blob: 7cd8952fa3e671808fcce8e42bff8de4880235cc [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
38 :const:`1.1` do not have an exact representation in binary floating point. End
39 users typically would not expect :const:`1.1` to display as
40 :const:`1.1000000000000001` as it does with binary floating point.
41
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
111 Specification <http://www2.hursley.ibm.com/decimal/decarith.html>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
196 1.3400000000000001
197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl734373c2009-01-03 21:55:17 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
Mark Dickinson9a6e6452009-08-02 11:01:01 +0000333 If *value* is a unicode string then other Unicode decimal digits
334 are also permitted where ``digit`` appears above. These include
335 decimal digits from various other alphabets (for example,
336 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
337 ``u'\uff10'`` through ``u'\uff19'``.
338
Georg Brandl8ec7f652007-08-15 14:28:01 +0000339 If *value* is a :class:`tuple`, it should have three components, a sign
340 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
341 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000342 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000343
344 The *context* precision does not affect how many digits are stored. That is
345 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000346 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000347 only three.
348
349 The purpose of the *context* argument is determining what to do if *value* is a
350 malformed string. If the context traps :const:`InvalidOperation`, an exception
351 is raised; otherwise, the constructor returns a new Decimal with the value of
352 :const:`NaN`.
353
354 Once constructed, :class:`Decimal` objects are immutable.
355
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000356 .. versionchanged:: 2.6
357 leading and trailing whitespace characters are permitted when
358 creating a Decimal instance from a string.
359
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000360 Decimal floating point objects share many properties with the other built-in
361 numeric types such as :class:`float` and :class:`int`. All of the usual math
362 operations and special methods apply. Likewise, decimal objects can be
363 copied, pickled, printed, used as dictionary keys, used as set elements,
364 compared, sorted, and coerced to another type (such as :class:`float` or
365 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 In addition to the standard numeric properties, decimal floating point
368 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000369
370
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000371 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 Return the adjusted exponent after shifting out the coefficient's
374 rightmost digits until only the lead digit remains:
375 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
376 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000377
378
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000379 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000381 Return a :term:`named tuple` representation of the number:
382 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 .. versionchanged:: 2.6
385 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000386
387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 Return the canonical encoding of the argument. Currently, the encoding of
391 a :class:`Decimal` instance is always canonical, so this operation returns
392 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000393
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000394 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000397
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000398 Compare the values of two Decimal instances. This operation behaves in
399 the same way as the usual comparison method :meth:`__cmp__`, except that
400 :meth:`compare` returns a Decimal instance rather than an integer, and if
401 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000402
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000403 a or b is a NaN ==> Decimal('NaN')
404 a < b ==> Decimal('-1')
405 a == b ==> Decimal('0')
406 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 This operation is identical to the :meth:`compare` method, except that all
411 NaNs signal. That is, if neither operand is a signaling NaN then any
412 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000413
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000414 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000415
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000416 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 Compare two operands using their abstract representation rather than their
419 numerical value. Similar to the :meth:`compare` method, but the result
420 gives a total ordering on :class:`Decimal` instances. Two
421 :class:`Decimal` instances with the same numeric value but different
422 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000423
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000424 >>> Decimal('12.0').compare_total(Decimal('12'))
425 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000426
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000427 Quiet and signaling NaNs are also included in the total ordering. The
428 result of this function is ``Decimal('0')`` if both operands have the same
429 representation, ``Decimal('-1')`` if the first operand is lower in the
430 total order than the second, and ``Decimal('1')`` if the first operand is
431 higher in the total order than the second operand. See the specification
432 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000433
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000434 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000435
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000436 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000437
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000438 Compare two operands using their abstract representation rather than their
439 value as in :meth:`compare_total`, but ignoring the sign of each operand.
440 ``x.compare_total_mag(y)`` is equivalent to
441 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000445 .. method:: conjugate()
446
447 Just returns self, this method is only to comply with the Decimal
448 Specification.
449
450 .. versionadded:: 2.6
451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 Return the absolute value of the argument. This operation is unaffected
455 by the context and is quiet: no flags are changed and no rounding is
456 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000457
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000458 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000459
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000460 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000461
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000462 Return the negation of the argument. This operation is unaffected by the
463 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 Return a copy of the first operand with the sign set to be the same as the
470 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
473 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000474
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000475 This operation is unaffected by the context and is quiet: no flags are
476 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000477
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000478 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000481
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000482 Return the value of the (natural) exponential function ``e**x`` at the
483 given number. The result is correctly rounded using the
484 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000485
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000486 >>> Decimal(1).exp()
487 Decimal('2.718281828459045235360287471')
488 >>> Decimal(321).exp()
489 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000490
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000491 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000492
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000493 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000494
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000495 Fused multiply-add. Return self*other+third with no rounding of the
496 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000497
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000498 >>> Decimal(2).fma(3, 5)
499 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000500
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000501 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000502
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000503 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000504
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000505 Return :const:`True` if the argument is canonical and :const:`False`
506 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
507 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000508
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000509 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000510
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000511 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000512
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000513 Return :const:`True` if the argument is a finite number, and
514 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000515
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000516 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 Return :const:`True` if the argument is either positive or negative
521 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000522
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000523 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000524
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000525 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000526
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000527 Return :const:`True` if the argument is a (quiet or signaling) NaN and
528 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000529
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000530 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000531
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000532 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000533
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000534 Return :const:`True` if the argument is a *normal* finite number. Return
535 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000536
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000537 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000538
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000539 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000540
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000541 Return :const:`True` if the argument is a quiet NaN, and
542 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000543
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000544 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000545
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000546 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000547
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000548 Return :const:`True` if the argument has a negative sign and
549 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000550
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000551 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000552
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000553 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000554
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000555 Return :const:`True` if the argument is a signaling NaN and :const:`False`
556 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000557
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000558 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000559
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000560 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000561
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000562 Return :const:`True` if the argument is subnormal, and :const:`False`
563 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000564
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000565 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000566
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000567 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000568
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000569 Return :const:`True` if the argument is a (positive or negative) zero and
570 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000571
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000572 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000573
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000574 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000575
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000576 Return the natural (base e) logarithm of the operand. The result is
577 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000578
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000579 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000580
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000581 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000582
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000583 Return the base ten logarithm of the operand. The result is correctly
584 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000587
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000588 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000589
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000590 For a nonzero number, return the adjusted exponent of its operand as a
591 :class:`Decimal` instance. If the operand is a zero then
592 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
593 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
594 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000595
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000596 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000597
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000598 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000599
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000600 :meth:`logical_and` is a logical operation which takes two *logical
601 operands* (see :ref:`logical_operands_label`). The result is the
602 digit-wise ``and`` of the two operands.
603
604 .. versionadded:: 2.6
605
606 .. method:: logical_invert(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000607
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000608 :meth:`logical_invert` is a logical operation. The argument must
609 be a *logical operand* (see :ref:`logical_operands_label`). The
610 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000611
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000612 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000613
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000614 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000615
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000616 :meth:`logical_or` is a logical operation which takes two *logical
617 operands* (see :ref:`logical_operands_label`). The result is the
618 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000619
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000620 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000621
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000622 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000623
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000624 :meth:`logical_xor` is a logical operation which takes two *logical
625 operands* (see :ref:`logical_operands_label`). The result is the
626 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000627
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000628 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000629
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000630 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000631
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000632 Like ``max(self, other)`` except that the context rounding rule is applied
633 before returning and that :const:`NaN` values are either signaled or
634 ignored (depending on the context and whether they are signaling or
635 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000636
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000637 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000638
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000639 Similar to the :meth:`max` method, but the comparison is done using the
640 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000643
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000644 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000645
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000646 Like ``min(self, other)`` except that the context rounding rule is applied
647 before returning and that :const:`NaN` values are either signaled or
648 ignored (depending on the context and whether they are signaling or
649 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000650
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000651 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000652
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000653 Similar to the :meth:`min` method, but the comparison is done using the
654 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000655
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000656 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000657
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000658 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000659
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000660 Return the largest number representable in the given context (or in the
661 current thread's context if no context is given) that is smaller than the
662 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000663
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000664 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000665
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000666 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000667
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 Return the smallest number representable in the given context (or in the
669 current thread's context if no context is given) that is larger than the
670 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000671
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000672 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000673
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000674 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000675
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000676 If the two operands are unequal, return the number closest to the first
677 operand in the direction of the second operand. If both operands are
678 numerically equal, return a copy of the first operand with the sign set to
679 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000680
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000681 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000682
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000683 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000684
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000685 Normalize the number by stripping the rightmost trailing zeros and
686 converting any result equal to :const:`Decimal('0')` to
687 :const:`Decimal('0e0')`. Used for producing canonical values for members
688 of an equivalence class. For example, ``Decimal('32.100')`` and
689 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
690 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000691
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000692 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000693
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000694 Return a string describing the *class* of the operand. The returned value
695 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000696
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000697 * ``"-Infinity"``, indicating that the operand is negative infinity.
698 * ``"-Normal"``, indicating that the operand is a negative normal number.
699 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
700 * ``"-Zero"``, indicating that the operand is a negative zero.
701 * ``"+Zero"``, indicating that the operand is a positive zero.
702 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
703 * ``"+Normal"``, indicating that the operand is a positive normal number.
704 * ``"+Infinity"``, indicating that the operand is positive infinity.
705 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
706 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000707
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000708 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000709
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000710 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000711
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000712 Return a value equal to the first operand after rounding and having the
713 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000714
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000715 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
716 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 Unlike other operations, if the length of the coefficient after the
719 quantize operation would be greater than precision, then an
720 :const:`InvalidOperation` is signaled. This guarantees that, unless there
721 is an error condition, the quantized exponent is always equal to that of
722 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000723
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000724 Also unlike other operations, quantize never signals Underflow, even if
725 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000726
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000727 If the exponent of the second operand is larger than that of the first
728 then rounding may be necessary. In this case, the rounding mode is
729 determined by the ``rounding`` argument if given, else by the given
730 ``context`` argument; if neither argument is given the rounding mode of
731 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000732
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000733 If *watchexp* is set (default), then an error is returned whenever the
734 resulting exponent is greater than :attr:`Emax` or less than
735 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000736
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000737 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000738
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000739 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
740 class does all its arithmetic. Included for compatibility with the
741 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000742
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000743 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000744
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000745 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000746
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000747 Compute the modulo as either a positive or negative value depending on
748 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
749 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000750
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000751 If both are equally close, the one chosen will have the same sign as
752 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000753
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000754 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000755
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000756 Return the result of rotating the digits of the first operand by an amount
757 specified by the second operand. The second operand must be an integer in
758 the range -precision through precision. The absolute value of the second
759 operand gives the number of places to rotate. If the second operand is
760 positive then rotation is to the left; otherwise rotation is to the right.
761 The coefficient of the first operand is padded on the left with zeros to
762 length precision if necessary. The sign and exponent of the first operand
763 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000764
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000765 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000766
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000767 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000768
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000769 Test whether self and other have the same exponent or whether both are
770 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000771
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000772 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000773
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000774 Return the first operand with exponent adjusted by the second.
775 Equivalently, return the first operand multiplied by ``10**other``. The
776 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000777
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000778 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000779
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000780 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 Return the result of shifting the digits of the first operand by an amount
783 specified by the second operand. The second operand must be an integer in
784 the range -precision through precision. The absolute value of the second
785 operand gives the number of places to shift. If the second operand is
786 positive then the shift is to the left; otherwise the shift is to the
787 right. Digits shifted into the coefficient are zeros. The sign and
788 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000789
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000790 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000791
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000792 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000793
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000794 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000795
796
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000797 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000798
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000799 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000800
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000801 Engineering notation has an exponent which is a multiple of 3, so there
802 are up to 3 digits left of the decimal place. For example, converts
803 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000804
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000805 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000806
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000807 Identical to the :meth:`to_integral_value` method. The ``to_integral``
808 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000809
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000810 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000811
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000812 Round to the nearest integer, signaling :const:`Inexact` or
813 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
814 determined by the ``rounding`` parameter if given, else by the given
815 ``context``. If neither parameter is given then the rounding mode of the
816 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000817
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000818 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000819
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000820 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000821
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000822 Round to the nearest integer without signaling :const:`Inexact` or
823 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
824 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000825
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000826 .. versionchanged:: 2.6
827 renamed from ``to_integral`` to ``to_integral_value``. The old name
828 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000829
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000830.. _logical_operands_label:
831
832Logical operands
833^^^^^^^^^^^^^^^^
834
835The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
836and :meth:`logical_xor` methods expect their arguments to be *logical
837operands*. A *logical operand* is a :class:`Decimal` instance whose
838exponent and sign are both zero, and whose digits are all either
839:const:`0` or :const:`1`.
840
Georg Brandlb19be572007-12-29 10:57:00 +0000841.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000842
843
844.. _decimal-context:
845
846Context objects
847---------------
848
849Contexts are environments for arithmetic operations. They govern precision, set
850rules for rounding, determine which signals are treated as exceptions, and limit
851the range for exponents.
852
853Each thread has its own current context which is accessed or changed using the
854:func:`getcontext` and :func:`setcontext` functions:
855
856
857.. function:: getcontext()
858
859 Return the current context for the active thread.
860
861
862.. function:: setcontext(c)
863
864 Set the current context for the active thread to *c*.
865
866Beginning with Python 2.5, you can also use the :keyword:`with` statement and
867the :func:`localcontext` function to temporarily change the active context.
868
869
870.. function:: localcontext([c])
871
872 Return a context manager that will set the current context for the active thread
873 to a copy of *c* on entry to the with-statement and restore the previous context
874 when exiting the with-statement. If no context is specified, a copy of the
875 current context is used.
876
877 .. versionadded:: 2.5
878
879 For example, the following code sets the current decimal precision to 42 places,
880 performs a calculation, and then automatically restores the previous context::
881
Georg Brandl8ec7f652007-08-15 14:28:01 +0000882 from decimal import localcontext
883
884 with localcontext() as ctx:
885 ctx.prec = 42 # Perform a high precision calculation
886 s = calculate_something()
887 s = +s # Round the final result back to the default precision
888
889New contexts can also be created using the :class:`Context` constructor
890described below. In addition, the module provides three pre-made contexts:
891
892
893.. class:: BasicContext
894
895 This is a standard context defined by the General Decimal Arithmetic
896 Specification. Precision is set to nine. Rounding is set to
897 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
898 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
899 :const:`Subnormal`.
900
901 Because many of the traps are enabled, this context is useful for debugging.
902
903
904.. class:: ExtendedContext
905
906 This is a standard context defined by the General Decimal Arithmetic
907 Specification. Precision is set to nine. Rounding is set to
908 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
909 exceptions are not raised during computations).
910
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000911 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000912 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
913 raising exceptions. This allows an application to complete a run in the
914 presence of conditions that would otherwise halt the program.
915
916
917.. class:: DefaultContext
918
919 This context is used by the :class:`Context` constructor as a prototype for new
920 contexts. Changing a field (such a precision) has the effect of changing the
921 default for new contexts creating by the :class:`Context` constructor.
922
923 This context is most useful in multi-threaded environments. Changing one of the
924 fields before threads are started has the effect of setting system-wide
925 defaults. Changing the fields after threads have started is not recommended as
926 it would require thread synchronization to prevent race conditions.
927
928 In single threaded environments, it is preferable to not use this context at
929 all. Instead, simply create contexts explicitly as described below.
930
931 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
932 for Overflow, InvalidOperation, and DivisionByZero.
933
934In addition to the three supplied contexts, new contexts can be created with the
935:class:`Context` constructor.
936
937
938.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
939
940 Creates a new context. If a field is not specified or is :const:`None`, the
941 default values are copied from the :const:`DefaultContext`. If the *flags*
942 field is not specified or is :const:`None`, all flags are cleared.
943
944 The *prec* field is a positive integer that sets the precision for arithmetic
945 operations in the context.
946
947 The *rounding* option is one of:
948
949 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
950 * :const:`ROUND_DOWN` (towards zero),
951 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
952 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
953 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
954 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
955 * :const:`ROUND_UP` (away from zero).
Georg Brandl734373c2009-01-03 21:55:17 +0000956 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000957 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000958
959 The *traps* and *flags* fields list any signals to be set. Generally, new
960 contexts should only set traps and leave the flags clear.
961
962 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
963 for exponents.
964
965 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
966 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
967 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
968
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000969 .. versionchanged:: 2.6
970 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000971
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000972 The :class:`Context` class defines several general purpose methods as well as
973 a large number of methods for doing arithmetic directly in a given context.
974 In addition, for each of the :class:`Decimal` methods described above (with
975 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
976 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
977 equivalent to ``x.exp(context=C)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000978
979
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000980 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000981
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000982 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000983
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000984 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000985
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000986 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000987
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000988 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000989
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000990 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000991
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000992 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +0000993
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000994 Creates a new Decimal instance from *num* but using *self* as
995 context. Unlike the :class:`Decimal` constructor, the context precision,
996 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000997
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000998 This is useful because constants are often given to a greater precision
999 than is needed by the application. Another benefit is that rounding
1000 immediately eliminates unintended effects from digits beyond the current
1001 precision. In the following example, using unrounded inputs means that
1002 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001003
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001004 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001005
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001006 >>> getcontext().prec = 3
1007 >>> Decimal('3.4445') + Decimal('1.0023')
1008 Decimal('4.45')
1009 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1010 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001011
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001012 This method implements the to-number operation of the IBM specification.
1013 If the argument is a string, no leading or trailing whitespace is
1014 permitted.
1015
1016 .. method:: Etiny()
1017
1018 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1019 value for subnormal results. When underflow occurs, the exponent is set
1020 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001021
1022
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001023 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001024
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001025 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001026
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001027 The usual approach to working with decimals is to create :class:`Decimal`
1028 instances and then apply arithmetic operations which take place within the
1029 current context for the active thread. An alternative approach is to use
1030 context methods for calculating within a specific context. The methods are
1031 similar to those for the :class:`Decimal` class and are only briefly
1032 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001033
1034
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001035 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001036
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001037 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001038
1039
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001040 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001041
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001042 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001043
1044
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001045 .. method:: canonical(x)
1046
1047 Returns the same Decimal object *x*.
1048
1049
1050 .. method:: compare(x, y)
1051
1052 Compares *x* and *y* numerically.
1053
1054
1055 .. method:: compare_signal(x, y)
1056
1057 Compares the values of the two operands numerically.
1058
1059
1060 .. method:: compare_total(x, y)
1061
1062 Compares two operands using their abstract representation.
1063
1064
1065 .. method:: compare_total_mag(x, y)
1066
1067 Compares two operands using their abstract representation, ignoring sign.
1068
1069
1070 .. method:: copy_abs(x)
1071
1072 Returns a copy of *x* with the sign set to 0.
1073
1074
1075 .. method:: copy_negate(x)
1076
1077 Returns a copy of *x* with the sign inverted.
1078
1079
1080 .. method:: copy_sign(x, y)
1081
1082 Copies the sign from *y* to *x*.
1083
1084
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001085 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001086
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001087 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001088
1089
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001090 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001091
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001092 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001093
1094
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001095 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001096
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001097 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001098
1099
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001100 .. method:: exp(x)
1101
1102 Returns `e ** x`.
1103
1104
1105 .. method:: fma(x, y, z)
1106
1107 Returns *x* multiplied by *y*, plus *z*.
1108
1109
1110 .. method:: is_canonical(x)
1111
1112 Returns True if *x* is canonical; otherwise returns False.
1113
1114
1115 .. method:: is_finite(x)
1116
1117 Returns True if *x* is finite; otherwise returns False.
1118
1119
1120 .. method:: is_infinite(x)
1121
1122 Returns True if *x* is infinite; otherwise returns False.
1123
1124
1125 .. method:: is_nan(x)
1126
1127 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1128
1129
1130 .. method:: is_normal(x)
1131
1132 Returns True if *x* is a normal number; otherwise returns False.
1133
1134
1135 .. method:: is_qnan(x)
1136
1137 Returns True if *x* is a quiet NaN; otherwise returns False.
1138
1139
1140 .. method:: is_signed(x)
1141
1142 Returns True if *x* is negative; otherwise returns False.
1143
1144
1145 .. method:: is_snan(x)
1146
1147 Returns True if *x* is a signaling NaN; otherwise returns False.
1148
1149
1150 .. method:: is_subnormal(x)
1151
1152 Returns True if *x* is subnormal; otherwise returns False.
1153
1154
1155 .. method:: is_zero(x)
1156
1157 Returns True if *x* is a zero; otherwise returns False.
1158
1159
1160 .. method:: ln(x)
1161
1162 Returns the natural (base e) logarithm of *x*.
1163
1164
1165 .. method:: log10(x)
1166
1167 Returns the base 10 logarithm of *x*.
1168
1169
1170 .. method:: logb(x)
1171
1172 Returns the exponent of the magnitude of the operand's MSD.
1173
1174
1175 .. method:: logical_and(x, y)
1176
Georg Brandl734373c2009-01-03 21:55:17 +00001177 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001178
1179
1180 .. method:: logical_invert(x)
1181
1182 Invert all the digits in *x*.
1183
1184
1185 .. method:: logical_or(x, y)
1186
Georg Brandl734373c2009-01-03 21:55:17 +00001187 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001188
1189
1190 .. method:: logical_xor(x, y)
1191
Georg Brandl734373c2009-01-03 21:55:17 +00001192 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001193
1194
1195 .. method:: max(x, y)
1196
1197 Compares two values numerically and returns the maximum.
1198
1199
1200 .. method:: max_mag(x, y)
1201
1202 Compares the values numerically with their sign ignored.
1203
1204
1205 .. method:: min(x, y)
1206
1207 Compares two values numerically and returns the minimum.
1208
1209
1210 .. method:: min_mag(x, y)
1211
1212 Compares the values numerically with their sign ignored.
1213
1214
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001215 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001216
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001217 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001218
1219
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001220 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001221
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001222 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001223
1224
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001225 .. method:: next_minus(x)
1226
1227 Returns the largest representable number smaller than *x*.
1228
1229
1230 .. method:: next_plus(x)
1231
1232 Returns the smallest representable number larger than *x*.
1233
1234
1235 .. method:: next_toward(x, y)
1236
1237 Returns the number closest to *x*, in direction towards *y*.
1238
1239
1240 .. method:: normalize(x)
1241
1242 Reduces *x* to its simplest form.
1243
1244
1245 .. method:: number_class(x)
1246
1247 Returns an indication of the class of *x*.
1248
1249
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001250 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001251
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001252 Plus corresponds to the unary prefix plus operator in Python. This
1253 operation applies the context precision and rounding, so it is *not* an
1254 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001255
1256
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001257 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001258
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001259 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001260
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001261 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1262 must be integral. The result will be inexact unless ``y`` is integral and
1263 the result is finite and can be expressed exactly in 'precision' digits.
1264 The result should always be correctly rounded, using the rounding mode of
1265 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001266
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001267 With three arguments, compute ``(x**y) % modulo``. For the three argument
1268 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001269
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001270 - all three arguments must be integral
1271 - ``y`` must be nonnegative
1272 - at least one of ``x`` or ``y`` must be nonzero
1273 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001274
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001275 The result of ``Context.power(x, y, modulo)`` is identical to the result
1276 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1277 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001278
Georg Brandl734373c2009-01-03 21:55:17 +00001279 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001280 ``y`` may now be nonintegral in ``x**y``.
1281 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001282
1283
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001284 .. method:: quantize(x, y)
1285
1286 Returns a value equal to *x* (rounded), having the exponent of *y*.
1287
1288
1289 .. method:: radix()
1290
1291 Just returns 10, as this is Decimal, :)
1292
1293
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001294 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001295
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001296 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001297
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001298 The sign of the result, if non-zero, is the same as that of the original
1299 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001300
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001301 .. method:: remainder_near(x, y)
1302
Georg Brandl734373c2009-01-03 21:55:17 +00001303 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1304 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001305
1306
1307 .. method:: rotate(x, y)
1308
1309 Returns a rotated copy of *x*, *y* times.
1310
1311
1312 .. method:: same_quantum(x, y)
1313
1314 Returns True if the two operands have the same exponent.
1315
1316
1317 .. method:: scaleb (x, y)
1318
1319 Returns the first operand after adding the second value its exp.
1320
1321
1322 .. method:: shift(x, y)
1323
1324 Returns a shifted copy of *x*, *y* times.
1325
1326
1327 .. method:: sqrt(x)
1328
1329 Square root of a non-negative number to context precision.
1330
1331
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001332 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001333
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001334 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001335
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001336
1337 .. method:: to_eng_string(x)
1338
1339 Converts a number to a string, using scientific notation.
1340
1341
1342 .. method:: to_integral_exact(x)
1343
1344 Rounds to an integer.
1345
1346
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001347 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001348
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001349 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001350
Georg Brandlb19be572007-12-29 10:57:00 +00001351.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001352
1353
1354.. _decimal-signals:
1355
1356Signals
1357-------
1358
1359Signals represent conditions that arise during computation. Each corresponds to
1360one context flag and one context trap enabler.
1361
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001362The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001363computation, flags may be checked for informational purposes (for instance, to
1364determine whether a computation was exact). After checking the flags, be sure to
1365clear all flags before starting the next computation.
1366
1367If the context's trap enabler is set for the signal, then the condition causes a
1368Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1369is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1370condition.
1371
1372
1373.. class:: Clamped
1374
1375 Altered an exponent to fit representation constraints.
1376
1377 Typically, clamping occurs when an exponent falls outside the context's
1378 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001379 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001380
1381
1382.. class:: DecimalException
1383
1384 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1385
1386
1387.. class:: DivisionByZero
1388
1389 Signals the division of a non-infinite number by zero.
1390
1391 Can occur with division, modulo division, or when raising a number to a negative
1392 power. If this signal is not trapped, returns :const:`Infinity` or
1393 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1394
1395
1396.. class:: Inexact
1397
1398 Indicates that rounding occurred and the result is not exact.
1399
1400 Signals when non-zero digits were discarded during rounding. The rounded result
1401 is returned. The signal flag or trap is used to detect when results are
1402 inexact.
1403
1404
1405.. class:: InvalidOperation
1406
1407 An invalid operation was performed.
1408
1409 Indicates that an operation was requested that does not make sense. If not
1410 trapped, returns :const:`NaN`. Possible causes include::
1411
1412 Infinity - Infinity
1413 0 * Infinity
1414 Infinity / Infinity
1415 x % 0
1416 Infinity % x
1417 x._rescale( non-integer )
1418 sqrt(-x) and x > 0
1419 0 ** 0
1420 x ** (non-integer)
Georg Brandl734373c2009-01-03 21:55:17 +00001421 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001422
1423
1424.. class:: Overflow
1425
1426 Numerical overflow.
1427
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001428 Indicates the exponent is larger than :attr:`Emax` after rounding has
1429 occurred. If not trapped, the result depends on the rounding mode, either
1430 pulling inward to the largest representable finite number or rounding outward
1431 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1432 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001433
1434
1435.. class:: Rounded
1436
1437 Rounding occurred though possibly no information was lost.
1438
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001439 Signaled whenever rounding discards digits; even if those digits are zero
1440 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1441 the result unchanged. This signal is used to detect loss of significant
1442 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001443
1444
1445.. class:: Subnormal
1446
1447 Exponent was lower than :attr:`Emin` prior to rounding.
1448
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001449 Occurs when an operation result is subnormal (the exponent is too small). If
1450 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001451
1452
1453.. class:: Underflow
1454
1455 Numerical underflow with result rounded to zero.
1456
1457 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1458 and :class:`Subnormal` are also signaled.
1459
1460The following table summarizes the hierarchy of signals::
1461
1462 exceptions.ArithmeticError(exceptions.StandardError)
1463 DecimalException
1464 Clamped
1465 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1466 Inexact
1467 Overflow(Inexact, Rounded)
1468 Underflow(Inexact, Rounded, Subnormal)
1469 InvalidOperation
1470 Rounded
1471 Subnormal
1472
Georg Brandlb19be572007-12-29 10:57:00 +00001473.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001474
1475
1476.. _decimal-notes:
1477
1478Floating Point Notes
1479--------------------
1480
1481
1482Mitigating round-off error with increased precision
1483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1484
1485The use of decimal floating point eliminates decimal representation error
1486(making it possible to represent :const:`0.1` exactly); however, some operations
1487can still incur round-off error when non-zero digits exceed the fixed precision.
1488
1489The effects of round-off error can be amplified by the addition or subtraction
1490of nearly offsetting quantities resulting in loss of significance. Knuth
1491provides two instructive examples where rounded floating point arithmetic with
1492insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001493properties of addition:
1494
1495.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001496
1497 # Examples from Seminumerical Algorithms, Section 4.2.2.
1498 >>> from decimal import Decimal, getcontext
1499 >>> getcontext().prec = 8
1500
1501 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1502 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001503 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001504 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001505 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001506
1507 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1508 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001509 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001510 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001511 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001512
1513The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001514expanding the precision sufficiently to avoid loss of significance:
1515
1516.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001517
1518 >>> getcontext().prec = 20
1519 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1520 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001521 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001522 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001523 Decimal('9.51111111')
Georg Brandl734373c2009-01-03 21:55:17 +00001524 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001525 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1526 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001527 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001528 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001529 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001530
1531
1532Special values
1533^^^^^^^^^^^^^^
1534
1535The number system for the :mod:`decimal` module provides special values
1536including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001537and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001538
1539Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1540they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1541not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1542can result from rounding beyond the limits of the largest representable number.
1543
1544The infinities are signed (affine) and can be used in arithmetic operations
1545where they get treated as very large, indeterminate numbers. For instance,
1546adding a constant to infinity gives another infinite result.
1547
1548Some operations are indeterminate and return :const:`NaN`, or if the
1549:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1550``0/0`` returns :const:`NaN` which means "not a number". This variety of
1551:const:`NaN` is quiet and, once created, will flow through other computations
1552always resulting in another :const:`NaN`. This behavior can be useful for a
1553series of computations that occasionally have missing inputs --- it allows the
1554calculation to proceed while flagging specific results as invalid.
1555
1556A variant is :const:`sNaN` which signals rather than remaining quiet after every
1557operation. This is a useful return value when an invalid result needs to
1558interrupt a calculation for special handling.
1559
Mark Dickinson2fc92632008-02-06 22:10:50 +00001560The behavior of Python's comparison operators can be a little surprising where a
1561:const:`NaN` is involved. A test for equality where one of the operands is a
1562quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1563``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001564:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001565``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1566if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001567not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001568specify the behavior of direct comparisons; these rules for comparisons
1569involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1570section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001571and :meth:`compare-signal` methods instead.
1572
Georg Brandl8ec7f652007-08-15 14:28:01 +00001573The signed zeros can result from calculations that underflow. They keep the sign
1574that would have resulted if the calculation had been carried out to greater
1575precision. Since their magnitude is zero, both positive and negative zeros are
1576treated as equal and their sign is informational.
1577
1578In addition to the two signed zeros which are distinct yet equal, there are
1579various representations of zero with differing precisions yet equivalent in
1580value. This takes a bit of getting used to. For an eye accustomed to
1581normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001582the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001583
1584 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001585 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001586
Georg Brandlb19be572007-12-29 10:57:00 +00001587.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001588
1589
1590.. _decimal-threads:
1591
1592Working with threads
1593--------------------
1594
1595The :func:`getcontext` function accesses a different :class:`Context` object for
1596each thread. Having separate thread contexts means that threads may make
1597changes (such as ``getcontext.prec=10``) without interfering with other threads.
1598
1599Likewise, the :func:`setcontext` function automatically assigns its target to
1600the current thread.
1601
1602If :func:`setcontext` has not been called before :func:`getcontext`, then
1603:func:`getcontext` will automatically create a new context for use in the
1604current thread.
1605
1606The new context is copied from a prototype context called *DefaultContext*. To
1607control the defaults so that each thread will use the same values throughout the
1608application, directly modify the *DefaultContext* object. This should be done
1609*before* any threads are started so that there won't be a race condition between
1610threads calling :func:`getcontext`. For example::
1611
1612 # Set applicationwide defaults for all threads about to be launched
1613 DefaultContext.prec = 12
1614 DefaultContext.rounding = ROUND_DOWN
1615 DefaultContext.traps = ExtendedContext.traps.copy()
1616 DefaultContext.traps[InvalidOperation] = 1
1617 setcontext(DefaultContext)
1618
1619 # Afterwards, the threads can be started
1620 t1.start()
1621 t2.start()
1622 t3.start()
1623 . . .
1624
Georg Brandlb19be572007-12-29 10:57:00 +00001625.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001626
1627
1628.. _decimal-recipes:
1629
1630Recipes
1631-------
1632
1633Here are a few recipes that serve as utility functions and that demonstrate ways
1634to work with the :class:`Decimal` class::
1635
1636 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1637 pos='', neg='-', trailneg=''):
1638 """Convert Decimal to a money formatted string.
1639
1640 places: required number of places after the decimal point
1641 curr: optional currency symbol before the sign (may be blank)
1642 sep: optional grouping separator (comma, period, space, or blank)
1643 dp: decimal point indicator (comma or period)
1644 only specify as blank when places is zero
1645 pos: optional sign for positive numbers: '+', space or blank
1646 neg: optional sign for negative numbers: '-', '(', space or blank
1647 trailneg:optional trailing minus indicator: '-', ')', space or blank
1648
1649 >>> d = Decimal('-1234567.8901')
1650 >>> moneyfmt(d, curr='$')
1651 '-$1,234,567.89'
1652 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1653 '1.234.568-'
1654 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1655 '($1,234,567.89)'
1656 >>> moneyfmt(Decimal(123456789), sep=' ')
1657 '123 456 789.00'
1658 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001659 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001660
1661 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001662 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl734373c2009-01-03 21:55:17 +00001663 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001664 result = []
1665 digits = map(str, digits)
1666 build, next = result.append, digits.pop
1667 if sign:
1668 build(trailneg)
1669 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001670 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001671 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001672 if not digits:
1673 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001674 i = 0
1675 while digits:
1676 build(next())
1677 i += 1
1678 if i == 3 and digits:
1679 i = 0
1680 build(sep)
1681 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001682 build(neg if sign else pos)
1683 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001684
1685 def pi():
1686 """Compute Pi to the current precision.
1687
1688 >>> print pi()
1689 3.141592653589793238462643383
1690
1691 """
1692 getcontext().prec += 2 # extra digits for intermediate steps
1693 three = Decimal(3) # substitute "three=3.0" for regular floats
1694 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1695 while s != lasts:
1696 lasts = s
1697 n, na = n+na, na+8
1698 d, da = d+da, da+32
1699 t = (t * n) / d
1700 s += t
1701 getcontext().prec -= 2
1702 return +s # unary plus applies the new precision
1703
1704 def exp(x):
1705 """Return e raised to the power of x. Result type matches input type.
1706
1707 >>> print exp(Decimal(1))
1708 2.718281828459045235360287471
1709 >>> print exp(Decimal(2))
1710 7.389056098930650227230427461
1711 >>> print exp(2.0)
1712 7.38905609893
1713 >>> print exp(2+0j)
1714 (7.38905609893+0j)
1715
1716 """
1717 getcontext().prec += 2
1718 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1719 while s != lasts:
Georg Brandl734373c2009-01-03 21:55:17 +00001720 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001721 i += 1
1722 fact *= i
Georg Brandl734373c2009-01-03 21:55:17 +00001723 num *= x
1724 s += num / fact
1725 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001726 return +s
1727
1728 def cos(x):
1729 """Return the cosine of x as measured in radians.
1730
1731 >>> print cos(Decimal('0.5'))
1732 0.8775825618903727161162815826
1733 >>> print cos(0.5)
1734 0.87758256189
1735 >>> print cos(0.5+0j)
1736 (0.87758256189+0j)
1737
1738 """
1739 getcontext().prec += 2
1740 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1741 while s != lasts:
Georg Brandl734373c2009-01-03 21:55:17 +00001742 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001743 i += 2
1744 fact *= i * (i-1)
1745 num *= x * x
1746 sign *= -1
Georg Brandl734373c2009-01-03 21:55:17 +00001747 s += num / fact * sign
1748 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001749 return +s
1750
1751 def sin(x):
1752 """Return the sine of x as measured in radians.
1753
1754 >>> print sin(Decimal('0.5'))
1755 0.4794255386042030002732879352
1756 >>> print sin(0.5)
1757 0.479425538604
1758 >>> print sin(0.5+0j)
1759 (0.479425538604+0j)
1760
1761 """
1762 getcontext().prec += 2
1763 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1764 while s != lasts:
Georg Brandl734373c2009-01-03 21:55:17 +00001765 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001766 i += 2
1767 fact *= i * (i-1)
1768 num *= x * x
1769 sign *= -1
Georg Brandl734373c2009-01-03 21:55:17 +00001770 s += num / fact * sign
1771 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001772 return +s
1773
1774
Georg Brandlb19be572007-12-29 10:57:00 +00001775.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001776
1777
1778.. _decimal-faq:
1779
1780Decimal FAQ
1781-----------
1782
1783Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1784minimize typing when using the interactive interpreter?
1785
Georg Brandl9f662322008-03-22 11:47:10 +00001786A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001787
1788 >>> D = decimal.Decimal
1789 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001790 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001791
1792Q. In a fixed-point application with two decimal places, some inputs have many
1793places and need to be rounded. Others are not supposed to have excess digits
1794and need to be validated. What methods should be used?
1795
1796A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001797the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001798
1799 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1800
1801 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001802 >>> Decimal('3.214').quantize(TWOPLACES)
1803 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001804
Georg Brandl734373c2009-01-03 21:55:17 +00001805 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001806 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1807 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001808
Raymond Hettingerabe32372008-02-14 02:41:22 +00001809 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001810 Traceback (most recent call last):
1811 ...
Georg Brandl0b4d9452009-05-26 08:50:50 +00001812 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001813
1814Q. Once I have valid two place inputs, how do I maintain that invariant
1815throughout an application?
1816
Raymond Hettinger46314812008-02-14 10:46:57 +00001817A. Some operations like addition, subtraction, and multiplication by an integer
1818will automatically preserve fixed point. Others operations, like division and
1819non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001820be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001821
1822 >>> a = Decimal('102.72') # Initial fixed-point values
1823 >>> b = Decimal('3.17')
1824 >>> a + b # Addition preserves fixed-point
1825 Decimal('105.89')
1826 >>> a - b
1827 Decimal('99.55')
1828 >>> a * 42 # So does integer multiplication
1829 Decimal('4314.24')
1830 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1831 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001832 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001833 Decimal('0.03')
1834
1835In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001836to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001837
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001838 >>> def mul(x, y, fp=TWOPLACES):
1839 ... return (x * y).quantize(fp)
1840 >>> def div(x, y, fp=TWOPLACES):
1841 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001842
Raymond Hettinger46314812008-02-14 10:46:57 +00001843 >>> mul(a, b) # Automatically preserve fixed-point
1844 Decimal('325.62')
1845 >>> div(b, a)
1846 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001847
1848Q. There are many ways to express the same value. The numbers :const:`200`,
1849:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1850various precisions. Is there a way to transform them to a single recognizable
1851canonical value?
1852
1853A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001854representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001855
1856 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1857 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001858 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001859
1860Q. Some decimal values always print with exponential notation. Is there a way
1861to get a non-exponential representation?
1862
1863A. For some values, exponential notation is the only way to express the number
1864of significant places in the coefficient. For example, expressing
1865:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1866original's two-place significance.
1867
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001868If an application does not care about tracking significance, it is easy to
Georg Brandl907a7202008-02-22 12:31:45 +00001869remove the exponent and trailing zeroes, losing significance, but keeping the
Georg Brandl9f662322008-03-22 11:47:10 +00001870value unchanged:
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001871
1872 >>> def remove_exponent(d):
1873 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1874
1875 >>> remove_exponent(Decimal('5E+3'))
1876 Decimal('5000')
1877
Georg Brandl8ec7f652007-08-15 14:28:01 +00001878Q. Is there a way to convert a regular float to a :class:`Decimal`?
1879
1880A. Yes, all binary floating point numbers can be exactly expressed as a
1881Decimal. An exact conversion may take more precision than intuition would
Georg Brandl9f662322008-03-22 11:47:10 +00001882suggest, so we trap :const:`Inexact` to signal a need for more precision:
1883
Georg Brandl838b4b02008-03-22 13:07:06 +00001884.. testcode::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001885
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001886 def float_to_decimal(f):
1887 "Convert a floating point number to a Decimal with no loss of information"
1888 n, d = f.as_integer_ratio()
Raymond Hettingerb3833dd2009-01-03 07:46:36 +00001889 numerator, denominator = Decimal(n), Decimal(d)
1890 ctx = Context(prec=60)
1891 result = ctx.divide(numerator, denominator)
1892 while ctx.flags[Inexact]:
Raymond Hettingerc921dac2009-01-03 07:50:46 +00001893 ctx.flags[Inexact] = False
Raymond Hettingerb3833dd2009-01-03 07:46:36 +00001894 ctx.prec *= 2
1895 result = ctx.divide(numerator, denominator)
1896 return result
Georg Brandl8ec7f652007-08-15 14:28:01 +00001897
Georg Brandl838b4b02008-03-22 13:07:06 +00001898.. doctest::
Georg Brandl9f662322008-03-22 11:47:10 +00001899
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001900 >>> float_to_decimal(math.pi)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001901 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001902
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001903Q. Why isn't the :func:`float_to_decimal` routine included in the module?
Georg Brandl8ec7f652007-08-15 14:28:01 +00001904
1905A. There is some question about whether it is advisable to mix binary and
1906decimal floating point. Also, its use requires some care to avoid the
Georg Brandl9f662322008-03-22 11:47:10 +00001907representation issues associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001908
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001909 >>> float_to_decimal(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001910 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001911
1912Q. Within a complex calculation, how can I make sure that I haven't gotten a
1913spurious result because of insufficient precision or rounding anomalies.
1914
1915A. The decimal module makes it easy to test results. A best practice is to
1916re-run calculations using greater precision and with various rounding modes.
1917Widely differing results indicate insufficient precision, rounding mode issues,
1918ill-conditioned inputs, or a numerically unstable algorithm.
1919
1920Q. I noticed that context precision is applied to the results of operations but
1921not to the inputs. Is there anything to watch out for when mixing values of
1922different precisions?
1923
1924A. Yes. The principle is that all values are considered to be exact and so is
1925the arithmetic on those values. Only the results are rounded. The advantage
1926for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001927results can look odd if you forget that the inputs haven't been rounded:
1928
1929.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001930
1931 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001932 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001933 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001934 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001935 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001936
1937The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001938using the unary plus operation:
1939
1940.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001941
1942 >>> getcontext().prec = 3
1943 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001944 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001945
1946Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001947:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001948
1949 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001950 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001951