| """Unittests for heapq.""" |
| |
| from heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest |
| import random |
| import unittest |
| from test import test_support |
| import sys |
| |
| |
| def heapiter(heap): |
| # An iterator returning a heap's elements, smallest-first. |
| try: |
| while 1: |
| yield heappop(heap) |
| except IndexError: |
| pass |
| |
| class TestHeap(unittest.TestCase): |
| |
| def test_push_pop(self): |
| # 1) Push 256 random numbers and pop them off, verifying all's OK. |
| heap = [] |
| data = [] |
| self.check_invariant(heap) |
| for i in range(256): |
| item = random.random() |
| data.append(item) |
| heappush(heap, item) |
| self.check_invariant(heap) |
| results = [] |
| while heap: |
| item = heappop(heap) |
| self.check_invariant(heap) |
| results.append(item) |
| data_sorted = data[:] |
| data_sorted.sort() |
| self.assertEqual(data_sorted, results) |
| # 2) Check that the invariant holds for a sorted array |
| self.check_invariant(results) |
| |
| self.assertRaises(TypeError, heappush, []) |
| self.assertRaises(TypeError, heappush, None, None) |
| self.assertRaises(TypeError, heappop, None) |
| |
| def check_invariant(self, heap): |
| # Check the heap invariant. |
| for pos, item in enumerate(heap): |
| if pos: # pos 0 has no parent |
| parentpos = (pos-1) >> 1 |
| self.assert_(heap[parentpos] <= item) |
| |
| def test_heapify(self): |
| for size in range(30): |
| heap = [random.random() for dummy in range(size)] |
| heapify(heap) |
| self.check_invariant(heap) |
| |
| self.assertRaises(TypeError, heapify, None) |
| |
| def test_naive_nbest(self): |
| data = [random.randrange(2000) for i in range(1000)] |
| heap = [] |
| for item in data: |
| heappush(heap, item) |
| if len(heap) > 10: |
| heappop(heap) |
| heap.sort() |
| self.assertEqual(heap, sorted(data)[-10:]) |
| |
| def test_nbest(self): |
| # Less-naive "N-best" algorithm, much faster (if len(data) is big |
| # enough <wink>) than sorting all of data. However, if we had a max |
| # heap instead of a min heap, it could go faster still via |
| # heapify'ing all of data (linear time), then doing 10 heappops |
| # (10 log-time steps). |
| data = [random.randrange(2000) for i in range(1000)] |
| heap = data[:10] |
| heapify(heap) |
| for item in data[10:]: |
| if item > heap[0]: # this gets rarer the longer we run |
| heapreplace(heap, item) |
| self.assertEqual(list(heapiter(heap)), sorted(data)[-10:]) |
| |
| self.assertRaises(TypeError, heapreplace, None) |
| self.assertRaises(TypeError, heapreplace, None, None) |
| self.assertRaises(IndexError, heapreplace, [], None) |
| |
| def test_heapsort(self): |
| # Exercise everything with repeated heapsort checks |
| for trial in xrange(100): |
| size = random.randrange(50) |
| data = [random.randrange(25) for i in range(size)] |
| if trial & 1: # Half of the time, use heapify |
| heap = data[:] |
| heapify(heap) |
| else: # The rest of the time, use heappush |
| heap = [] |
| for item in data: |
| heappush(heap, item) |
| heap_sorted = [heappop(heap) for i in range(size)] |
| self.assertEqual(heap_sorted, sorted(data)) |
| |
| def test_nsmallest(self): |
| data = [random.randrange(2000) for i in range(1000)] |
| for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100): |
| self.assertEqual(nsmallest(n, data), sorted(data)[:n]) |
| |
| def test_largest(self): |
| data = [random.randrange(2000) for i in range(1000)] |
| for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100): |
| self.assertEqual(nlargest(n, data), sorted(data, reverse=True)[:n]) |
| |
| def test_main(verbose=None): |
| test_classes = [TestHeap] |
| test_support.run_unittest(*test_classes) |
| |
| # verify reference counting |
| if verbose and hasattr(sys, "gettotalrefcount"): |
| import gc |
| counts = [None] * 5 |
| for i in xrange(len(counts)): |
| test_support.run_unittest(*test_classes) |
| gc.collect() |
| counts[i] = sys.gettotalrefcount() |
| print counts |
| |
| if __name__ == "__main__": |
| test_main(verbose=True) |