blob: a0c7bde553c514157888a8eb7046de7a45808813 [file] [log] [blame]
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001\section{\module{decimal} ---
2 Decimal floating point arithmetic}
3
4\declaremodule{standard}{decimal}
5\modulesynopsis{Implementation of the General Decimal Arithmetic
6Specification.}
7
8\moduleauthor{Eric Price}{eprice at tjhsst.edu}
9\moduleauthor{Facundo Batista}{facundo at taniquetil.com.ar}
10\moduleauthor{Raymond Hettinger}{python at rcn.com}
11\moduleauthor{Aahz}{aahz at pobox.com}
12\moduleauthor{Tim Peters}{tim.one at comcast.net}
13
14\sectionauthor{Raymond D. Hettinger}{python at rcn.com}
15
16\versionadded{2.4}
17
Raymond Hettinger97c92082004-07-09 06:13:12 +000018The \module{decimal} module provides support for decimal floating point
Raymond Hettinger8de63a22004-07-05 05:52:03 +000019arithmetic. It offers several advantages over the \class{float()} datatype:
20
21\begin{itemize}
22
23\item Decimal numbers can be represented exactly. In contrast, numbers like
Raymond Hettinger65df07b2004-07-11 12:40:19 +000024\constant{1.1} do not have an exact representation in binary floating point.
Raymond Hettingerd7c71152004-07-12 13:22:14 +000025End users typically would not expect \constant{1.1} to display as
Raymond Hettinger8de63a22004-07-05 05:52:03 +000026\constant{1.1000000000000001} as it does with binary floating point.
27
28\item The exactness carries over into arithmetic. In decimal floating point,
29\samp{0.1 + 0.1 + 0.1 - 0.3} is exactly equal to zero. In binary floating
30point, result is \constant{5.5511151231257827e-017}. While near to zero, the
31differences prevent reliable equality testing and differences can accumulate.
32For this reason, decimal would be preferred in accounting applications which
33have strict equality invariants.
34
Raymond Hettinger11666382005-09-11 18:21:52 +000035\item The decimal module incorporates a notion of significant places so that
Raymond Hettinger8de63a22004-07-05 05:52:03 +000036\samp{1.30 + 1.20} is \constant{2.50}. The trailing zero is kept to indicate
37significance. This is the customary presentation for monetary applications. For
38multiplication, the ``schoolbook'' approach uses all the figures in the
39multiplicands. For instance, \samp{1.3 * 1.2} gives \constant{1.56} while
40\samp{1.30 * 1.20} gives \constant{1.5600}.
41
42\item Unlike hardware based binary floating point, the decimal module has a user
43settable precision (defaulting to 28 places) which can be as large as needed for
44a given problem:
45
46\begin{verbatim}
47>>> getcontext().prec = 6
48>>> Decimal(1) / Decimal(7)
49Decimal("0.142857")
50>>> getcontext().prec = 28
51>>> Decimal(1) / Decimal(7)
52Decimal("0.1428571428571428571428571429")
53\end{verbatim}
54
55\item Both binary and decimal floating point are implemented in terms of published
56standards. While the built-in float type exposes only a modest portion of its
57capabilities, the decimal module exposes all required parts of the standard.
58When needed, the programmer has full control over rounding and signal handling.
59
60\end{itemize}
61
62
63The module design is centered around three concepts: the decimal number, the
64context for arithmetic, and signals.
65
66A decimal number is immutable. It has a sign, coefficient digits, and an
67exponent. To preserve significance, the coefficient digits do not truncate
68trailing zeroes. Decimals also include special values such as
Raymond Hettinger5aa478b2004-07-09 10:02:53 +000069\constant{Infinity}, \constant{-Infinity}, and \constant{NaN}. The standard
70also differentiates \constant{-0} from \constant{+0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +000071
72The context for arithmetic is an environment specifying precision, rounding
Raymond Hettinger65df07b2004-07-11 12:40:19 +000073rules, limits on exponents, flags indicating the results of operations,
74and trap enablers which determine whether signals are treated as
Raymond Hettinger8de63a22004-07-05 05:52:03 +000075exceptions. Rounding options include \constant{ROUND_CEILING},
76\constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
77\constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, and \constant{ROUND_UP}.
78
Raymond Hettinger65df07b2004-07-11 12:40:19 +000079Signals are groups of exceptional conditions arising during the course of
80computation. Depending on the needs of the application, signals may be
Raymond Hettinger8de63a22004-07-05 05:52:03 +000081ignored, considered as informational, or treated as exceptions. The signals in
82the decimal module are: \constant{Clamped}, \constant{InvalidOperation},
Raymond Hettinger5aa478b2004-07-09 10:02:53 +000083\constant{DivisionByZero}, \constant{Inexact}, \constant{Rounded},
Raymond Hettinger8de63a22004-07-05 05:52:03 +000084\constant{Subnormal}, \constant{Overflow}, and \constant{Underflow}.
85
86For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger467024c2005-02-21 15:46:52 +000087encountered, its flag is incremented from zero and, then, if the trap enabler
Raymond Hettinger97c92082004-07-09 06:13:12 +000088is set to one, an exception is raised. Flags are sticky, so the user
89needs to reset them before monitoring a calculation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +000090
91
92\begin{seealso}
93 \seetext{IBM's General Decimal Arithmetic Specification,
94 \citetitle[http://www2.hursley.ibm.com/decimal/decarith.html]
95 {The General Decimal Arithmetic Specification}.}
96
97 \seetext{IEEE standard 854-1987,
Raymond Hettinger536f76b2004-07-08 09:22:33 +000098 \citetitle[http://www.cs.berkeley.edu/\textasciitilde ejr/projects/754/private/drafts/854-1987/dir.html]
Raymond Hettinger8de63a22004-07-05 05:52:03 +000099 {Unofficial IEEE 854 Text}.}
100\end{seealso}
101
102
103
104%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105\subsection{Quick-start Tutorial \label{decimal-tutorial}}
106
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000107The usual start to using decimals is importing the module, viewing the current
108context with \function{getcontext()} and, if necessary, setting new values
109for precision, rounding, or enabled traps:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000110
111\begin{verbatim}
112>>> from decimal import *
113>>> getcontext()
114Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000115 capitals=1, flags=[], traps=[Overflow, InvalidOperation,
116 DivisionByZero])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000117
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000118>>> getcontext().prec = 7 # Set a new precision
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000119\end{verbatim}
120
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000121
Raymond Hettinger467024c2005-02-21 15:46:52 +0000122Decimal instances can be constructed from integers, strings, or tuples. To
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000123create a Decimal from a \class{float}, first convert it to a string. This
124serves as an explicit reminder of the details of the conversion (including
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000125representation error). Decimal numbers include special values such as
126\constant{NaN} which stands for ``Not a number'', positive and negative
127\constant{Infinity}, and \constant{-0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000128
129\begin{verbatim}
130>>> Decimal(10)
131Decimal("10")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000132>>> Decimal("3.14")
133Decimal("3.14")
134>>> Decimal((0, (3, 1, 4), -2))
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000135Decimal("3.14")
136>>> Decimal(str(2.0 ** 0.5))
137Decimal("1.41421356237")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000138>>> Decimal("NaN")
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000139Decimal("NaN")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000140>>> Decimal("-Infinity")
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000141Decimal("-Infinity")
142\end{verbatim}
143
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000144
145The significance of a new Decimal is determined solely by the number
146of digits input. Context precision and rounding only come into play during
147arithmetic operations.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000148
149\begin{verbatim}
150>>> getcontext().prec = 6
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000151>>> Decimal('3.0')
152Decimal("3.0")
153>>> Decimal('3.1415926535')
154Decimal("3.1415926535")
155>>> Decimal('3.1415926535') + Decimal('2.7182818285')
156Decimal("5.85987")
157>>> getcontext().rounding = ROUND_UP
158>>> Decimal('3.1415926535') + Decimal('2.7182818285')
159Decimal("5.85988")
160\end{verbatim}
161
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000162
Raymond Hettinger467024c2005-02-21 15:46:52 +0000163Decimals interact well with much of the rest of Python. Here is a small
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000164decimal floating point flying circus:
165
166\begin{verbatim}
167>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
168>>> max(data)
169Decimal("9.25")
170>>> min(data)
171Decimal("0.03")
172>>> sorted(data)
173[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"),
174 Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]
175>>> sum(data)
176Decimal("19.29")
177>>> a,b,c = data[:3]
178>>> str(a)
179'1.34'
180>>> float(a)
1811.3400000000000001
Raymond Hettinger92960232004-07-14 21:06:55 +0000182>>> round(a, 1) # round() first converts to binary floating point
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001831.3
184>>> int(a)
1851
186>>> a * 5
187Decimal("6.70")
188>>> a * b
189Decimal("2.5058")
190>>> c % a
191Decimal("0.77")
192\end{verbatim}
193
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000194The \method{quantize()} method rounds a number to a fixed exponent. This
195method is useful for monetary applications that often round results to a fixed
196number of places:
197
198\begin{verbatim}
199>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
200Decimal("7.32")
201>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
202Decimal("8")
203\end{verbatim}
204
205As shown above, the \function{getcontext()} function accesses the current
206context and allows the settings to be changed. This approach meets the
207needs of most applications.
208
209For more advanced work, it may be useful to create alternate contexts using
210the Context() constructor. To make an alternate active, use the
211\function{setcontext()} function.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000212
213In accordance with the standard, the \module{Decimal} module provides two
214ready to use standard contexts, \constant{BasicContext} and
215\constant{ExtendedContext}. The former is especially useful for debugging
216because many of the traps are enabled:
217
218\begin{verbatim}
219>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000220>>> setcontext(myothercontext)
221>>> Decimal(1) / Decimal(7)
222Decimal("0.142857142857142857142857142857142857142857142857142857142857")
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000223
224>>> ExtendedContext
225Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
226 capitals=1, flags=[], traps=[])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000227>>> setcontext(ExtendedContext)
228>>> Decimal(1) / Decimal(7)
229Decimal("0.142857143")
230>>> Decimal(42) / Decimal(0)
231Decimal("Infinity")
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000232
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000233>>> setcontext(BasicContext)
234>>> Decimal(42) / Decimal(0)
235Traceback (most recent call last):
236 File "<pyshell#143>", line 1, in -toplevel-
237 Decimal(42) / Decimal(0)
238DivisionByZero: x / 0
239\end{verbatim}
240
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000241
242Contexts also have signal flags for monitoring exceptional conditions
243encountered during computations. The flags remain set until explicitly
244cleared, so it is best to clear the flags before each set of monitored
245computations by using the \method{clear_flags()} method.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000246
247\begin{verbatim}
248>>> setcontext(ExtendedContext)
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000249>>> getcontext().clear_flags()
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000250>>> Decimal(355) / Decimal(113)
251Decimal("3.14159292")
252>>> getcontext()
253Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Raymond Hettingerbf440692004-07-10 14:14:37 +0000254 capitals=1, flags=[Inexact, Rounded], traps=[])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000255\end{verbatim}
256
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000257The \var{flags} entry shows that the rational approximation to \constant{Pi}
258was rounded (digits beyond the context precision were thrown away) and that
259the result is inexact (some of the discarded digits were non-zero).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000260
Raymond Hettingerbf440692004-07-10 14:14:37 +0000261Individual traps are set using the dictionary in the \member{traps}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000262field of a context:
263
264\begin{verbatim}
265>>> Decimal(1) / Decimal(0)
266Decimal("Infinity")
Raymond Hettingerbf440692004-07-10 14:14:37 +0000267>>> getcontext().traps[DivisionByZero] = 1
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000268>>> Decimal(1) / Decimal(0)
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000269Traceback (most recent call last):
270 File "<pyshell#112>", line 1, in -toplevel-
271 Decimal(1) / Decimal(0)
272DivisionByZero: x / 0
273\end{verbatim}
274
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000275Most programs adjust the current context only once, at the beginning of the
276program. And, in many applications, data is converted to \class{Decimal} with
277a single cast inside a loop. With context set and decimals created, the bulk
278of the program manipulates the data no differently than with other Python
279numeric types.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000280
281
282
283%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
284\subsection{Decimal objects \label{decimal-decimal}}
285
286\begin{classdesc}{Decimal}{\optional{value \optional{, context}}}
287 Constructs a new \class{Decimal} object based from \var{value}.
288
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000289 \var{value} can be an integer, string, tuple, or another \class{Decimal}
290 object. If no \var{value} is given, returns \code{Decimal("0")}. If
291 \var{value} is a string, it should conform to the decimal numeric string
292 syntax:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000293
294 \begin{verbatim}
295 sign ::= '+' | '-'
296 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
297 indicator ::= 'e' | 'E'
298 digits ::= digit [digit]...
299 decimal-part ::= digits '.' [digits] | ['.'] digits
300 exponent-part ::= indicator [sign] digits
301 infinity ::= 'Infinity' | 'Inf'
302 nan ::= 'NaN' [digits] | 'sNaN' [digits]
303 numeric-value ::= decimal-part [exponent-part] | infinity
304 numeric-string ::= [sign] numeric-value | [sign] nan
305 \end{verbatim}
306
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000307 If \var{value} is a \class{tuple}, it should have three components,
308 a sign (\constant{0} for positive or \constant{1} for negative),
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000309 a \class{tuple} of digits, and an integer exponent. For example,
310 \samp{Decimal((0, (1, 4, 1, 4), -3))} returns \code{Decimal("1.414")}.
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000311
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000312 The \var{context} precision does not affect how many digits are stored.
313 That is determined exclusively by the number of digits in \var{value}. For
314 example, \samp{Decimal("3.00000")} records all five zeroes even if the
315 context precision is only three.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000316
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000317 The purpose of the \var{context} argument is determining what to do if
318 \var{value} is a malformed string. If the context traps
319 \constant{InvalidOperation}, an exception is raised; otherwise, the
320 constructor returns a new Decimal with the value of \constant{NaN}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000321
322 Once constructed, \class{Decimal} objects are immutable.
323\end{classdesc}
324
325Decimal floating point objects share many properties with the other builtin
326numeric types such as \class{float} and \class{int}. All of the usual
327math operations and special methods apply. Likewise, decimal objects can
328be copied, pickled, printed, used as dictionary keys, used as set elements,
329compared, sorted, and coerced to another type (such as \class{float}
330or \class{long}).
331
332In addition to the standard numeric properties, decimal floating point objects
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000333also have a number of specialized methods:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000334
335\begin{methoddesc}{adjusted}{}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000336 Return the adjusted exponent after shifting out the coefficient's rightmost
337 digits until only the lead digit remains: \code{Decimal("321e+5").adjusted()}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000338 returns seven. Used for determining the position of the most significant
339 digit with respect to the decimal point.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000340\end{methoddesc}
341
342\begin{methoddesc}{as_tuple}{}
343 Returns a tuple representation of the number:
344 \samp{(sign, digittuple, exponent)}.
345\end{methoddesc}
346
347\begin{methoddesc}{compare}{other\optional{, context}}
348 Compares like \method{__cmp__()} but returns a decimal instance:
349 \begin{verbatim}
350 a or b is a NaN ==> Decimal("NaN")
351 a < b ==> Decimal("-1")
352 a == b ==> Decimal("0")
353 a > b ==> Decimal("1")
354 \end{verbatim}
355\end{methoddesc}
356
357\begin{methoddesc}{max}{other\optional{, context}}
Facundo Batista44160942004-11-12 02:03:36 +0000358 Like \samp{max(self, other)} except that the context rounding rule
359 is applied before returning and that \constant{NaN} values are
360 either signalled or ignored (depending on the context and whether
361 they are signaling or quiet).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000362\end{methoddesc}
363
364\begin{methoddesc}{min}{other\optional{, context}}
Facundo Batista44160942004-11-12 02:03:36 +0000365 Like \samp{min(self, other)} except that the context rounding rule
366 is applied before returning and that \constant{NaN} values are
367 either signalled or ignored (depending on the context and whether
368 they are signaling or quiet).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000369\end{methoddesc}
370
371\begin{methoddesc}{normalize}{\optional{context}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000372 Normalize the number by stripping the rightmost trailing zeroes and
373 converting any result equal to \constant{Decimal("0")} to
374 \constant{Decimal("0e0")}. Used for producing canonical values for members
375 of an equivalence class. For example, \code{Decimal("32.100")} and
376 \code{Decimal("0.321000e+2")} both normalize to the equivalent value
Raymond Hettinger8df4e6b2004-08-15 23:51:38 +0000377 \code{Decimal("32.1")}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000378\end{methoddesc}
379
380\begin{methoddesc}{quantize}
Facundo Batista139af022004-11-20 00:33:51 +0000381 {exp \optional{, rounding\optional{, context\optional{, watchexp}}}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000382 Quantize makes the exponent the same as \var{exp}. Searches for a
383 rounding method in \var{rounding}, then in \var{context}, and then
384 in the current context.
385
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000386 If \var{watchexp} is set (default), then an error is returned whenever
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000387 the resulting exponent is greater than \member{Emax} or less than
388 \member{Etiny}.
389\end{methoddesc}
390
391\begin{methoddesc}{remainder_near}{other\optional{, context}}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000392 Computes the modulo as either a positive or negative value depending
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000393 on which is closest to zero. For instance,
394 \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
395 which is closer to zero than \code{Decimal("4")}.
396
397 If both are equally close, the one chosen will have the same sign
398 as \var{self}.
399\end{methoddesc}
400
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000401\begin{methoddesc}{same_quantum}{other\optional{, context}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000402 Test whether self and other have the same exponent or whether both
403 are \constant{NaN}.
404\end{methoddesc}
405
406\begin{methoddesc}{sqrt}{\optional{context}}
407 Return the square root to full precision.
408\end{methoddesc}
409
410\begin{methoddesc}{to_eng_string}{\optional{context}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000411 Convert to an engineering-type string.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000412
413 Engineering notation has an exponent which is a multiple of 3, so there
414 are up to 3 digits left of the decimal place. For example, converts
415 \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
416\end{methoddesc}
417
418\begin{methoddesc}{to_integral}{\optional{rounding\optional{, context}}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000419 Rounds to the nearest integer without signaling \constant{Inexact}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000420 or \constant{Rounded}. If given, applies \var{rounding}; otherwise,
421 uses the rounding method in either the supplied \var{context} or the
422 current context.
423\end{methoddesc}
424
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000425
426
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000427%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
428\subsection{Context objects \label{decimal-decimal}}
429
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000430Contexts are environments for arithmetic operations. They govern precision,
431set rules for rounding, determine which signals are treated as exceptions, and
432limit the range for exponents.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000433
434Each thread has its own current context which is accessed or changed using
435the \function{getcontext()} and \function{setcontext()} functions:
436
437\begin{funcdesc}{getcontext}{}
438 Return the current context for the active thread.
439\end{funcdesc}
440
441\begin{funcdesc}{setcontext}{c}
442 Set the current context for the active thread to \var{c}.
443\end{funcdesc}
444
Phillip J. Eby168e99f2006-03-28 00:13:10 +0000445Beginning with Python 2.5, you can also use the \keyword{with} statement
446to temporarily change the active context. For example the following code
447increases the current decimal precision by 2 places, performs a
448calculation, and then automatically restores the previous context:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000449
Phillip J. Eby168e99f2006-03-28 00:13:10 +0000450\begin{verbatim}
451from __future__ import with_statement
452import decimal
453
454with decimal.getcontext() as ctx:
455 ctx.prec += 2 # add 2 more digits of precision
456 calculate_something()
457\end{verbatim}
458
459The context that's active in the body of the \keyword{with} statement is
460a \emph{copy} of the context you provided to the \keyword{with}
461statement, so modifying its attributes doesn't affect anything except
462that temporary copy.
463
464You can use any decimal context in a \keyword{with} statement, but if
465you just want to make a temporary change to some aspect of the current
466context, it's easiest to just use \function{getcontext()} as shown
467above.
468
469New contexts can also be created using the \class{Context} constructor
470described below. In addition, the module provides three pre-made
471contexts:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000472
473\begin{classdesc*}{BasicContext}
474 This is a standard context defined by the General Decimal Arithmetic
475 Specification. Precision is set to nine. Rounding is set to
476 \constant{ROUND_HALF_UP}. All flags are cleared. All traps are enabled
477 (treated as exceptions) except \constant{Inexact}, \constant{Rounded}, and
478 \constant{Subnormal}.
479
480 Because many of the traps are enabled, this context is useful for debugging.
481\end{classdesc*}
482
483\begin{classdesc*}{ExtendedContext}
484 This is a standard context defined by the General Decimal Arithmetic
485 Specification. Precision is set to nine. Rounding is set to
486 \constant{ROUND_HALF_EVEN}. All flags are cleared. No traps are enabled
487 (so that exceptions are not raised during computations).
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000488
489 Because the trapped are disabled, this context is useful for applications
490 that prefer to have result value of \constant{NaN} or \constant{Infinity}
491 instead of raising exceptions. This allows an application to complete a
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000492 run in the presence of conditions that would otherwise halt the program.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000493\end{classdesc*}
494
495\begin{classdesc*}{DefaultContext}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000496 This context is used by the \class{Context} constructor as a prototype for
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000497 new contexts. Changing a field (such a precision) has the effect of
498 changing the default for new contexts creating by the \class{Context}
499 constructor.
500
501 This context is most useful in multi-threaded environments. Changing one of
502 the fields before threads are started has the effect of setting system-wide
503 defaults. Changing the fields after threads have started is not recommended
504 as it would require thread synchronization to prevent race conditions.
505
506 In single threaded environments, it is preferable to not use this context
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000507 at all. Instead, simply create contexts explicitly as described below.
508
509 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled
510 traps for Overflow, InvalidOperation, and DivisionByZero.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000511\end{classdesc*}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000512
513
514In addition to the three supplied contexts, new contexts can be created
515with the \class{Context} constructor.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000516
Raymond Hettingerbf440692004-07-10 14:14:37 +0000517\begin{classdesc}{Context}{prec=None, rounding=None, traps=None,
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000518 flags=None, Emin=None, Emax=None, capitals=1}
519 Creates a new context. If a field is not specified or is \constant{None},
520 the default values are copied from the \constant{DefaultContext}. If the
521 \var{flags} field is not specified or is \constant{None}, all flags are
522 cleared.
523
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000524 The \var{prec} field is a positive integer that sets the precision for
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000525 arithmetic operations in the context.
526
Raymond Hettinger97c92082004-07-09 06:13:12 +0000527 The \var{rounding} option is one of:
Raymond Hettinger87de8ed2005-07-01 16:54:12 +0000528 \begin{itemize}
529 \item \constant{ROUND_CEILING} (towards \constant{Infinity}),
530 \item \constant{ROUND_DOWN} (towards zero),
531 \item \constant{ROUND_FLOOR} (towards \constant{-Infinity}),
532 \item \constant{ROUND_HALF_DOWN} (to nearest with ties going towards zero),
533 \item \constant{ROUND_HALF_EVEN} (to nearest with ties going to nearest even integer),
534 \item \constant{ROUND_HALF_UP} (to nearest with ties going away from zero), or
535 \item \constant{ROUND_UP} (away from zero).
536 \end{itemize}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000537
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000538 The \var{traps} and \var{flags} fields list any signals to be set.
539 Generally, new contexts should only set traps and leave the flags clear.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000540
541 The \var{Emin} and \var{Emax} fields are integers specifying the outer
542 limits allowable for exponents.
543
544 The \var{capitals} field is either \constant{0} or \constant{1} (the
545 default). If set to \constant{1}, exponents are printed with a capital
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000546 \constant{E}; otherwise, a lowercase \constant{e} is used:
547 \constant{Decimal('6.02e+23')}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000548\end{classdesc}
549
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000550The \class{Context} class defines several general purpose methods as well as a
551large number of methods for doing arithmetic directly in a given context.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000552
553\begin{methoddesc}{clear_flags}{}
Raymond Hettingerd391d102005-06-07 18:50:56 +0000554 Resets all of the flags to \constant{0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000555\end{methoddesc}
556
557\begin{methoddesc}{copy}{}
Raymond Hettingerd391d102005-06-07 18:50:56 +0000558 Return a duplicate of the context.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000559\end{methoddesc}
560
561\begin{methoddesc}{create_decimal}{num}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000562 Creates a new Decimal instance from \var{num} but using \var{self} as
563 context. Unlike the \class{Decimal} constructor, the context precision,
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000564 rounding method, flags, and traps are applied to the conversion.
565
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000566 This is useful because constants are often given to a greater precision than
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000567 is needed by the application. Another benefit is that rounding immediately
568 eliminates unintended effects from digits beyond the current precision.
569 In the following example, using unrounded inputs means that adding zero
570 to a sum can change the result:
571
572 \begin{verbatim}
573 >>> getcontext().prec = 3
574 >>> Decimal("3.4445") + Decimal("1.0023")
575 Decimal("4.45")
576 >>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
577 Decimal("4.44")
578 \end{verbatim}
579
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000580\end{methoddesc}
581
582\begin{methoddesc}{Etiny}{}
583 Returns a value equal to \samp{Emin - prec + 1} which is the minimum
584 exponent value for subnormal results. When underflow occurs, the
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000585 exponent is set to \constant{Etiny}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000586\end{methoddesc}
587
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000588\begin{methoddesc}{Etop}{}
589 Returns a value equal to \samp{Emax - prec + 1}.
590\end{methoddesc}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000591
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000592
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000593The usual approach to working with decimals is to create \class{Decimal}
594instances and then apply arithmetic operations which take place within the
595current context for the active thread. An alternate approach is to use
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000596context methods for calculating within a specific context. The methods are
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000597similar to those for the \class{Decimal} class and are only briefly recounted
598here.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000599
600\begin{methoddesc}{abs}{x}
601 Returns the absolute value of \var{x}.
602\end{methoddesc}
603
604\begin{methoddesc}{add}{x, y}
605 Return the sum of \var{x} and \var{y}.
606\end{methoddesc}
607
608\begin{methoddesc}{compare}{x, y}
609 Compares values numerically.
610
611 Like \method{__cmp__()} but returns a decimal instance:
612 \begin{verbatim}
613 a or b is a NaN ==> Decimal("NaN")
614 a < b ==> Decimal("-1")
615 a == b ==> Decimal("0")
616 a > b ==> Decimal("1")
617 \end{verbatim}
618\end{methoddesc}
619
620\begin{methoddesc}{divide}{x, y}
621 Return \var{x} divided by \var{y}.
622\end{methoddesc}
623
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000624\begin{methoddesc}{divmod}{x, y}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000625 Divides two numbers and returns the integer part of the result.
626\end{methoddesc}
627
628\begin{methoddesc}{max}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000629 Compare two values numerically and return the maximum.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000630
631 If they are numerically equal then the left-hand operand is chosen as the
632 result.
633\end{methoddesc}
634
635\begin{methoddesc}{min}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000636 Compare two values numerically and return the minimum.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000637
638 If they are numerically equal then the left-hand operand is chosen as the
639 result.
640\end{methoddesc}
641
642\begin{methoddesc}{minus}{x}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000643 Minus corresponds to the unary prefix minus operator in Python.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000644\end{methoddesc}
645
646\begin{methoddesc}{multiply}{x, y}
647 Return the product of \var{x} and \var{y}.
648\end{methoddesc}
649
650\begin{methoddesc}{normalize}{x}
651 Normalize reduces an operand to its simplest form.
652
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000653 Essentially a \method{plus} operation with all trailing zeros removed from
654 the result.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000655\end{methoddesc}
656
657\begin{methoddesc}{plus}{x}
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000658 Plus corresponds to the unary prefix plus operator in Python. This
659 operation applies the context precision and rounding, so it is
660 \emph{not} an identity operation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000661\end{methoddesc}
662
663\begin{methoddesc}{power}{x, y\optional{, modulo}}
664 Return \samp{x ** y} to the \var{modulo} if given.
665
666 The right-hand operand must be a whole number whose integer part (after any
667 exponent has been applied) has no more than 9 digits and whose fractional
668 part (if any) is all zeros before any rounding. The operand may be positive,
669 negative, or zero; if negative, the absolute value of the power is used, and
670 the left-hand operand is inverted (divided into 1) before use.
671
672 If the increased precision needed for the intermediate calculations exceeds
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000673 the capabilities of the implementation then an \constant{InvalidOperation}
674 condition is signaled.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000675
676 If, when raising to a negative power, an underflow occurs during the
677 division into 1, the operation is not halted at that point but continues.
678\end{methoddesc}
679
680\begin{methoddesc}{quantize}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000681 Returns a value equal to \var{x} after rounding and having the exponent of
682 \var{y}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000683
684 Unlike other operations, if the length of the coefficient after the quantize
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000685 operation would be greater than precision, then an
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000686 \constant{InvalidOperation} is signaled. This guarantees that, unless there
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000687 is an error condition, the quantized exponent is always equal to that of the
688 right-hand operand.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000689
690 Also unlike other operations, quantize never signals Underflow, even
691 if the result is subnormal and inexact.
692\end{methoddesc}
693
694\begin{methoddesc}{remainder}{x, y}
695 Returns the remainder from integer division.
696
697 The sign of the result, if non-zero, is the same as that of the original
698 dividend.
699\end{methoddesc}
700
701\begin{methoddesc}{remainder_near}{x, y}
702 Computed the modulo as either a positive or negative value depending
703 on which is closest to zero. For instance,
704 \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
705 which is closer to zero than \code{Decimal("4")}.
706
707 If both are equally close, the one chosen will have the same sign
708 as \var{self}.
709\end{methoddesc}
710
711\begin{methoddesc}{same_quantum}{x, y}
712 Test whether \var{x} and \var{y} have the same exponent or whether both are
713 \constant{NaN}.
714\end{methoddesc}
715
Georg Brandldd0c3122006-05-10 20:09:23 +0000716\begin{methoddesc}{sqrt}{x}
717 Return the square root of \var{x} to full precision.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000718\end{methoddesc}
719
Georg Brandlf33d01d2005-08-22 19:35:18 +0000720\begin{methoddesc}{subtract}{x, y}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000721 Return the difference between \var{x} and \var{y}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000722\end{methoddesc}
723
724\begin{methoddesc}{to_eng_string}{}
725 Convert to engineering-type string.
726
727 Engineering notation has an exponent which is a multiple of 3, so there
728 are up to 3 digits left of the decimal place. For example, converts
729 \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
730\end{methoddesc}
731
732\begin{methoddesc}{to_integral}{x}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000733 Rounds to the nearest integer without signaling \constant{Inexact}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000734 or \constant{Rounded}.
735\end{methoddesc}
736
Georg Brandldd0c3122006-05-10 20:09:23 +0000737\begin{methoddesc}{to_sci_string}{x}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000738 Converts a number to a string using scientific notation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000739\end{methoddesc}
740
741
742
743%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
744\subsection{Signals \label{decimal-signals}}
745
746Signals represent conditions that arise during computation.
747Each corresponds to one context flag and one context trap enabler.
748
749The context flag is incremented whenever the condition is encountered.
750After the computation, flags may be checked for informational
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000751purposes (for instance, to determine whether a computation was exact).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000752After checking the flags, be sure to clear all flags before starting
753the next computation.
754
755If the context's trap enabler is set for the signal, then the condition
756causes a Python exception to be raised. For example, if the
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000757\class{DivisionByZero} trap is set, then a \exception{DivisionByZero}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000758exception is raised upon encountering the condition.
759
760
761\begin{classdesc*}{Clamped}
762 Altered an exponent to fit representation constraints.
763
764 Typically, clamping occurs when an exponent falls outside the context's
765 \member{Emin} and \member{Emax} limits. If possible, the exponent is
766 reduced to fit by adding zeroes to the coefficient.
767\end{classdesc*}
768
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000769\begin{classdesc*}{DecimalException}
Raymond Hettinger467024c2005-02-21 15:46:52 +0000770 Base class for other signals and a subclass of
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000771 \exception{ArithmeticError}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000772\end{classdesc*}
773
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000774\begin{classdesc*}{DivisionByZero}
775 Signals the division of a non-infinite number by zero.
776
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000777 Can occur with division, modulo division, or when raising a number to a
778 negative power. If this signal is not trapped, returns
779 \constant{Infinity} or \constant{-Infinity} with the sign determined by
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000780 the inputs to the calculation.
781\end{classdesc*}
782
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000783\begin{classdesc*}{Inexact}
784 Indicates that rounding occurred and the result is not exact.
785
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000786 Signals when non-zero digits were discarded during rounding. The rounded
787 result is returned. The signal flag or trap is used to detect when
788 results are inexact.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000789\end{classdesc*}
790
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000791\begin{classdesc*}{InvalidOperation}
792 An invalid operation was performed.
793
794 Indicates that an operation was requested that does not make sense.
795 If not trapped, returns \constant{NaN}. Possible causes include:
796
797 \begin{verbatim}
798 Infinity - Infinity
799 0 * Infinity
800 Infinity / Infinity
801 x % 0
802 Infinity % x
803 x._rescale( non-integer )
804 sqrt(-x) and x > 0
805 0 ** 0
806 x ** (non-integer)
807 x ** Infinity
808 \end{verbatim}
809\end{classdesc*}
810
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000811\begin{classdesc*}{Overflow}
812 Numerical overflow.
813
814 Indicates the exponent is larger than \member{Emax} after rounding has
815 occurred. If not trapped, the result depends on the rounding mode, either
816 pulling inward to the largest representable finite number or rounding
817 outward to \constant{Infinity}. In either case, \class{Inexact} and
818 \class{Rounded} are also signaled.
819\end{classdesc*}
820
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000821\begin{classdesc*}{Rounded}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000822 Rounding occurred though possibly no information was lost.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000823
824 Signaled whenever rounding discards digits; even if those digits are
825 zero (such as rounding \constant{5.00} to \constant{5.0}). If not
826 trapped, returns the result unchanged. This signal is used to detect
827 loss of significant digits.
828\end{classdesc*}
829
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000830\begin{classdesc*}{Subnormal}
831 Exponent was lower than \member{Emin} prior to rounding.
832
833 Occurs when an operation result is subnormal (the exponent is too small).
834 If not trapped, returns the result unchanged.
835\end{classdesc*}
836
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000837\begin{classdesc*}{Underflow}
838 Numerical underflow with result rounded to zero.
839
840 Occurs when a subnormal result is pushed to zero by rounding.
841 \class{Inexact} and \class{Subnormal} are also signaled.
842\end{classdesc*}
843
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000844The following table summarizes the hierarchy of signals:
845
846\begin{verbatim}
847 exceptions.ArithmeticError(exceptions.StandardError)
848 DecimalException
849 Clamped
850 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
851 Inexact
852 Overflow(Inexact, Rounded)
853 Underflow(Inexact, Rounded, Subnormal)
854 InvalidOperation
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000855 Rounded
856 Subnormal
857\end{verbatim}
858
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000859
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000860%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettinger2864b802004-08-15 23:47:48 +0000861\subsection{Floating Point Notes \label{decimal-notes}}
862
Raymond Hettinger87de8ed2005-07-01 16:54:12 +0000863\subsubsection{Mitigating round-off error with increased precision}
864
Raymond Hettinger2864b802004-08-15 23:47:48 +0000865The use of decimal floating point eliminates decimal representation error
866(making it possible to represent \constant{0.1} exactly); however, some
867operations can still incur round-off error when non-zero digits exceed the
868fixed precision.
869
870The effects of round-off error can be amplified by the addition or subtraction
871of nearly offsetting quantities resulting in loss of significance. Knuth
872provides two instructive examples where rounded floating point arithmetic with
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000873insufficient precision causes the breakdown of the associative and
Raymond Hettinger2864b802004-08-15 23:47:48 +0000874distributive properties of addition:
875
876\begin{verbatim}
877# Examples from Seminumerical Algorithms, Section 4.2.2.
Raymond Hettinger467024c2005-02-21 15:46:52 +0000878>>> from decimal import Decimal, getcontext
Raymond Hettinger2864b802004-08-15 23:47:48 +0000879>>> getcontext().prec = 8
880
881>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
882>>> (u + v) + w
883Decimal("9.5111111")
884>>> u + (v + w)
885Decimal("10")
886
887>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
888>>> (u*v) + (u*w)
889Decimal("0.01")
890>>> u * (v+w)
891Decimal("0.0060000")
892\end{verbatim}
893
894The \module{decimal} module makes it possible to restore the identities
895by expanding the precision sufficiently to avoid loss of significance:
896
897\begin{verbatim}
898>>> getcontext().prec = 20
899>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
900>>> (u + v) + w
901Decimal("9.51111111")
902>>> u + (v + w)
903Decimal("9.51111111")
904>>>
905>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
906>>> (u*v) + (u*w)
907Decimal("0.0060000")
908>>> u * (v+w)
909Decimal("0.0060000")
910\end{verbatim}
911
Raymond Hettinger87de8ed2005-07-01 16:54:12 +0000912\subsubsection{Special values}
Raymond Hettinger2864b802004-08-15 23:47:48 +0000913
914The number system for the \module{decimal} module provides special
915values including \constant{NaN}, \constant{sNaN}, \constant{-Infinity},
916\constant{Infinity}, and two zeroes, \constant{+0} and \constant{-0}.
917
Andrew M. Kuchling7ec75842004-08-16 16:12:23 +0000918Infinities can be constructed directly with: \code{Decimal('Infinity')}. Also,
Raymond Hettinger2864b802004-08-15 23:47:48 +0000919they can arise from dividing by zero when the \exception{DivisionByZero}
920signal is not trapped. Likewise, when the \exception{Overflow} signal is not
921trapped, infinity can result from rounding beyond the limits of the largest
922representable number.
923
924The infinities are signed (affine) and can be used in arithmetic operations
925where they get treated as very large, indeterminate numbers. For instance,
926adding a constant to infinity gives another infinite result.
927
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000928Some operations are indeterminate and return \constant{NaN}, or if the
Raymond Hettinger2864b802004-08-15 23:47:48 +0000929\exception{InvalidOperation} signal is trapped, raise an exception. For
930example, \code{0/0} returns \constant{NaN} which means ``not a number''. This
931variety of \constant{NaN} is quiet and, once created, will flow through other
932computations always resulting in another \constant{NaN}. This behavior can be
933useful for a series of computations that occasionally have missing inputs ---
934it allows the calculation to proceed while flagging specific results as
935invalid.
936
937A variant is \constant{sNaN} which signals rather than remaining quiet
938after every operation. This is a useful return value when an invalid
939result needs to interrupt a calculation for special handling.
940
941The signed zeros can result from calculations that underflow.
942They keep the sign that would have resulted if the calculation had
943been carried out to greater precision. Since their magnitude is
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000944zero, both positive and negative zeros are treated as equal and their
Raymond Hettinger2864b802004-08-15 23:47:48 +0000945sign is informational.
946
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000947In addition to the two signed zeros which are distinct yet equal,
948there are various representations of zero with differing precisions
Raymond Hettinger2864b802004-08-15 23:47:48 +0000949yet equivalent in value. This takes a bit of getting used to. For
950an eye accustomed to normalized floating point representations, it
951is not immediately obvious that the following calculation returns
952a value equal to zero:
953
954\begin{verbatim}
955>>> 1 / Decimal('Infinity')
956Decimal("0E-1000000026")
957\end{verbatim}
958
959%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000960\subsection{Working with threads \label{decimal-threads}}
961
962The \function{getcontext()} function accesses a different \class{Context}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000963object for each thread. Having separate thread contexts means that threads
964may make changes (such as \code{getcontext.prec=10}) without interfering with
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000965other threads.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000966
967Likewise, the \function{setcontext()} function automatically assigns its target
968to the current thread.
969
970If \function{setcontext()} has not been called before \function{getcontext()},
971then \function{getcontext()} will automatically create a new context for use
972in the current thread.
973
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000974The new context is copied from a prototype context called
975\var{DefaultContext}. To control the defaults so that each thread will use the
976same values throughout the application, directly modify the
977\var{DefaultContext} object. This should be done \emph{before} any threads are
978started so that there won't be a race condition between threads calling
979\function{getcontext()}. For example:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000980
981\begin{verbatim}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000982# Set applicationwide defaults for all threads about to be launched
Raymond Hettinger92960232004-07-14 21:06:55 +0000983DefaultContext.prec = 12
984DefaultContext.rounding = ROUND_DOWN
985DefaultContext.traps = ExtendedContext.traps.copy()
986DefaultContext.traps[InvalidOperation] = 1
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000987setcontext(DefaultContext)
988
Raymond Hettinger92960232004-07-14 21:06:55 +0000989# Afterwards, the threads can be started
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000990t1.start()
991t2.start()
992t3.start()
993 . . .
994\end{verbatim}
Raymond Hettinger2864b802004-08-15 23:47:48 +0000995
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000996
997
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000998%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
999\subsection{Recipes \label{decimal-recipes}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001000
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001001Here are a few recipes that serve as utility functions and that demonstrate
1002ways to work with the \class{Decimal} class:
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001003
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001004\begin{verbatim}
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001005def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1006 pos='', neg='-', trailneg=''):
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001007 """Convert Decimal to a money formatted string.
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001008
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001009 places: required number of places after the decimal point
1010 curr: optional currency symbol before the sign (may be blank)
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001011 sep: optional grouping separator (comma, period, space, or blank)
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001012 dp: decimal point indicator (comma or period)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001013 only specify as blank when places is zero
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001014 pos: optional sign for positive numbers: '+', space or blank
1015 neg: optional sign for negative numbers: '-', '(', space or blank
1016 trailneg:optional trailing minus indicator: '-', ')', space or blank
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001017
1018 >>> d = Decimal('-1234567.8901')
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001019 >>> moneyfmt(d, curr='$')
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001020 '-$1,234,567.89'
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001021 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1022 '1.234.568-'
1023 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001024 '($1,234,567.89)'
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001025 >>> moneyfmt(Decimal(123456789), sep=' ')
1026 '123 456 789.00'
1027 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
1028 '<.02>'
1029
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001030 """
1031 q = Decimal((0, (1,), -places)) # 2 places --> '0.01'
1032 sign, digits, exp = value.quantize(q).as_tuple()
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001033 assert exp == -places
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001034 result = []
1035 digits = map(str, digits)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001036 build, next = result.append, digits.pop
1037 if sign:
1038 build(trailneg)
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001039 for i in range(places):
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001040 if digits:
1041 build(next())
1042 else:
1043 build('0')
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001044 build(dp)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001045 i = 0
1046 while digits:
1047 build(next())
1048 i += 1
Raymond Hettinger8f2c4ee2004-11-24 05:53:26 +00001049 if i == 3 and digits:
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001050 i = 0
1051 build(sep)
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001052 build(curr)
1053 if sign:
1054 build(neg)
1055 else:
1056 build(pos)
1057 result.reverse()
1058 return ''.join(result)
1059
1060def pi():
Raymond Hettingerc4f93d442004-07-05 20:17:13 +00001061 """Compute Pi to the current precision.
1062
1063 >>> print pi()
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001064 3.141592653589793238462643383
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001065
Raymond Hettingerc4f93d442004-07-05 20:17:13 +00001066 """
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001067 getcontext().prec += 2 # extra digits for intermediate steps
Raymond Hettinger10959b12004-07-05 21:13:28 +00001068 three = Decimal(3) # substitute "three=3.0" for regular floats
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001069 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1070 while s != lasts:
1071 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001072 n, na = n+na, na+8
1073 d, da = d+da, da+32
1074 t = (t * n) / d
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001075 s += t
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001076 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001077 return +s # unary plus applies the new precision
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001078
1079def exp(x):
Raymond Hettinger10959b12004-07-05 21:13:28 +00001080 """Return e raised to the power of x. Result type matches input type.
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001081
1082 >>> print exp(Decimal(1))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001083 2.718281828459045235360287471
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001084 >>> print exp(Decimal(2))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001085 7.389056098930650227230427461
Raymond Hettinger10959b12004-07-05 21:13:28 +00001086 >>> print exp(2.0)
1087 7.38905609893
1088 >>> print exp(2+0j)
1089 (7.38905609893+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001090
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001091 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001092 getcontext().prec += 2
1093 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1094 while s != lasts:
1095 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001096 i += 1
1097 fact *= i
1098 num *= x
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001099 s += num / fact
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001100 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001101 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001102
1103def cos(x):
1104 """Return the cosine of x as measured in radians.
1105
1106 >>> print cos(Decimal('0.5'))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001107 0.8775825618903727161162815826
Raymond Hettinger10959b12004-07-05 21:13:28 +00001108 >>> print cos(0.5)
1109 0.87758256189
1110 >>> print cos(0.5+0j)
1111 (0.87758256189+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001112
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001113 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001114 getcontext().prec += 2
1115 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1116 while s != lasts:
1117 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001118 i += 2
1119 fact *= i * (i-1)
1120 num *= x * x
1121 sign *= -1
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001122 s += num / fact * sign
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001123 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001124 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001125
1126def sin(x):
Raymond Hettinger4fd38b32004-11-25 05:35:32 +00001127 """Return the sine of x as measured in radians.
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001128
1129 >>> print sin(Decimal('0.5'))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001130 0.4794255386042030002732879352
Raymond Hettinger10959b12004-07-05 21:13:28 +00001131 >>> print sin(0.5)
1132 0.479425538604
1133 >>> print sin(0.5+0j)
1134 (0.479425538604+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001135
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001136 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001137 getcontext().prec += 2
1138 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1139 while s != lasts:
1140 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001141 i += 2
1142 fact *= i * (i-1)
1143 num *= x * x
1144 sign *= -1
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001145 s += num / fact * sign
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001146 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001147 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001148
1149\end{verbatim}
Raymond Hettingerd391d102005-06-07 18:50:56 +00001150
1151
1152
Raymond Hettingered65c3a2005-06-15 16:53:31 +00001153%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettingerd391d102005-06-07 18:50:56 +00001154\subsection{Decimal FAQ \label{decimal-faq}}
1155
Raymond Hettingerd391d102005-06-07 18:50:56 +00001156Q. It is cumbersome to type \code{decimal.Decimal('1234.5')}. Is there a way
1157to minimize typing when using the interactive interpreter?
1158
1159A. Some users abbreviate the constructor to just a single letter:
1160
1161\begin{verbatim}
1162>>> D = decimal.Decimal
1163>>> D('1.23') + D('3.45')
1164Decimal("4.68")
1165\end{verbatim}
1166
1167
Raymond Hettinger11666382005-09-11 18:21:52 +00001168Q. In a fixed-point application with two decimal places, some inputs
Raymond Hettingerd391d102005-06-07 18:50:56 +00001169have many places and need to be rounded. Others are not supposed to have
1170excess digits and need to be validated. What methods should be used?
1171
1172A. The \method{quantize()} method rounds to a fixed number of decimal places.
1173If the \constant{Inexact} trap is set, it is also useful for validation:
1174
1175\begin{verbatim}
1176>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1177
1178>>> # Round to two places
1179>>> Decimal("3.214").quantize(TWOPLACES)
1180Decimal("3.21")
1181
1182>>> # Validate that a number does not exceed two places
1183>>> Decimal("3.21").quantize(TWOPLACES, context=Context(traps=[Inexact]))
1184Decimal("3.21")
1185
1186>>> Decimal("3.214").quantize(TWOPLACES, context=Context(traps=[Inexact]))
1187Traceback (most recent call last):
1188 ...
1189Inexact: Changed in rounding
1190\end{verbatim}
1191
1192
1193Q. Once I have valid two place inputs, how do I maintain that invariant
1194throughout an application?
1195
1196A. Some operations like addition and subtraction automatically preserve fixed
1197point. Others, like multiplication and division, change the number of decimal
1198places and need to be followed-up with a \method{quantize()} step.
1199
1200
Raymond Hettingered65c3a2005-06-15 16:53:31 +00001201Q. There are many ways to express the same value. The numbers
Raymond Hettingerd391d102005-06-07 18:50:56 +00001202\constant{200}, \constant{200.000}, \constant{2E2}, and \constant{.02E+4} all
1203have the same value at various precisions. Is there a way to transform them to
1204a single recognizable canonical value?
1205
1206A. The \method{normalize()} method maps all equivalent values to a single
Georg Brandlcaa94bd2006-01-23 22:00:17 +00001207representative:
Raymond Hettingerd391d102005-06-07 18:50:56 +00001208
1209\begin{verbatim}
1210>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1211>>> [v.normalize() for v in values]
1212[Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2")]
1213\end{verbatim}
1214
1215
Raymond Hettinger11666382005-09-11 18:21:52 +00001216Q. Some decimal values always print with exponential notation. Is there
1217a way to get a non-exponential representation?
1218
1219A. For some values, exponential notation is the only way to express
1220the number of significant places in the coefficient. For example,
1221expressing \constant{5.0E+3} as \constant{5000} keeps the value
1222constant but cannot show the original's two-place significance.
1223
1224
Raymond Hettingerd391d102005-06-07 18:50:56 +00001225Q. Is there a way to convert a regular float to a \class{Decimal}?
1226
1227A. Yes, all binary floating point numbers can be exactly expressed as a
1228Decimal. An exact conversion may take more precision than intuition would
1229suggest, so trapping \constant{Inexact} will signal a need for more precision:
1230
1231\begin{verbatim}
1232def floatToDecimal(f):
1233 "Convert a floating point number to a Decimal with no loss of information"
1234 # Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
1235 # exponent. Double the mantissa until it is an integer. Use the integer
1236 # mantissa and exponent to compute an equivalent Decimal. If this cannot
1237 # be done exactly, then retry with more precision.
1238
1239 mantissa, exponent = math.frexp(f)
1240 while mantissa != int(mantissa):
1241 mantissa *= 2.0
1242 exponent -= 1
1243 mantissa = int(mantissa)
Raymond Hettingered65c3a2005-06-15 16:53:31 +00001244
Raymond Hettingerd391d102005-06-07 18:50:56 +00001245 oldcontext = getcontext()
1246 setcontext(Context(traps=[Inexact]))
1247 try:
1248 while True:
1249 try:
1250 return mantissa * Decimal(2) ** exponent
1251 except Inexact:
1252 getcontext().prec += 1
1253 finally:
1254 setcontext(oldcontext)
1255\end{verbatim}
1256
1257
1258Q. Why isn't the \function{floatToDecimal()} routine included in the module?
1259
1260A. There is some question about whether it is advisable to mix binary and
1261decimal floating point. Also, its use requires some care to avoid the
1262representation issues associated with binary floating point:
1263
1264\begin{verbatim}
1265>>> floatToDecimal(1.1)
1266Decimal("1.100000000000000088817841970012523233890533447265625")
1267\end{verbatim}
1268
1269
1270Q. Within a complex calculation, how can I make sure that I haven't gotten a
1271spurious result because of insufficient precision or rounding anomalies.
1272
1273A. The decimal module makes it easy to test results. A best practice is to
1274re-run calculations using greater precision and with various rounding modes.
1275Widely differing results indicate insufficient precision, rounding mode
1276issues, ill-conditioned inputs, or a numerically unstable algorithm.
1277
1278
1279Q. I noticed that context precision is applied to the results of operations
1280but not to the inputs. Is there anything to watch out for when mixing
1281values of different precisions?
1282
1283A. Yes. The principle is that all values are considered to be exact and so
1284is the arithmetic on those values. Only the results are rounded. The
1285advantage for inputs is that ``what you type is what you get''. A
1286disadvantage is that the results can look odd if you forget that the inputs
1287haven't been rounded:
1288
1289\begin{verbatim}
1290>>> getcontext().prec = 3
1291>>> Decimal('3.104') + D('2.104')
1292Decimal("5.21")
1293>>> Decimal('3.104') + D('0.000') + D('2.104')
1294Decimal("5.20")
1295\end{verbatim}
1296
1297The solution is either to increase precision or to force rounding of inputs
1298using the unary plus operation:
1299
1300\begin{verbatim}
1301>>> getcontext().prec = 3
1302>>> +Decimal('1.23456789') # unary plus triggers rounding
1303Decimal("1.23")
1304\end{verbatim}
1305
1306Alternatively, inputs can be rounded upon creation using the
1307\method{Context.create_decimal()} method:
1308
1309\begin{verbatim}
1310>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
1311Decimal("1.2345")
1312\end{verbatim}