Guido van Rossum | d6cf3af | 2002-08-19 16:19:15 +0000 | [diff] [blame] | 1 | """Classes to represent arbitrary sets (including sets of sets). |
| 2 | |
| 3 | This module implements sets using dictionaries whose values are |
| 4 | ignored. The usual operations (union, intersection, deletion, etc.) |
| 5 | are provided as both methods and operators. |
| 6 | |
| 7 | The following classes are provided: |
| 8 | |
| 9 | BaseSet -- All the operations common to both mutable and immutable |
| 10 | sets. This is an abstract class, not meant to be directly |
| 11 | instantiated. |
| 12 | |
| 13 | Set -- Mutable sets, subclass of BaseSet; not hashable. |
| 14 | |
| 15 | ImmutableSet -- Immutable sets, subclass of BaseSet; hashable. |
| 16 | An iterable argument is mandatory to create an ImmutableSet. |
| 17 | |
| 18 | _TemporarilyImmutableSet -- Not a subclass of BaseSet: just a wrapper |
| 19 | around a Set, hashable, giving the same hash value as the |
| 20 | immutable set equivalent would have. Do not use this class |
| 21 | directly. |
| 22 | |
| 23 | Only hashable objects can be added to a Set. In particular, you cannot |
| 24 | really add a Set as an element to another Set; if you try, what is |
| 25 | actuallly added is an ImmutableSet built from it (it compares equal to |
| 26 | the one you tried adding). |
| 27 | |
| 28 | When you ask if `x in y' where x is a Set and y is a Set or |
| 29 | ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and |
| 30 | what's tested is actually `z in y'. |
| 31 | |
| 32 | """ |
| 33 | |
| 34 | # Code history: |
| 35 | # |
| 36 | # - Greg V. Wilson wrote the first version, using a different approach |
| 37 | # to the mutable/immutable problem, and inheriting from dict. |
| 38 | # |
| 39 | # - Alex Martelli modified Greg's version to implement the current |
| 40 | # Set/ImmutableSet approach, and make the data an attribute. |
| 41 | # |
| 42 | # - Guido van Rossum rewrote much of the code, made some API changes, |
| 43 | # and cleaned up the docstrings. |
| 44 | |
| 45 | |
| 46 | __all__ = ['BaseSet', 'Set', 'ImmutableSet'] |
| 47 | |
| 48 | |
| 49 | class BaseSet(object): |
| 50 | """Common base class for mutable and immutable sets.""" |
| 51 | |
| 52 | __slots__ = ['_data'] |
| 53 | |
| 54 | # Constructor |
| 55 | |
| 56 | def __init__(self, seq=None): |
| 57 | """Construct a set, optionally initializing it from a sequence.""" |
| 58 | self._data = {} |
| 59 | if seq is not None: |
| 60 | # I don't know a faster way to do this in pure Python. |
| 61 | # Custom code written in C only did it 65% faster, |
| 62 | # preallocating the dict to len(seq); without |
| 63 | # preallocation it was only 25% faster. So the speed of |
| 64 | # this Python code is respectable. Just copying True into |
| 65 | # a local variable is responsible for a 7-8% speedup. |
| 66 | data = self._data |
| 67 | value = True |
| 68 | for key in seq: |
| 69 | data[key] = value |
| 70 | |
| 71 | # Standard protocols: __len__, __repr__, __str__, __iter__ |
| 72 | |
| 73 | def __len__(self): |
| 74 | """Return the number of elements of a set.""" |
| 75 | return len(self._data) |
| 76 | |
| 77 | def __repr__(self): |
| 78 | """Return string representation of a set. |
| 79 | |
| 80 | This looks like 'Set([<list of elements>])'. |
| 81 | """ |
| 82 | return self._repr() |
| 83 | |
| 84 | # __str__ is the same as __repr__ |
| 85 | __str__ = __repr__ |
| 86 | |
| 87 | def _repr(self, sorted=False): |
| 88 | elements = self._data.keys() |
| 89 | if sorted: |
| 90 | elements.sort() |
| 91 | return '%s(%r)' % (self.__class__.__name__, elements) |
| 92 | |
| 93 | def __iter__(self): |
| 94 | """Return an iterator over the elements or a set. |
| 95 | |
| 96 | This is the keys iterator for the underlying dict. |
| 97 | """ |
| 98 | return self._data.iterkeys() |
| 99 | |
| 100 | # Comparisons. Ordering is determined by the ordering of the |
| 101 | # underlying dicts (which is consistent though unpredictable). |
| 102 | |
| 103 | def __lt__(self, other): |
| 104 | self._binary_sanity_check(other) |
| 105 | return self._data < other._data |
| 106 | |
| 107 | def __le__(self, other): |
| 108 | self._binary_sanity_check(other) |
| 109 | return self._data <= other._data |
| 110 | |
| 111 | def __eq__(self, other): |
| 112 | self._binary_sanity_check(other) |
| 113 | return self._data == other._data |
| 114 | |
| 115 | def __ne__(self, other): |
| 116 | self._binary_sanity_check(other) |
| 117 | return self._data != other._data |
| 118 | |
| 119 | def __gt__(self, other): |
| 120 | self._binary_sanity_check(other) |
| 121 | return self._data > other._data |
| 122 | |
| 123 | def __ge__(self, other): |
| 124 | self._binary_sanity_check(other) |
| 125 | return self._data >= other._data |
| 126 | |
| 127 | # Copying operations |
| 128 | |
| 129 | def copy(self): |
| 130 | """Return a shallow copy of a set.""" |
| 131 | return self.__class__(self) |
| 132 | |
| 133 | __copy__ = copy # For the copy module |
| 134 | |
| 135 | def __deepcopy__(self, memo): |
| 136 | """Return a deep copy of a set; used by copy module.""" |
| 137 | # This pre-creates the result and inserts it in the memo |
| 138 | # early, in case the deep copy recurses into another reference |
| 139 | # to this same set. A set can't be an element of itself, but |
| 140 | # it can certainly contain an object that has a reference to |
| 141 | # itself. |
| 142 | from copy import deepcopy |
| 143 | result = self.__class__([]) |
| 144 | memo[id(self)] = result |
| 145 | data = result._data |
| 146 | value = True |
| 147 | for elt in self: |
| 148 | data[deepcopy(elt, memo)] = value |
| 149 | return result |
| 150 | |
| 151 | # Standard set operations: union, intersection, both differences |
| 152 | |
| 153 | def union(self, other): |
| 154 | """Return the union of two sets as a new set. |
| 155 | |
| 156 | (I.e. all elements that are in either set.) |
| 157 | """ |
| 158 | self._binary_sanity_check(other) |
| 159 | result = self.__class__(self._data) |
| 160 | result._data.update(other._data) |
| 161 | return result |
| 162 | |
| 163 | __or__ = union |
| 164 | |
| 165 | def intersection(self, other): |
| 166 | """Return the intersection of two sets as a new set. |
| 167 | |
| 168 | (I.e. all elements that are in both sets.) |
| 169 | """ |
| 170 | self._binary_sanity_check(other) |
| 171 | if len(self) <= len(other): |
| 172 | little, big = self, other |
| 173 | else: |
| 174 | little, big = other, self |
| 175 | result = self.__class__([]) |
| 176 | data = result._data |
| 177 | value = True |
| 178 | for elt in little: |
| 179 | if elt in big: |
| 180 | data[elt] = value |
| 181 | return result |
| 182 | |
| 183 | __and__ = intersection |
| 184 | |
| 185 | def symmetric_difference(self, other): |
| 186 | """Return the symmetric difference of two sets as a new set. |
| 187 | |
| 188 | (I.e. all elements that are in exactly one of the sets.) |
| 189 | """ |
| 190 | self._binary_sanity_check(other) |
| 191 | result = self.__class__([]) |
| 192 | data = result._data |
| 193 | value = True |
| 194 | for elt in self: |
| 195 | if elt not in other: |
| 196 | data[elt] = value |
| 197 | for elt in other: |
| 198 | if elt not in self: |
| 199 | data[elt] = value |
| 200 | return result |
| 201 | |
| 202 | __xor__ = symmetric_difference |
| 203 | |
| 204 | def difference(self, other): |
| 205 | """Return the difference of two sets as a new Set. |
| 206 | |
| 207 | (I.e. all elements that are in this set and not in the other.) |
| 208 | """ |
| 209 | self._binary_sanity_check(other) |
| 210 | result = self.__class__([]) |
| 211 | data = result._data |
| 212 | value = True |
| 213 | for elt in self: |
| 214 | if elt not in other: |
| 215 | data[elt] = value |
| 216 | return result |
| 217 | |
| 218 | __sub__ = difference |
| 219 | |
| 220 | # Membership test |
| 221 | |
| 222 | def __contains__(self, element): |
| 223 | """Report whether an element is a member of a set. |
| 224 | |
| 225 | (Called in response to the expression `element in self'.) |
| 226 | """ |
| 227 | try: |
| 228 | transform = element._as_temporarily_immutable |
| 229 | except AttributeError: |
| 230 | pass |
| 231 | else: |
| 232 | element = transform() |
| 233 | return element in self._data |
| 234 | |
| 235 | # Subset and superset test |
| 236 | |
| 237 | def issubset(self, other): |
| 238 | """Report whether another set contains this set.""" |
| 239 | self._binary_sanity_check(other) |
| 240 | for elt in self: |
| 241 | if elt not in other: |
| 242 | return False |
| 243 | return True |
| 244 | |
| 245 | def issuperset(self, other): |
| 246 | """Report whether this set contains another set.""" |
| 247 | self._binary_sanity_check(other) |
| 248 | for elt in other: |
| 249 | if elt not in self: |
| 250 | return False |
| 251 | return True |
| 252 | |
| 253 | # Assorted helpers |
| 254 | |
| 255 | def _binary_sanity_check(self, other): |
| 256 | # Check that the other argument to a binary operation is also |
| 257 | # a set, raising a TypeError otherwise. |
| 258 | if not isinstance(other, BaseSet): |
| 259 | raise TypeError, "Binary operation only permitted between sets" |
| 260 | |
| 261 | def _compute_hash(self): |
| 262 | # Calculate hash code for a set by xor'ing the hash codes of |
| 263 | # the elements. This algorithm ensures that the hash code |
| 264 | # does not depend on the order in which elements are added to |
| 265 | # the code. This is not called __hash__ because a BaseSet |
| 266 | # should not be hashable; only an ImmutableSet is hashable. |
| 267 | result = 0 |
| 268 | for elt in self: |
| 269 | result ^= hash(elt) |
| 270 | return result |
| 271 | |
| 272 | |
| 273 | class ImmutableSet(BaseSet): |
| 274 | """Immutable set class.""" |
| 275 | |
Guido van Rossum | 0b650d7 | 2002-08-19 16:29:58 +0000 | [diff] [blame] | 276 | __slots__ = ['_hashcode'] |
Guido van Rossum | d6cf3af | 2002-08-19 16:19:15 +0000 | [diff] [blame] | 277 | |
| 278 | # BaseSet + hashing |
| 279 | |
| 280 | def __init__(self, seq): |
| 281 | """Construct an immutable set from a sequence.""" |
| 282 | # Override the constructor to make 'seq' a required argument |
| 283 | BaseSet.__init__(self, seq) |
| 284 | self._hashcode = None |
| 285 | |
| 286 | def __hash__(self): |
| 287 | if self._hashcode is None: |
| 288 | self._hashcode = self._compute_hash() |
| 289 | return self._hashcode |
| 290 | |
| 291 | |
| 292 | class Set(BaseSet): |
| 293 | """ Mutable set class.""" |
| 294 | |
| 295 | __slots__ = [] |
| 296 | |
| 297 | # BaseSet + operations requiring mutability; no hashing |
| 298 | |
| 299 | # In-place union, intersection, differences |
| 300 | |
| 301 | def union_update(self, other): |
| 302 | """Update a set with the union of itself and another.""" |
| 303 | self._binary_sanity_check(other) |
| 304 | self._data.update(other._data) |
| 305 | return self |
| 306 | |
| 307 | __ior__ = union_update |
| 308 | |
| 309 | def intersection_update(self, other): |
| 310 | """Update a set with the intersection of itself and another.""" |
| 311 | self._binary_sanity_check(other) |
| 312 | for elt in self._data.keys(): |
| 313 | if elt not in other: |
| 314 | del self._data[elt] |
| 315 | return self |
| 316 | |
| 317 | __iand__ = intersection_update |
| 318 | |
| 319 | def symmetric_difference_update(self, other): |
| 320 | """Update a set with the symmetric difference of itself and another.""" |
| 321 | self._binary_sanity_check(other) |
| 322 | data = self._data |
| 323 | value = True |
| 324 | for elt in other: |
| 325 | if elt in data: |
| 326 | del data[elt] |
| 327 | else: |
| 328 | data[elt] = value |
| 329 | return self |
| 330 | |
| 331 | __ixor__ = symmetric_difference_update |
| 332 | |
| 333 | def difference_update(self, other): |
| 334 | """Remove all elements of another set from this set.""" |
| 335 | self._binary_sanity_check(other) |
| 336 | data = self._data |
| 337 | for elt in other: |
| 338 | if elt in data: |
| 339 | del data[elt] |
| 340 | return self |
| 341 | |
| 342 | __isub__ = difference_update |
| 343 | |
| 344 | # Python dict-like mass mutations: update, clear |
| 345 | |
| 346 | def update(self, iterable): |
| 347 | """Add all values from an iterable (such as a list or file).""" |
| 348 | data = self._data |
| 349 | value = True |
| 350 | for elt in iterable: |
| 351 | try: |
| 352 | transform = elt._as_immutable |
| 353 | except AttributeError: |
| 354 | pass |
| 355 | else: |
| 356 | elt = transform() |
| 357 | data[elt] = value |
| 358 | |
| 359 | def clear(self): |
| 360 | """Remove all elements from this set.""" |
| 361 | self._data.clear() |
| 362 | |
| 363 | # Single-element mutations: add, remove, discard |
| 364 | |
| 365 | def add(self, element): |
| 366 | """Add an element to a set. |
| 367 | |
| 368 | This has no effect if the element is already present. |
| 369 | """ |
| 370 | try: |
| 371 | transform = element._as_immutable |
| 372 | except AttributeError: |
| 373 | pass |
| 374 | else: |
| 375 | element = transform() |
| 376 | self._data[element] = True |
| 377 | |
| 378 | def remove(self, element): |
| 379 | """Remove an element from a set; it must be a member. |
| 380 | |
| 381 | If the element is not a member, raise a KeyError. |
| 382 | """ |
| 383 | try: |
| 384 | transform = element._as_temporarily_immutable |
| 385 | except AttributeError: |
| 386 | pass |
| 387 | else: |
| 388 | element = transform() |
| 389 | del self._data[element] |
| 390 | |
| 391 | def discard(self, element): |
| 392 | """Remove an element from a set if it is a member. |
| 393 | |
| 394 | If the element is not a member, do nothing. |
| 395 | """ |
| 396 | try: |
| 397 | del self._data[element] |
| 398 | except KeyError: |
| 399 | pass |
| 400 | |
| 401 | def popitem(self): |
| 402 | """Remove and return a randomly-chosen set element.""" |
| 403 | return self._data.popitem()[0] |
| 404 | |
| 405 | def _as_immutable(self): |
| 406 | # Return a copy of self as an immutable set |
| 407 | return ImmutableSet(self) |
| 408 | |
| 409 | def _as_temporarily_immutable(self): |
| 410 | # Return self wrapped in a temporarily immutable set |
| 411 | return _TemporarilyImmutableSet(self) |
| 412 | |
| 413 | |
| 414 | class _TemporarilyImmutableSet(object): |
| 415 | # Wrap a mutable set as if it was temporarily immutable. |
| 416 | # This only supplies hashing and equality comparisons. |
| 417 | |
| 418 | _hashcode = None |
| 419 | |
| 420 | def __init__(self, set): |
| 421 | self._set = set |
| 422 | |
| 423 | def __hash__(self): |
| 424 | if self._hashcode is None: |
| 425 | self._hashcode = self._set._compute_hash() |
| 426 | return self._hashcode |
| 427 | |
| 428 | def __eq__(self, other): |
| 429 | return self._set == other |
| 430 | |
| 431 | def __ne__(self, other): |
| 432 | return self._set != other |
| 433 | |
| 434 | |
| 435 | # Rudimentary self-tests |
| 436 | |
| 437 | def _test(): |
| 438 | |
| 439 | # Empty set |
| 440 | red = Set() |
| 441 | assert `red` == "Set([])", "Empty set: %s" % `red` |
| 442 | |
| 443 | # Unit set |
| 444 | green = Set((0,)) |
| 445 | assert `green` == "Set([0])", "Unit set: %s" % `green` |
| 446 | |
| 447 | # 3-element set |
| 448 | blue = Set([0, 1, 2]) |
| 449 | assert blue._repr(True) == "Set([0, 1, 2])", "3-element set: %s" % `blue` |
| 450 | |
| 451 | # 2-element set with other values |
| 452 | black = Set([0, 5]) |
| 453 | assert black._repr(True) == "Set([0, 5])", "2-element set: %s" % `black` |
| 454 | |
| 455 | # All elements from all sets |
| 456 | white = Set([0, 1, 2, 5]) |
| 457 | assert white._repr(True) == "Set([0, 1, 2, 5])", "4-element set: %s" % `white` |
| 458 | |
| 459 | # Add element to empty set |
| 460 | red.add(9) |
| 461 | assert `red` == "Set([9])", "Add to empty set: %s" % `red` |
| 462 | |
| 463 | # Remove element from unit set |
| 464 | red.remove(9) |
| 465 | assert `red` == "Set([])", "Remove from unit set: %s" % `red` |
| 466 | |
| 467 | # Remove element from empty set |
| 468 | try: |
| 469 | red.remove(0) |
| 470 | assert 0, "Remove element from empty set: %s" % `red` |
| 471 | except LookupError: |
| 472 | pass |
| 473 | |
| 474 | # Length |
| 475 | assert len(red) == 0, "Length of empty set" |
| 476 | assert len(green) == 1, "Length of unit set" |
| 477 | assert len(blue) == 3, "Length of 3-element set" |
| 478 | |
| 479 | # Compare |
| 480 | assert green == Set([0]), "Equality failed" |
| 481 | assert green != Set([1]), "Inequality failed" |
| 482 | |
| 483 | # Union |
| 484 | assert blue | red == blue, "Union non-empty with empty" |
| 485 | assert red | blue == blue, "Union empty with non-empty" |
| 486 | assert green | blue == blue, "Union non-empty with non-empty" |
| 487 | assert blue | black == white, "Enclosing union" |
| 488 | |
| 489 | # Intersection |
| 490 | assert blue & red == red, "Intersect non-empty with empty" |
| 491 | assert red & blue == red, "Intersect empty with non-empty" |
| 492 | assert green & blue == green, "Intersect non-empty with non-empty" |
| 493 | assert blue & black == green, "Enclosing intersection" |
| 494 | |
| 495 | # Symmetric difference |
| 496 | assert red ^ green == green, "Empty symdiff non-empty" |
| 497 | assert green ^ blue == Set([1, 2]), "Non-empty symdiff" |
| 498 | assert white ^ white == red, "Self symdiff" |
| 499 | |
| 500 | # Difference |
| 501 | assert red - green == red, "Empty - non-empty" |
| 502 | assert blue - red == blue, "Non-empty - empty" |
| 503 | assert white - black == Set([1, 2]), "Non-empty - non-empty" |
| 504 | |
| 505 | # In-place union |
| 506 | orange = Set([]) |
| 507 | orange |= Set([1]) |
| 508 | assert orange == Set([1]), "In-place union" |
| 509 | |
| 510 | # In-place intersection |
| 511 | orange = Set([1, 2]) |
| 512 | orange &= Set([2]) |
| 513 | assert orange == Set([2]), "In-place intersection" |
| 514 | |
| 515 | # In-place difference |
| 516 | orange = Set([1, 2, 3]) |
| 517 | orange -= Set([2, 4]) |
| 518 | assert orange == Set([1, 3]), "In-place difference" |
| 519 | |
| 520 | # In-place symmetric difference |
| 521 | orange = Set([1, 2, 3]) |
| 522 | orange ^= Set([3, 4]) |
| 523 | assert orange == Set([1, 2, 4]), "In-place symmetric difference" |
| 524 | |
| 525 | print "All tests passed" |
| 526 | |
| 527 | |
| 528 | if __name__ == "__main__": |
| 529 | _test() |