blob: 1224383e2d9550498ef78e28bba3fc636967d4a0 [file] [log] [blame]
Éric Araujo0fb681e2011-07-29 12:06:13 +02001#!/usr/bin/env python
Jeffrey Yasskin43bff052009-02-24 22:48:34 +00002"""
3Some helper functions to analyze the output of sys.getdxp() (which is
4only available if Python was built with -DDYNAMIC_EXECUTION_PROFILE).
5These will tell you which opcodes have been executed most frequently
6in the current process, and, if Python was also built with -DDXPAIRS,
7will tell you which instruction _pairs_ were executed most frequently,
8which may help in choosing new instructions.
9
10If Python was built without -DDYNAMIC_EXECUTION_PROFILE, importing
11this module will raise a RuntimeError.
12
13If you're running a script you want to profile, a simple way to get
14the common pairs is:
15
16$ PYTHONPATH=$PYTHONPATH:<python_srcdir>/Tools/scripts \
17./python -i -O the_script.py --args
18...
19> from analyze_dxp import *
20> s = render_common_pairs()
21> open('/tmp/some_file', 'w').write(s)
22"""
23
24import copy
25import opcode
26import operator
27import sys
28import threading
29
30if not hasattr(sys, "getdxp"):
31 raise RuntimeError("Can't import analyze_dxp: Python built without"
32 " -DDYNAMIC_EXECUTION_PROFILE.")
33
34
35_profile_lock = threading.RLock()
36_cumulative_profile = sys.getdxp()
37
38# If Python was built with -DDXPAIRS, sys.getdxp() returns a list of
39# lists of ints. Otherwise it returns just a list of ints.
40def has_pairs(profile):
41 """Returns True if the Python that produced the argument profile
42 was built with -DDXPAIRS."""
43
44 return len(profile) > 0 and isinstance(profile[0], list)
45
46
47def reset_profile():
48 """Forgets any execution profile that has been gathered so far."""
49 with _profile_lock:
50 sys.getdxp() # Resets the internal profile
51 global _cumulative_profile
52 _cumulative_profile = sys.getdxp() # 0s out our copy.
53
54
55def merge_profile():
56 """Reads sys.getdxp() and merges it into this module's cached copy.
57
58 We need this because sys.getdxp() 0s itself every time it's called."""
59
60 with _profile_lock:
61 new_profile = sys.getdxp()
62 if has_pairs(new_profile):
63 for first_inst in range(len(_cumulative_profile)):
64 for second_inst in range(len(_cumulative_profile[first_inst])):
65 _cumulative_profile[first_inst][second_inst] += (
66 new_profile[first_inst][second_inst])
67 else:
68 for inst in range(len(_cumulative_profile)):
69 _cumulative_profile[inst] += new_profile[inst]
70
71
72def snapshot_profile():
73 """Returns the cumulative execution profile until this call."""
74 with _profile_lock:
75 merge_profile()
76 return copy.deepcopy(_cumulative_profile)
77
78
79def common_instructions(profile):
80 """Returns the most common opcodes in order of descending frequency.
81
82 The result is a list of tuples of the form
83 (opcode, opname, # of occurrences)
84
85 """
86 if has_pairs(profile) and profile:
87 inst_list = profile[-1]
88 else:
89 inst_list = profile
90 result = [(op, opcode.opname[op], count)
91 for op, count in enumerate(inst_list)
92 if count > 0]
93 result.sort(key=operator.itemgetter(2), reverse=True)
94 return result
95
96
97def common_pairs(profile):
98 """Returns the most common opcode pairs in order of descending frequency.
99
100 The result is a list of tuples of the form
101 ((1st opcode, 2nd opcode),
102 (1st opname, 2nd opname),
103 # of occurrences of the pair)
104
105 """
106 if not has_pairs(profile):
107 return []
108 result = [((op1, op2), (opcode.opname[op1], opcode.opname[op2]), count)
109 # Drop the row of single-op profiles with [:-1]
110 for op1, op1profile in enumerate(profile[:-1])
111 for op2, count in enumerate(op1profile)
112 if count > 0]
113 result.sort(key=operator.itemgetter(2), reverse=True)
114 return result
115
116
117def render_common_pairs(profile=None):
118 """Renders the most common opcode pairs to a string in order of
119 descending frequency.
120
121 The result is a series of lines of the form:
122 # of occurrences: ('1st opname', '2nd opname')
123
124 """
125 if profile is None:
126 profile = snapshot_profile()
127 def seq():
128 for _, ops, count in common_pairs(profile):
129 yield "%s: %s\n" % (count, ops)
130 return ''.join(seq())