python's functions behave as specified in 'Annex F' |
| of the C99 standard, with the 'invalid' and 'divide-by-zero' |
| floating-point exceptions mapping to Python's ValueError and the |
| 'overflow' floating-point exception mapping to OverflowError. |
| math_1 only works for functions that don't have singularities *and* |
| the possibility of overflow; fortunately, that covers everything we |
| care about right now. |
| */ |
| |
| static PyObject * |
| math_1(PyObject *arg, double (*func) (double), int can_overflow) |
| { |
| double x, r; |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| errno = 0; |
| PyFPE_START_PROTECT("in math_1", return 0); |
| r = (*func)(x); |
| PyFPE_END_PROTECT(r); |
| if (Py_IS_NAN(r)) { |
| if (!Py_IS_NAN(x)) |
| errno = EDOM; |
| else |
| errno = 0; |
| } |
| else if (Py_IS_INFINITY(r)) { |
| if (Py_IS_FINITE(x)) |
| errno = can_overflow ? ERANGE : EDOM; |
| else |
| errno = 0; |
| } |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| /* |
| math_2 is used to wrap a libm function f that takes two double |
| arguments and returns a double. |
| |
| The error reporting follows these rules, which are designed to do |
| the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
| platforms. |
| |
| - a NaN result from non-NaN inputs causes ValueError to be raised |
| - an infinite result from finite inputs causes OverflowError to be |
| raised. |
| - if the result is finite and errno == EDOM then ValueError is |
| raised |
| - if the result is finite and nonzero and errno == ERANGE then |
| OverflowError is raised |
| |
| The last rule is used to catch overflow on platforms which follow |
| C89 but for which HUGE_VAL is not an infinity. |
| |
| For most two-argument functions (copysign, fmod, hypot, atan2) |
| these rules are enough to ensure that Python's functions behave as |
| specified in 'Annex F' of the C99 standard, with the 'invalid' and |
| 'divide-by-zero' floating-point exceptions mapping to Python's |
| ValueError and the 'overflow' floating-point exception mapping to |
| OverflowError. |
| */ |
| |
| static PyObject * |
| math_2(PyObject *args, double (*func) (double, double), char *funcname) |
| { |
| PyObject *ox, *oy; |
| double x, y, r; |
| if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) |
| return NULL; |
| x = PyFloat_AsDouble(ox); |
| y = PyFloat_AsDouble(oy); |
| if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
| return NULL; |
| errno = 0; |
| PyFPE_START_PROTECT("in math_2", return 0); |
| r = (*func)(x, y); |
| PyFPE_END_PROTECT(r); |
| if (Py_IS_NAN(r)) { |
| if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
| errno = EDOM; |
| else |
| errno = 0; |
| } |
| else if (Py_IS_INFINITY(r)) { |
| if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
| errno = ERANGE; |
| else |
| errno = 0; |
| } |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| #define FUNC1(funcname, func, can_overflow, docstring) \ |
| static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
| return math_1(args, func, can_overflow); \ |
| }\ |
| PyDoc_STRVAR(math_##funcname##_doc, docstring); |
| |
| #define FUNC2(funcname, func, docstring) \ |
| static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
| return math_2(args, func, #funcname); \ |
| }\ |
| PyDoc_STRVAR(math_##funcname##_doc, docstring); |
| |
| FUNC1(acos, acos, 0, |
| "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") |
| FUNC1(acosh, acosh, 0, |
| "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.") |
| FUNC1(asin, asin, 0, |
| "asin(x)\n\nReturn the arc sine (measured in radians) of x.") |
| FUNC1(asinh, asinh, 0, |
| "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.") |
| FUNC1(atan, atan, 0, |
| "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") |
| FUNC2(atan2, m_atan2, |
| "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" |
| "Unlike atan(y/x), the signs of both x and y are considered.") |
| FUNC1(atanh, atanh, 0, |
| "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.") |
| FUNC1(ceil, ceil, 0, |
| "ceil(x)\n\nReturn the ceiling of x as a float.\n" |
| "This is the smallest integral value >= x.") |
| FUNC2(copysign, copysign, |
| "copysign(x,y)\n\nReturn x with the sign of y.") |
| FUNC1(cos, cos, 0, |
| "cos(x)\n\nReturn the cosine of x (measured in radians).") |
| FUNC1(cosh, cosh, 1, |
| "cosh(x)\n\nReturn the hyperbolic cosine of x.") |
| FUNC1(exp, exp, 1, |
| "exp(x)\n\nReturn e raised to the power of x.") |
| FUNC1(fabs, fabs, 0, |
| "fabs(x)\n\nReturn the absolute value of the float x.") |
| FUNC1(floor, floor, 0, |
| "floor(x)\n\nReturn the floor of x as a float.\n" |
| "This is the largest integral value <= x.") |
| FUNC1(log1p, log1p, 1, |
| "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\ |
| The result is computed in a way which is accurate for x near zero.") |
| FUNC1(sin, sin, 0, |
| "sin(x)\n\nReturn the sine of x (measured in radians).") |
| FUNC1(sinh, sinh, 1, |
| "sinh(x)\n\nReturn the hyperbolic sine of x.") |
| FUNC1(sqrt, sqrt, 0, |
| "sqrt(x)\n\nReturn the square root of x.") |
| FUNC1(tan, tan, 0, |
| "tan(x)\n\nReturn the tangent of x (measured in radians).") |
| FUNC1(tanh, tanh, 0, |
| "tanh(x)\n\nReturn the hyperbolic tangent of x.") |
| |
| /* Precision summation function as msum() by Raymond Hettinger in |
| <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, |
| enhanced with the exact partials sum and roundoff from Mark |
| Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. |
| See those links for more details, proofs and other references. |
| |
| Note 1: IEEE 754R floating point semantics are assumed, |
| but the current implementation does not re-establish special |
| value semantics across iterations (i.e. handling -Inf + Inf). |
| |
| Note 2: No provision is made for intermediate overflow handling; |
| therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while |
| sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the |
| overflow of the first partial sum. |
| |
| Note 3: The intermediate values lo, yr, and hi are declared volatile so |
| aggressive compilers won't algebraically reduce lo to always be exactly 0.0. |
| Also, the volatile declaration forces the values to be stored in memory as |
| regular doubles instead of extended long precision (80-bit) values. This |
| prevents double rounding because any addition or subtraction of two doubles |
| can be resolved exactly into double-sized hi and lo values. As long as the |
| hi value gets forced into a double before yr and lo are computed, the extra |
| bits in downstream extended precision operations (x87 for example) will be |
| exactly zero and therefore can be losslessly stored back into a double, |
| thereby preventing double rounding. |
| |
| Note 4: A similar implementation is in Modules/cmathmodule.c. |
| Be sure to update both when making changes. |
| |
| Note 5: The signature of math.fsum() differs from __builtin__.sum() |
| because the start argument doesn't make sense in the context of |
| accurate summation. Since the partials table is collapsed before |
| returning a result, sum(seq2, start=sum(seq1)) may not equal the |
| accurate result returned by sum(itertools.chain(seq1, seq2)). |
| */ |
| |
| #define NUM_PARTIALS 32 /* initial partials array size, on stack */ |
| |
| /* Extend the partials array p[] by doubling its size. */ |
| static int /* non-zero on error */ |
| _fsum_realloc(double **p_ptr, Py_ssize_t n, |
| double *ps, Py_ssize_t *m_ptr) |
| { |
| void *v = NULL; |
| Py_ssize_t m = *m_ptr; |
| |
| m += m; /* double */ |
| if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) { |
| double *p = *p_ptr; |
| if (p == ps) { |
| v = PyMem_Malloc(sizeof(double) * m); |
| if (v != NULL) |
| memcpy(v, ps, sizeof(double) * n); |
| } |
| else |
| v = PyMem_Realloc(p, sizeof(double) * m); |
| } |
| if (v == NULL) { /* size overflow or no memory */ |
| PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); |
| return 1; |
| } |
| *p_ptr = (double*) v; |
| *m_ptr = m; |
| return 0; |
| } |
| |
| /* Full precision summation of a sequence of floats. |
| |
| def msum(iterable): |
| partials = [] # sorted, non-overlapping partial sums |
| for x in iterable: |
| i = 0 |
| for y in partials: |
| if abs(x) < abs(y): |
| x, y = y, x |
| hi = x + y |
| lo = y - (hi - x) |
| if lo: |
| partials[i] = lo |
| i += 1 |
| x = hi |
| partials[i:] = [x] |
| return sum_exact(partials) |
| |
| Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo |
| are exactly equal to x+y. The inner loop applies hi/lo summation to each |
| partial so that the list of partial sums remains exact. |
| |
| Sum_exact() adds the partial sums exactly and correctly rounds the final |
| result (using the round-half-to-even rule). The items in partials remain |
| non-zero, non-special, non-overlapping and strictly increasing in |
| magnitude, but possibly not all having the same sign. |
| |
| Depends on IEEE 754 arithmetic guarantees and half-even rounding. |
| */ |
| |
| static PyObject* |
| math_fsum(PyObject *self, PyObject *seq) |
| { |
| PyObject *item, *iter, *sum = NULL; |
| Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; |
| double x, y, t, ps[NUM_PARTIALS], *p = ps; |
| double xsave, special_sum = 0.0, inf_sum = 0.0; |
| volatile double hi, yr, lo; |
| |
| iter = PyObject_GetIter(seq); |
| if (iter == NULL) |
| return NULL; |
| |
| PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) |
| |
| for(;;) { /* for x in iterable */ |
| assert(0 <= n && n <= m); |
| assert((m == NUM_PARTIALS && p == ps) || |
| (m > NUM_PARTIALS && p != NULL)); |
| |
| item = PyIter_Next(iter); |
| if (item == NULL) { |
| if (PyErr_Occurred()) |
| goto _fsum_error; |
| break; |
| } |
| x = PyFloat_AsDouble(item); |
| Py_DECREF(item); |
| if (PyErr_Occurred()) |
| goto _fsum_error; |
| |
| xsave = x; |
| for (i = j = 0; j < n; j++) { /* for y in partials */ |
| y = p[j]; |
| if (fabs(x) < fabs(y)) { |
| t = x; x = y; y = t; |
| } |
| hi = x + y; |
| yr = hi - x; |
| lo = y - yr; |
| if (lo != 0.0) |
| p[i++] = lo; |
| x = hi; |
| } |
| |
| n = i; /* ps[i:] = [x] */ |
| if (x != 0.0) { |
| if (! Py_IS_FINITE(x)) { |
| /* a nonfinite x could arise either as |
| a result of intermediate overflow, or |
| as a result of a nan or inf in the |
| summands */ |
| if (Py_IS_FINITE(xsave)) { |
| PyErr_SetString(PyExc_OverflowError, |
| "intermediate overflow in fsum"); |
| goto _fsum_error; |
| } |
| if (Py_IS_INFINITY(xsave)) |
| inf_sum += xsave; |
| special_sum += xsave; |
| /* reset partials */ |
| n = 0; |
| } |
| else if (n >= m && _fsum_realloc(&p, n, ps, &m)) |
| goto _fsum_error; |
| else |
| p[n++] = x; |
| } |
| } |
| |
| if (special_sum != 0.0) { |
| if (Py_IS_NAN(inf_sum)) |
| PyErr_SetString(PyExc_ValueError, |
| "-inf + inf in fsum"); |
| else |
| sum = PyFloat_FromDouble(special_sum); |
| goto _fsum_error; |
| } |
| |
| hi = 0.0; |
| if (n > 0) { |
| hi = p[--n]; |
| /* sum_exact(ps, hi) from the top, stop when the sum becomes |
| inexact. */ |
| while (n > 0) { |
| x = hi; |
| y = p[--n]; |
| assert(fabs(y) < fabs(x)); |
| hi = x + y; |
| yr = hi - x; |
| lo = y - yr; |
| if (lo != 0.0) |
| break; |
| } |
| /* Make half-even rounding work across multiple partials. |
| Needed so that sum([1e-16, 1, 1e16]) will round-up the last |
| digit to two instead of down to zero (the 1e-16 makes the 1 |
| slightly closer to two). With a potential 1 ULP rounding |
| error fixed-up, math.fsum() can guarantee commutativity. */ |
| if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || |
| (lo > 0.0 && p[n-1] > 0.0))) { |
| y = lo * 2.0; |
| x = hi + y; |
| yr = x - hi; |
| if (y == yr) |
| hi = x; |
| } |
| } |
| sum = PyFloat_FromDouble(hi); |
| |
| _fsum_error: |
| PyFPE_END_PROTECT(hi) |
| Py_DECREF(iter); |
| if (p != ps) |
| PyMem_Free(p); |
| return sum; |
| } |
| |
| #undef NUM_PARTIALS |
| |
| PyDoc_STRVAR(math_fsum_doc, |
| "sum(iterable)\n\n\ |
| Return an accurate floating point sum of values in the iterable.\n\ |
| Assumes IEEE-754 floating point arithmetic."); |
| |
| static PyObject * |
| math_factorial(PyObject *self, PyObject *arg) |
| { |
| long i, x; |
| PyObject *result, *iobj, *newresult; |
| |
| if (PyFloat_Check(arg)) { |
| double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); |
| if (dx != floor(dx)) { |
| PyErr_SetString(PyExc_ValueError, |
| "factorial() only accepts integral values"); |
| return NULL; |
| } |
| } |
| |
| x = PyInt_AsLong(arg); |
| if (x == -1 && PyErr_Occurred()) |
| return NULL; |
| if (x < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "factorial() not defined for negative values"); |
| return NULL; |
| } |
| |
| result = (PyObject *)PyInt_FromLong(1); |
| if (result == NULL) |
| return NULL; |
| for (i=1 ; i<=x ; i++) { |
| iobj = (PyObject *)PyInt_FromLong(i); |
| if (iobj == NULL) |
| goto error; |
| newresult = PyNumber_Multiply(result, iobj); |
| Py_DECREF(iobj); |
| if (newresult == NULL) |
| goto error; |
| Py_DECREF(result); |
| result = newresult; |
| } |
| return result; |
| |
| error: |
| Py_DECREF(result); |
| return NULL; |
| } |
| |
| PyDoc_STRVAR(math_factorial_doc, "Return n!"); |
| |
| static PyObject * |
| math_trunc(PyObject *self, PyObject *number) |
| { |
| return PyObject_CallMethod(number, "__trunc__", NULL); |
| } |
| |
| PyDoc_STRVAR(math_trunc_doc, |
| "trunc(x:Real) -> Integral\n" |
| "\n" |
| "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method."); |
| |
| static PyObject * |
| math_frexp(PyObject *self, PyObject *arg) |
| { |
| int i; |
| double x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| /* deal with special cases directly, to sidestep platform |
| differences */ |
| if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { |
| i = 0; |
| } |
| else { |
| PyFPE_START_PROTECT("in math_frexp", return 0); |
| x = frexp(x, &i); |
| PyFPE_END_PROTECT(x); |
| } |
| return Py_BuildValue("(di)", x, i); |
| } |
| |
| PyDoc_STRVAR(math_frexp_doc, |
| "frexp(x)\n" |
| "\n" |
| "Return the mantissa and exponent of x, as pair (m, e).\n" |
| "m is a float and e is an int, such that x = m * 2.**e.\n" |
| "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0."); |
| |
| static PyObject * |
| math_ldexp(PyObject *self, PyObject *args) |
| { |
| double x, r; |
| PyObject *oexp; |
| long exp; |
| if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp)) |
| return NULL; |
| |
| if (PyLong_Check(oexp)) { |
| /* on overflow, replace exponent with either LONG_MAX |
| or LONG_MIN, depending on the sign. */ |
| exp = PyLong_AsLong(oexp); |
| if (exp == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| if (Py_SIZE(oexp) < 0) { |
| exp = LONG_MIN; |
| } |
| else { |
| exp = LONG_MAX; |
| } |
| PyErr_Clear(); |
| } |
| else { |
| /* propagate any unexpected exception */ |
| return NULL; |
| } |
| } |
| } |
| else if (PyInt_Check(oexp)) { |
| exp = PyInt_AS_LONG(oexp); |
| } |
| else { |
| PyErr_SetString(PyExc_TypeError, |
| "Expected an int or long as second argument " |
| "to ldexp."); |
| return NULL; |
| } |
| |
| if (x == 0. || !Py_IS_FINITE(x)) { |
| /* NaNs, zeros and infinities are returned unchanged */ |
| r = x; |
| errno = 0; |
| } else if (exp > INT_MAX) { |
| /* overflow */ |
| r = copysign(Py_HUGE_VAL, x); |
| errno = ERANGE; |
| } else if (exp < INT_MIN) { |
| /* underflow to +-0 */ |
| r = copysign(0., x); |
| errno = 0; |
| } else { |
| errno = 0; |
| PyFPE_START_PROTECT("in math_ldexp", return 0); |
| r = ldexp(x, (int)exp); |
| PyFPE_END_PROTECT(r); |
| if (Py_IS_INFINITY(r)) |
| errno = ERANGE; |
| } |
| |
| if (errno && is_error(r)) |
| return NULL; |
| return PyFloat_FromDouble(r); |
| } |
| |
| PyDoc_STRVAR(math_ldexp_doc, |
| "ldexp(x, i) -> x * (2**i)"); |
| |
| static PyObject * |
| math_modf(PyObject *self, PyObject *arg) |
| { |
| double y, x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| /* some platforms don't do the right thing for NaNs and |
| infinities, so we take care of special cases directly. */ |
| if (!Py_IS_FINITE(x)) { |
| if (Py_IS_INFINITY(x)) |
| return Py_BuildValue("(dd)", copysign(0., x), x); |
| else if (Py_IS_NAN(x)) |
| return Py_BuildValue("(dd)", x, x); |
| } |
| |
| errno = 0; |
| PyFPE_START_PROTECT("in math_modf", return 0); |
| x = modf(x, &y); |
| PyFPE_END_PROTECT(x); |
| return Py_BuildValue("(dd)", x, y); |
| } |
| |
| PyDoc_STRVAR(math_modf_doc, |
| "modf(x)\n" |
| "\n" |
| "Return the fractional and integer parts of x. Both results carry the sign\n" |
| "of x. The integer part is returned as a real."); |
| |
| /* A decent logarithm is easy to compute even for huge longs, but libm can't |
| do that by itself -- loghelper can. func is log or log10, and name is |
| "log" or "log10". Note that overflow isn't possible: a long can contain |
| no more than INT_MAX * SHIFT bits, so has value certainly less than |
| 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is |
| small enough to fit in an IEEE single. log and log10 are even smaller. |
| */ |
| |
| static PyObject* |
| loghelper(PyObject* arg, double (*func)(double), char *funcname) |
| { |
| /* If it is long, do it ourselves. */ |
| if (PyLong_Check(arg)) { |
| double x; |
| int e; |
| x = _PyLong_AsScaledDouble(arg, &e); |
| if (x <= 0.0) { |
| PyErr_SetString(PyExc_ValueError, |
| "math domain error"); |
| return NULL; |
| } |
| /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~= |
| log(x) + log(2) * e * PyLong_SHIFT. |
| CAUTION: e*PyLong_SHIFT may overflow using int arithmetic, |
| so force use of double. */ |
| x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0); |
| return PyFloat_FromDouble(x); |
| } |
| |
| /* Else let libm handle it by itself. */ |
| return math_1(arg, func, 0); |
| } |
| |
| static PyObject * |
| math_log(PyObject *self, PyObject *args) |
| { |
| PyObject *arg; |
| PyObject *base = NULL; |
| PyObject *num, *den; |
| PyObject *ans; |
| |
| if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base)) |
| return NULL; |
| |
| num = loghelper(arg, log, "log"); |
| if (num == NULL || base == NULL) |
| return num; |
| |
| den = loghelper(base, log, "log"); |
| if (den == NULL) { |
| Py_DECREF(num); |
| return NULL; |
| } |
| |
| ans = PyNumber_Divide(num, den); |
| Py_DECREF(num); |
| Py_DECREF(den); |
| return ans; |
| } |
| |
| PyDoc_STRVAR(math_log_doc, |
| "log(x[, base]) -> the logarithm of x to the given base.\n\ |
| If the base not specified, returns the natural logarithm (base e) of x."); |
| |
| static PyObject * |
| math_log10(PyObject *self, PyObject *arg) |
| { |
| return loghelper(arg, log10, "log10"); |
| } |
| |
| PyDoc_STRVAR(math_log10_doc, |
| "log10(x) -> the base 10 logarithm of x."); |
| |
| static PyObject * |
| math_fmod(PyObject *self, PyObject *args) |
| { |
| PyObject *ox, *oy; |
| double r, x, y; |
| if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) |
| return NULL; |
| x = PyFloat_AsDouble(ox); |
| y = PyFloat_AsDouble(oy); |
| if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
| return NULL; |
| /* fmod(x, +/-Inf) returns x for finite x. */ |
| if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) |
| return PyFloat_FromDouble(x); |
| errno = 0; |
| PyFPE_START_PROTECT("in math_fmod", return 0); |
| r = fmod(x, y); |
| PyFPE_END_PROTECT(r); |
| if (Py_IS_NAN(r)) { |
| if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
| errno = EDOM; |
| else |
| errno = 0; |
| } |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| PyDoc_STRVAR(math_fmod_doc, |
| "fmod(x,y)\n\nReturn fmod(x, y), according to platform C." |
| " x % y may differ."); |
| |
| static PyObject * |
| math_hypot(PyObject *self, PyObject *args) |
| { |
| PyObject *ox, *oy; |
| double r, x, y; |
| if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) |
| return NULL; |
| x = PyFloat_AsDouble(ox); |
| y = PyFloat_AsDouble(oy); |
| if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
| return NULL; |
| /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ |
| if (Py_IS_INFINITY(x)) |
| return PyFloat_FromDouble(fabs(x)); |
| if (Py_IS_INFINITY(y)) |
| return PyFloat_FromDouble(fabs(y)); |
| errno = 0; |
| PyFPE_START_PROTECT("in math_hypot", return 0); |
| r = hypot(x, y); |
| PyFPE_END_PROTECT(r); |
| if (Py_IS_NAN(r)) { |
| if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
| errno = EDOM; |
| else |
| errno = 0; |
| } |
| else if (Py_IS_INFINITY(r)) { |
| if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
| errno = ERANGE; |
| else |
| errno = 0; |
| } |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| PyDoc_STRVAR(math_hypot_doc, |
| "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); |
| |
| /* pow can't use math_2, but needs its own wrapper: the problem is |
| that an infinite result can arise either as a result of overflow |
| (in which case OverflowError should be raised) or as a result of |
| e.g. 0.**-5. (for which ValueError needs to be raised.) |
| */ |
| |
| static PyObject * |
| math_pow(PyObject *self, PyObject *args) |
| { |
| PyObject *ox, *oy; |
| double r, x, y; |
| int odd_y; |
| |
| if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) |
| return NULL; |
| x = PyFloat_AsDouble(ox); |
| y = PyFloat_AsDouble(oy); |
| if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
| return NULL; |
| |
| /* deal directly with IEEE specials, to cope with problems on various |
| platforms whose semantics don't exactly match C99 */ |
| r = 0.; /* silence compiler warning */ |
| if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { |
| errno = 0; |
| if (Py_IS_NAN(x)) |
| r = y == 0. ? 1. : x; /* NaN**0 = 1 */ |
| else if (Py_IS_NAN(y)) |
| r = x == 1. ? 1. : y; /* 1**NaN = 1 */ |
| else if (Py_IS_INFINITY(x)) { |
| odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; |
| if (y > 0.) |
| r = odd_y ? x : fabs(x); |
| else if (y == 0.) |
| r = 1.; |
| else /* y < 0. */ |
| r = odd_y ? copysign(0., x) : 0.; |
| } |
| else if (Py_IS_INFINITY(y)) { |
| if (fabs(x) == 1.0) |
| r = 1.; |
| else if (y > 0. && fabs(x) > 1.0) |
| r = y; |
| else if (y < 0. && fabs(x) < 1.0) { |
| r = -y; /* result is +inf */ |
| if (x == 0.) /* 0**-inf: divide-by-zero */ |
| errno = EDOM; |
| } |
| else |
| r = 0.; |
| } |
| } |
| else { |
| /* let libm handle finite**finite */ |
| errno = 0; |
| PyFPE_START_PROTECT("in math_pow", return 0); |
| r = pow(x, y); |
| PyFPE_END_PROTECT(r); |
| /* a NaN result should arise only from (-ve)**(finite |
| non-integer); in this case we want to raise ValueError. */ |
| if (!Py_IS_FINITE(r)) { |
| if (Py_IS_NAN(r)) { |
| errno = EDOM; |
| } |
| /* |
| an infinite result here arises either from: |
| (A) (+/-0.)**negative (-> divide-by-zero) |
| (B) overflow of x**y with x and y finite |
| */ |
| else if (Py_IS_INFINITY(r)) { |
| if (x == 0.) |
| errno = EDOM; |
| else |
| errno = ERANGE; |
| } |
| } |
| } |
| |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| PyDoc_STRVAR(math_pow_doc, |
| "pow(x,y)\n\nReturn x**y (x to the power of y)."); |
| |
| static const double degToRad = Py_MATH_PI / 180.0; |
| static const double radToDeg = 180.0 / Py_MATH_PI; |
| |
| static PyObject * |
| math_degrees(PyObject *self, PyObject *arg) |
| { |
| double x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyFloat_FromDouble(x * radToDeg); |
| } |
| |
| PyDoc_STRVAR(math_degrees_doc, |
| "degrees(x) -> converts angle x from radians to degrees"); |
| |
| static PyObject * |
| math_radians(PyObject *self, PyObject *arg) |
| { |
| double x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyFloat_FromDouble(x * degToRad); |
| } |
| |
| PyDoc_STRVAR(math_radians_doc, |
| "radians(x) -> converts angle x from degrees to radians"); |
| |
| static PyObject * |
| math_isnan(PyObject *self, PyObject *arg) |
| { |
| double x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyBool_FromLong((long)Py_IS_NAN(x)); |
| } |
| |
| PyDoc_STRVAR(math_isnan_doc, |
| "isnan(x) -> bool\n\ |
| Checks if float x is not a number (NaN)"); |
| |
| static PyObject * |
| math_isinf(PyObject *self, PyObject *arg) |
| { |
| double x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyBool_FromLong((long)Py_IS_INFINITY(x)); |
| } |
| |
| PyDoc_STRVAR(math_isinf_doc, |
| "isinf(x) -> bool\n\ |
| Checks if float x is infinite (positive or negative)"); |
| |
| static PyMethodDef math_methods[] = { |
| {"acos", math_acos, METH_O, math_acos_doc}, |
| {"acosh", math_acosh, METH_O, math_acosh_doc}, |
| {"asin", math_asin, METH_O, math_asin_doc}, |
| {"asinh", math_asinh, METH_O, math_asinh_doc}, |
| {"atan", math_atan, METH_O, math_atan_doc}, |
| {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, |
| {"atanh", math_atanh, METH_O, math_atanh_doc}, |
| {"ceil", math_ceil, METH_O, math_ceil_doc}, |
| {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, |
| {"cos", math_cos, METH_O, math_cos_doc}, |
| {"cosh", math_cosh, METH_O, math_cosh_doc}, |
| {"degrees", math_degrees, METH_O, math_degrees_doc}, |
| {"exp", math_exp, METH_O, math_exp_doc}, |
| {"fabs", math_fabs, METH_O, math_fabs_doc}, |
| {"factorial", math_factorial, METH_O, math_factorial_doc}, |
| {"floor", math_floor, METH_O, math_floor_doc}, |
| {"fmod", math_fmod, METH_VARARGS, math_fmod_doc}, |
| {"frexp", math_frexp, METH_O, math_frexp_doc}, |
| {"fsum", math_fsum, METH_O, math_fsum_doc}, |
| {"hypot", math_hypot, METH_VARARGS, math_hypot_doc}, |
| {"isinf", math_isinf, METH_O, math_isinf_doc}, |
| {"isnan", math_isnan, METH_O, math_isnan_doc}, |
| {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, |
| {"log", math_log, METH_VARARGS, math_log_doc}, |
| {"log1p", math_log1p, METH_O, math_log1p_doc}, |
| {"log10", math_log10, METH_O, math_log10_doc}, |
| {"modf", math_modf, METH_O, math_modf_doc}, |
| {"pow", math_pow, METH_VARARGS, math_pow_doc}, |
| {"radians", math_radians, METH_O, math_radians_doc}, |
| {"sin", math_sin, METH_O, math_sin_doc}, |
| {"sinh", math_sinh, METH_O, math_sinh_doc}, |
| {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, |
| {"tan", math_tan, METH_O, math_tan_doc}, |
| {"tanh", math_tanh, METH_O, math_tanh_doc}, |
| {"trunc", math_trunc, METH_O, math_trunc_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| |
| PyDoc_STRVAR(module_doc, |
| "This module is always available. It provides access to the\n" |
| "mathematical functions defined by the C standard."); |
| |
| PyMODINIT_FUNC |
| initmath(void) |
| { |
| PyObject *m; |
| |
| m = Py_InitModule3("math", math_methods, module_doc); |
| if (m == NULL) |
| goto finally; |
| |
| PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); |
| PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); |
| |
| finally: |
| return; |
| } |