blob: 500afba469772f1ec76132b4f39fb95aa3e46ed7 [file] [log] [blame]
Tim Peters1221c0a2002-03-23 00:20:15 +00001#include "Python.h"
2
3#ifdef WITH_PYMALLOC
4
Neil Schemenauera35c6882001-02-27 04:45:05 +00005/* An object allocator for Python.
6
7 Here is an introduction to the layers of the Python memory architecture,
8 showing where the object allocator is actually used (layer +2), It is
9 called for every object allocation and deallocation (PyObject_New/Del),
10 unless the object-specific allocators implement a proprietary allocation
11 scheme (ex.: ints use a simple free list). This is also the place where
12 the cyclic garbage collector operates selectively on container objects.
13
14
15 Object-specific allocators
16 _____ ______ ______ ________
17 [ int ] [ dict ] [ list ] ... [ string ] Python core |
18+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
19 _______________________________ | |
20 [ Python's object allocator ] | |
21+2 | ####### Object memory ####### | <------ Internal buffers ------> |
22 ______________________________________________________________ |
23 [ Python's raw memory allocator (PyMem_ API) ] |
24+1 | <----- Python memory (under PyMem manager's control) ------> | |
25 __________________________________________________________________
26 [ Underlying general-purpose allocator (ex: C library malloc) ]
27 0 | <------ Virtual memory allocated for the python process -------> |
28
29 =========================================================================
30 _______________________________________________________________________
31 [ OS-specific Virtual Memory Manager (VMM) ]
32-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
33 __________________________________ __________________________________
34 [ ] [ ]
35-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
36
37*/
38/*==========================================================================*/
39
40/* A fast, special-purpose memory allocator for small blocks, to be used
41 on top of a general-purpose malloc -- heavily based on previous art. */
42
43/* Vladimir Marangozov -- August 2000 */
44
45/*
46 * "Memory management is where the rubber meets the road -- if we do the wrong
47 * thing at any level, the results will not be good. And if we don't make the
48 * levels work well together, we are in serious trouble." (1)
49 *
50 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
51 * "Dynamic Storage Allocation: A Survey and Critical Review",
52 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
53 */
54
55/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
Neil Schemenauera35c6882001-02-27 04:45:05 +000056
57/*==========================================================================*/
58
59/*
Neil Schemenauera35c6882001-02-27 04:45:05 +000060 * Allocation strategy abstract:
61 *
62 * For small requests, the allocator sub-allocates <Big> blocks of memory.
63 * Requests greater than 256 bytes are routed to the system's allocator.
Tim Petersce7fb9b2002-03-23 00:28:57 +000064 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000065 * Small requests are grouped in size classes spaced 8 bytes apart, due
66 * to the required valid alignment of the returned address. Requests of
67 * a particular size are serviced from memory pools of 4K (one VMM page).
68 * Pools are fragmented on demand and contain free lists of blocks of one
69 * particular size class. In other words, there is a fixed-size allocator
70 * for each size class. Free pools are shared by the different allocators
71 * thus minimizing the space reserved for a particular size class.
72 *
73 * This allocation strategy is a variant of what is known as "simple
74 * segregated storage based on array of free lists". The main drawback of
75 * simple segregated storage is that we might end up with lot of reserved
76 * memory for the different free lists, which degenerate in time. To avoid
77 * this, we partition each free list in pools and we share dynamically the
78 * reserved space between all free lists. This technique is quite efficient
79 * for memory intensive programs which allocate mainly small-sized blocks.
80 *
81 * For small requests we have the following table:
82 *
83 * Request in bytes Size of allocated block Size class idx
84 * ----------------------------------------------------------------
85 * 1-8 8 0
86 * 9-16 16 1
87 * 17-24 24 2
88 * 25-32 32 3
89 * 33-40 40 4
90 * 41-48 48 5
91 * 49-56 56 6
92 * 57-64 64 7
93 * 65-72 72 8
94 * ... ... ...
95 * 241-248 248 30
96 * 249-256 256 31
Tim Petersce7fb9b2002-03-23 00:28:57 +000097 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000098 * 0, 257 and up: routed to the underlying allocator.
99 */
100
101/*==========================================================================*/
102
103/*
104 * -- Main tunable settings section --
105 */
106
107/*
108 * Alignment of addresses returned to the user. 8-bytes alignment works
109 * on most current architectures (with 32-bit or 64-bit address busses).
110 * The alignment value is also used for grouping small requests in size
111 * classes spaced ALIGNMENT bytes apart.
112 *
113 * You shouldn't change this unless you know what you are doing.
114 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000115#define ALIGNMENT 8 /* must be 2^N */
116#define ALIGNMENT_SHIFT 3
117#define ALIGNMENT_MASK (ALIGNMENT - 1)
118
119/*
120 * Max size threshold below which malloc requests are considered to be
121 * small enough in order to use preallocated memory pools. You can tune
122 * this value according to your application behaviour and memory needs.
123 *
124 * The following invariants must hold:
125 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
Tim Petersd97a1c02002-03-30 06:09:22 +0000126 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
Neil Schemenauera35c6882001-02-27 04:45:05 +0000127 *
128 * Although not required, for better performance and space efficiency,
129 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
130 */
Tim Petersd97a1c02002-03-30 06:09:22 +0000131#define SMALL_REQUEST_THRESHOLD 256
Neil Schemenauera35c6882001-02-27 04:45:05 +0000132#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
133
134/*
135 * The system's VMM page size can be obtained on most unices with a
136 * getpagesize() call or deduced from various header files. To make
137 * things simpler, we assume that it is 4K, which is OK for most systems.
138 * It is probably better if this is the native page size, but it doesn't
139 * have to be.
140 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000141#define SYSTEM_PAGE_SIZE (4 * 1024)
142#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
143
144/*
145 * Maximum amount of memory managed by the allocator for small requests.
146 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000147#ifdef WITH_MEMORY_LIMITS
148#ifndef SMALL_MEMORY_LIMIT
149#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
150#endif
151#endif
152
153/*
154 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
155 * on a page boundary. This is a reserved virtual address space for the
156 * current process (obtained through a malloc call). In no way this means
157 * that the memory arenas will be used entirely. A malloc(<Big>) is usually
158 * an address range reservation for <Big> bytes, unless all pages within this
159 * space are referenced subsequently. So malloc'ing big blocks and not using
160 * them does not mean "wasting memory". It's an addressable range wastage...
161 *
162 * Therefore, allocating arenas with malloc is not optimal, because there is
163 * some address space wastage, but this is the most portable way to request
Tim Petersd97a1c02002-03-30 06:09:22 +0000164 * memory from the system across various platforms.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000165 */
166
Tim Petersd97a1c02002-03-30 06:09:22 +0000167/* ALLOCATED_ARENA_SIZE is passed to malloc; after alignment, we can't
168 * count on more than ARENA_SIZE bytes being usable for pools.
169 */
170#define ALLOCATED_ARENA_SIZE (256 << 10) /* 256KB */
171#define ARENA_SIZE (ALLOCATED_ARENA_SIZE - SYSTEM_PAGE_SIZE)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000172
173#ifdef WITH_MEMORY_LIMITS
174#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
175#endif
176
177/*
178 * Size of the pools used for small blocks. Should be a power of 2,
179 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k, eventually 8k.
180 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000181#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
182#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
Neil Schemenauera35c6882001-02-27 04:45:05 +0000183#define ARENA_NB_POOLS (ARENA_SIZE / POOL_SIZE)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000184
185/*
186 * -- End of tunable settings section --
187 */
188
189/*==========================================================================*/
190
191/*
192 * Locking
193 *
194 * To reduce lock contention, it would probably be better to refine the
195 * crude function locking with per size class locking. I'm not positive
196 * however, whether it's worth switching to such locking policy because
197 * of the performance penalty it might introduce.
198 *
199 * The following macros describe the simplest (should also be the fastest)
200 * lock object on a particular platform and the init/fini/lock/unlock
201 * operations on it. The locks defined here are not expected to be recursive
202 * because it is assumed that they will always be called in the order:
203 * INIT, [LOCK, UNLOCK]*, FINI.
204 */
205
206/*
207 * Python's threads are serialized, so object malloc locking is disabled.
208 */
209#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
210#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
211#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
212#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
213#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
214
215/*
216 * Basic types
217 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
218 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000219#undef uchar
220#define uchar unsigned char /* assuming == 8 bits */
221
222#undef ushort
223#define ushort unsigned short /* assuming >= 16 bits */
224
225#undef uint
226#define uint unsigned int /* assuming >= 16 bits */
227
228#undef ulong
229#define ulong unsigned long /* assuming >= 32 bits */
230
231#undef off_t
232#define off_t uint /* 16 bits <= off_t <= 64 bits */
233
Tim Petersd97a1c02002-03-30 06:09:22 +0000234#undef uptr
235#define uptr Py_uintptr_t
236
Neil Schemenauera35c6882001-02-27 04:45:05 +0000237/* When you say memory, my mind reasons in terms of (pointers to) blocks */
238typedef uchar block;
239
240/* Pool for small blocks */
241struct pool_header {
Tim Petersb2336522001-03-11 18:36:13 +0000242 union { block *_padding;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000243 uint count; } ref; /* number of allocated blocks */
244 block *freeblock; /* pool's free list head */
245 struct pool_header *nextpool; /* next pool of this size class */
246 struct pool_header *prevpool; /* previous pool "" */
Tim Petersd97a1c02002-03-30 06:09:22 +0000247 ulong arenaindex; /* index into arenas of base adr */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000248 uint szidx; /* block size class index */
249 uint capacity; /* pool capacity in # of blocks */
250};
251
252typedef struct pool_header *poolp;
253
254#undef ROUNDUP
255#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
256#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
257
258#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
259
Tim Petersd97a1c02002-03-30 06:09:22 +0000260/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
261#define POOL_ADDR(P) \
262 ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
263
Neil Schemenauera35c6882001-02-27 04:45:05 +0000264/*==========================================================================*/
265
266/*
267 * This malloc lock
268 */
Tim Petersb2336522001-03-11 18:36:13 +0000269SIMPLELOCK_DECL(_malloc_lock);
270#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
271#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
272#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
273#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000274
275/*
276 * Pool table -- doubly linked lists of partially used pools
277 */
278#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
279#define PT(x) PTA(x), PTA(x)
280
281static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
282 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
283#if NB_SMALL_SIZE_CLASSES > 8
284 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
285#if NB_SMALL_SIZE_CLASSES > 16
286 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
287#if NB_SMALL_SIZE_CLASSES > 24
288 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
289#if NB_SMALL_SIZE_CLASSES > 32
290 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
291#if NB_SMALL_SIZE_CLASSES > 40
292 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
293#if NB_SMALL_SIZE_CLASSES > 48
294 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
295#if NB_SMALL_SIZE_CLASSES > 56
296 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
297#endif /* NB_SMALL_SIZE_CLASSES > 56 */
298#endif /* NB_SMALL_SIZE_CLASSES > 48 */
299#endif /* NB_SMALL_SIZE_CLASSES > 40 */
300#endif /* NB_SMALL_SIZE_CLASSES > 32 */
301#endif /* NB_SMALL_SIZE_CLASSES > 24 */
302#endif /* NB_SMALL_SIZE_CLASSES > 16 */
303#endif /* NB_SMALL_SIZE_CLASSES > 8 */
304};
305
306/*
307 * Free (cached) pools
308 */
309static poolp freepools = NULL; /* free list for cached pools */
310
Tim Petersd97a1c02002-03-30 06:09:22 +0000311/*==========================================================================*/
312/* Arena management. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000313
Tim Petersd97a1c02002-03-30 06:09:22 +0000314/* arenas is a vector of arena base addresses, in order of allocation time.
315 * arenas currently contains narenas entries, and has space allocated
316 * for at most maxarenas entries.
317 *
318 * CAUTION: See the long comment block about thread safety in new_arena():
319 * the code currently relies in deep ways on that this vector only grows,
320 * and only grows by appending at the end. For now we never return an arena
321 * to the OS.
322 */
323static uptr *arenas = NULL;
324static ulong narenas = 0;
325static ulong maxarenas = 0;
326
327/* Number of pools already allocated from the current arena. This is
328 * initialized to the max # of pools to provoke the first allocation request
329 * into allocating a new arena.
330 */
331static uint watermark = ARENA_NB_POOLS;
332
333/* Free space start address in current arena. */
334static block *arenabase = NULL;
335
336#if 0
337static ulong wasmine = 0;
338static ulong wasntmine = 0;
339
340static void
341dumpem(void *ptr)
342{
343 if (ptr)
344 printf("inserted new arena at %08x\n", ptr);
345 printf("# arenas %d\n", narenas);
346 printf("was mine %lu wasn't mine %lu\n", wasmine, wasntmine);
347}
348#define INCMINE ++wasmine
349#define INCTHEIRS ++wasntmine
350
351#else
352#define dumpem(ptr)
353#define INCMINE
354#define INCTHEIRS
355#endif
356
357/* Allocate a new arena and return its base address. If we run out of
358 * memory, return NULL.
359 */
360static block *
361new_arena(void)
362{
363 block *bp = (block *)PyMem_MALLOC(ALLOCATED_ARENA_SIZE);
364 if (bp == NULL)
365 return NULL;
366
367 watermark = 0;
368 /* Page-round up */
369 arenabase = bp + (SYSTEM_PAGE_SIZE -
370 ((off_t )bp & SYSTEM_PAGE_SIZE_MASK));
371
372 /* Make room for a new entry in the arenas vector. */
373 if (arenas == NULL) {
374 arenas = (uptr *)PyMem_MALLOC(16 * sizeof(*arenas));
375 if (arenas == NULL)
376 goto error;
377 maxarenas = 16;
378 narenas = 0;
379 }
380 else if (narenas == maxarenas) {
381 /* Grow arenas. Don't use realloc: if this fails, we
382 * don't want to lose the base addresses we already have.
383 * Exceedingly subtle: Someone may be calling the pymalloc
384 * free via PyMem_{DEL, Del, FREE, Free} without holding the
385 *.GIL. Someone else may simultaneously be calling the
386 * pymalloc malloc while holding the GIL via, e.g.,
387 * PyObject_New. Now the pymalloc free may index into arenas
388 * for an address check, while the pymalloc malloc calls
389 * new_arena and we end up here to grow a new arena *and*
390 * grow the arenas vector. If the value for arenas pymalloc
391 * free picks up "vanishes" during this resize, anything may
392 * happen, and it would be an incredibly rare bug. Therefore
393 * the code here takes great pains to make sure that, at every
394 * moment, arenas always points to an intact vector of
395 * addresses. It doesn't matter whether arenas points to a
396 * wholly up-to-date vector when pymalloc free checks it in
397 * this case, because the only legal (and that even this is
398 * legal is debatable) way to call PyMem_{Del, etc} while not
399 * holding the GIL is if the memory being released is not
400 * object memory, i.e. if the address check in pymalloc free
401 * is supposed to fail. Having an incomplete vector can't
402 * make a supposed-to-fail case succeed by mistake (it could
403 * only make a supposed-to-succeed case fail by mistake).
404 * Read the above 50 times before changing anything in this
405 * block.
Tim Peters12300682002-03-30 06:20:23 +0000406 * XXX Fudge. This is still vulnerable: there's nothing
407 * XXX to stop the bad-guy thread from picking up the
408 * XXX current value of arenas, but not indexing off of it
409 * XXX until after the PyMem_FREE(oldarenas) below completes.
Tim Petersd97a1c02002-03-30 06:09:22 +0000410 */
411 uptr *oldarenas;
412 int newmax = maxarenas + (maxarenas >> 1);
413 uptr *p = (uptr *)PyMem_MALLOC(newmax * sizeof(*arenas));
414 if (p == NULL)
415 goto error;
416 memcpy(p, arenas, narenas * sizeof(*arenas));
417 oldarenas = arenas;
418 arenas = p;
419 PyMem_FREE(oldarenas);
420 maxarenas = newmax;
421 }
422
423 /* Append the new arena address to arenas. */
424 assert(narenas < maxarenas);
425 arenas[narenas] = (uptr)bp;
426 ++narenas;
427 dumpem(bp);
428 return bp;
429
430error:
431 PyMem_FREE(bp);
432 return NULL;
433}
434
435/* Return true if and only if P is an address that was allocated by
436 * pymalloc. I must be the index into arenas that the address claims
437 * to come from.
438 * Tricky: Letting B be the arena base address in arenas[I], P belongs to the
439 * arena if and only if
440 * B <= P < B + ALLOCATED_ARENA_SIZE
441 * Subtracting B throughout, this is true iff
442 * 0 <= P-B < ALLOCATED_ARENA_SIZE
443 * By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
444 */
445#define ADDRESS_IN_RANGE(P, I) \
446 ((I) < narenas && (uptr)(P) - arenas[I] < (uptr)ALLOCATED_ARENA_SIZE)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000447/*==========================================================================*/
448
449/* malloc */
450
451/*
452 * The basic blocks are ordered by decreasing execution frequency,
453 * which minimizes the number of jumps in the most common cases,
454 * improves branching prediction and instruction scheduling (small
455 * block allocations typically result in a couple of instructions).
456 * Unless the optimizer reorders everything, being too smart...
457 */
458
459void *
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000460_PyMalloc_Malloc(size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000461{
462 block *bp;
463 poolp pool;
464 poolp next;
465 uint size;
466
Neil Schemenauera35c6882001-02-27 04:45:05 +0000467 /*
468 * This implicitly redirects malloc(0)
469 */
470 if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
471 LOCK();
472 /*
473 * Most frequent paths first
474 */
475 size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT;
476 pool = usedpools[size + size];
477 if (pool != pool->nextpool) {
478 /*
479 * There is a used pool for this size class.
480 * Pick up the head block of its free list.
481 */
482 ++pool->ref.count;
483 bp = pool->freeblock;
484 if ((pool->freeblock = *(block **)bp) != NULL) {
485 UNLOCK();
486 return (void *)bp;
487 }
488 /*
489 * Reached the end of the free list, try to extend it
490 */
491 if (pool->ref.count < pool->capacity) {
492 /*
493 * There is room for another block
494 */
495 size++;
496 size <<= ALIGNMENT_SHIFT; /* block size */
497 pool->freeblock = (block *)pool + \
498 POOL_OVERHEAD + \
499 pool->ref.count * size;
500 *(block **)(pool->freeblock) = NULL;
501 UNLOCK();
502 return (void *)bp;
503 }
504 /*
505 * Pool is full, unlink from used pools
506 */
507 next = pool->nextpool;
508 pool = pool->prevpool;
509 next->prevpool = pool;
510 pool->nextpool = next;
511 UNLOCK();
512 return (void *)bp;
513 }
514 /*
515 * Try to get a cached free pool
516 */
517 pool = freepools;
518 if (pool != NULL) {
519 /*
520 * Unlink from cached pools
521 */
522 freepools = pool->nextpool;
523 init_pool:
524 /*
525 * Frontlink to used pools
526 */
527 next = usedpools[size + size]; /* == prev */
528 pool->nextpool = next;
529 pool->prevpool = next;
530 next->nextpool = pool;
531 next->prevpool = pool;
532 pool->ref.count = 1;
533 if (pool->szidx == size) {
534 /*
535 * Luckily, this pool last contained blocks
536 * of the same size class, so its header
537 * and free list are already initialized.
538 */
539 bp = pool->freeblock;
540 pool->freeblock = *(block **)bp;
541 UNLOCK();
542 return (void *)bp;
543 }
544 /*
545 * Initialize the pool header and free list
546 * then return the first block.
547 */
548 pool->szidx = size;
549 size++;
550 size <<= ALIGNMENT_SHIFT; /* block size */
551 bp = (block *)pool + POOL_OVERHEAD;
552 pool->freeblock = bp + size;
553 *(block **)(pool->freeblock) = NULL;
554 pool->capacity = (POOL_SIZE - POOL_OVERHEAD) / size;
555 UNLOCK();
556 return (void *)bp;
557 }
558 /*
559 * Allocate new pool
560 */
561 if (watermark < ARENA_NB_POOLS) {
562 /* commit malloc(POOL_SIZE) from the current arena */
563 commit_pool:
564 watermark++;
565 pool = (poolp )arenabase;
566 arenabase += POOL_SIZE;
Tim Petersd97a1c02002-03-30 06:09:22 +0000567 pool->arenaindex = narenas - 1;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000568 pool->szidx = DUMMY_SIZE_IDX;
569 goto init_pool;
570 }
571 /*
572 * Allocate new arena
573 */
574#ifdef WITH_MEMORY_LIMITS
Tim Petersd97a1c02002-03-30 06:09:22 +0000575 if (!(narenas < MAX_ARENAS)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000576 UNLOCK();
577 goto redirect;
578 }
579#endif
Tim Petersd97a1c02002-03-30 06:09:22 +0000580 bp = new_arena();
581 if (bp != NULL)
582 goto commit_pool;
583 UNLOCK();
584 goto redirect;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000585 }
586
587 /* The small block allocator ends here. */
588
Tim Petersd97a1c02002-03-30 06:09:22 +0000589redirect:
Neil Schemenauera35c6882001-02-27 04:45:05 +0000590 /*
591 * Redirect the original request to the underlying (libc) allocator.
592 * We jump here on bigger requests, on error in the code above (as a
593 * last chance to serve the request) or when the max memory limit
594 * has been reached.
595 */
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000596 return (void *)PyMem_MALLOC(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000597}
598
599/* free */
600
601void
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000602_PyMalloc_Free(void *p)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000603{
604 poolp pool;
605 poolp next, prev;
606 uint size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000607
Neil Schemenauera35c6882001-02-27 04:45:05 +0000608 if (p == NULL) /* free(NULL) has no effect */
609 return;
610
Tim Petersd97a1c02002-03-30 06:09:22 +0000611 pool = POOL_ADDR(p);
612 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
613 /* We allocated this address. */
614 INCMINE;
615 LOCK();
616 /*
617 * At this point, the pool is not empty
618 */
619 if ((*(block **)p = pool->freeblock) == NULL) {
620 /*
621 * Pool was full
622 */
623 pool->freeblock = (block *)p;
624 --pool->ref.count;
625 /*
626 * Frontlink to used pools
627 * This mimics LRU pool usage for new allocations and
628 * targets optimal filling when several pools contain
629 * blocks of the same size class.
630 */
631 size = pool->szidx;
632 next = usedpools[size + size];
633 prev = next->prevpool;
634 pool->nextpool = next;
635 pool->prevpool = prev;
636 next->prevpool = pool;
637 prev->nextpool = pool;
638 UNLOCK();
639 return;
640 }
641 /*
642 * Pool was not full
643 */
644 pool->freeblock = (block *)p;
645 if (--pool->ref.count != 0) {
646 UNLOCK();
647 return;
648 }
649 /*
650 * Pool is now empty, unlink from used pools
651 */
652 next = pool->nextpool;
653 prev = pool->prevpool;
654 next->prevpool = prev;
655 prev->nextpool = next;
656 /*
657 * Frontlink to free pools
658 * This ensures that previously freed pools will be allocated
659 * later (being not referenced, they are perhaps paged out).
660 */
661 pool->nextpool = freepools;
662 freepools = pool;
663 UNLOCK();
Neil Schemenauera35c6882001-02-27 04:45:05 +0000664 return;
665 }
666
Tim Petersd97a1c02002-03-30 06:09:22 +0000667 /* We did not allocate this address. */
668 INCTHEIRS;
669 PyMem_FREE(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000670}
671
672/* realloc */
673
674void *
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000675_PyMalloc_Realloc(void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000676{
677 block *bp;
678 poolp pool;
679 uint size;
680
Neil Schemenauera35c6882001-02-27 04:45:05 +0000681 if (p == NULL)
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000682 return _PyMalloc_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000683
684 /* realloc(p, 0) on big blocks is redirected. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000685 pool = POOL_ADDR(p);
686 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000687 /* We're in charge of this block */
Tim Petersd97a1c02002-03-30 06:09:22 +0000688 INCMINE;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000689 size = (pool->szidx + 1) << ALIGNMENT_SHIFT; /* block size */
690 if (size >= nbytes) {
691 /* Don't bother if a smaller size was requested
692 except for realloc(p, 0) == free(p), ret NULL */
Tim Petersd97a1c02002-03-30 06:09:22 +0000693 /* XXX but Python guarantees that *its* flavor of
694 resize(p, 0) will not do a free or return NULL */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000695 if (nbytes == 0) {
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000696 _PyMalloc_Free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000697 bp = NULL;
698 }
699 else
700 bp = (block *)p;
701 }
702 else {
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000703 bp = (block *)_PyMalloc_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000704 if (bp != NULL) {
705 memcpy(bp, p, size);
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000706 _PyMalloc_Free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000707 }
708 }
709 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000710 else {
711 /* We haven't allocated this block */
712 INCTHEIRS;
713 if (nbytes <= SMALL_REQUEST_THRESHOLD && nbytes) {
714 /* small request */
715 size = nbytes;
716 bp = (block *)_PyMalloc_Malloc(nbytes);
717 if (bp != NULL) {
718 memcpy(bp, p, size);
719 _PyMalloc_Free(p);
720 }
721 }
722 else
723 bp = (block *)PyMem_REALLOC(p, nbytes);
724 }
Neil Schemenauera35c6882001-02-27 04:45:05 +0000725 return (void *)bp;
726}
727
Tim Peters1221c0a2002-03-23 00:20:15 +0000728#else /* ! WITH_PYMALLOC */
Tim Petersddea2082002-03-23 10:03:50 +0000729
730/*==========================================================================*/
731/* pymalloc not enabled: Redirect the entry points to the PyMem family. */
Tim Peters62c06ba2002-03-23 22:28:18 +0000732
Tim Petersce7fb9b2002-03-23 00:28:57 +0000733void *
734_PyMalloc_Malloc(size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000735{
736 return PyMem_MALLOC(n);
737}
738
Tim Petersce7fb9b2002-03-23 00:28:57 +0000739void *
740_PyMalloc_Realloc(void *p, size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000741{
742 return PyMem_REALLOC(p, n);
743}
744
745void
746_PyMalloc_Free(void *p)
747{
748 PyMem_FREE(p);
749}
750#endif /* WITH_PYMALLOC */
751
Tim Peters62c06ba2002-03-23 22:28:18 +0000752/*==========================================================================*/
753/* Regardless of whether pymalloc is enabled, export entry points for
754 * the object-oriented pymalloc functions.
755 */
756
Tim Petersce7fb9b2002-03-23 00:28:57 +0000757PyObject *
758_PyMalloc_New(PyTypeObject *tp)
Tim Peters1221c0a2002-03-23 00:20:15 +0000759{
760 PyObject *op;
761 op = (PyObject *) _PyMalloc_MALLOC(_PyObject_SIZE(tp));
762 if (op == NULL)
763 return PyErr_NoMemory();
764 return PyObject_INIT(op, tp);
765}
766
767PyVarObject *
768_PyMalloc_NewVar(PyTypeObject *tp, int nitems)
769{
770 PyVarObject *op;
771 const size_t size = _PyObject_VAR_SIZE(tp, nitems);
772 op = (PyVarObject *) _PyMalloc_MALLOC(size);
773 if (op == NULL)
774 return (PyVarObject *)PyErr_NoMemory();
775 return PyObject_INIT_VAR(op, tp, nitems);
776}
777
778void
779_PyMalloc_Del(PyObject *op)
780{
781 _PyMalloc_FREE(op);
782}
Tim Petersddea2082002-03-23 10:03:50 +0000783
784#ifdef PYMALLOC_DEBUG
785/*==========================================================================*/
Tim Peters62c06ba2002-03-23 22:28:18 +0000786/* A x-platform debugging allocator. This doesn't manage memory directly,
787 * it wraps a real allocator, adding extra debugging info to the memory blocks.
788 */
Tim Petersddea2082002-03-23 10:03:50 +0000789
790#define PYMALLOC_CLEANBYTE 0xCB /* uninitialized memory */
791#define PYMALLOC_DEADBYTE 0xDB /* free()ed memory */
792#define PYMALLOC_FORBIDDENBYTE 0xFB /* unusable memory */
793
794static ulong serialno = 0; /* incremented on each debug {m,re}alloc */
795
Tim Peterse0850172002-03-24 00:34:21 +0000796/* serialno is always incremented via calling this routine. The point is
797 to supply a single place to set a breakpoint.
798*/
799static void
Neil Schemenauerbd02b142002-03-28 21:05:38 +0000800bumpserialno(void)
Tim Peterse0850172002-03-24 00:34:21 +0000801{
802 ++serialno;
803}
804
805
Tim Petersddea2082002-03-23 10:03:50 +0000806/* Read 4 bytes at p as a big-endian ulong. */
807static ulong
808read4(const void *p)
809{
Tim Peters62c06ba2002-03-23 22:28:18 +0000810 const uchar *q = (const uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +0000811 return ((ulong)q[0] << 24) |
812 ((ulong)q[1] << 16) |
813 ((ulong)q[2] << 8) |
814 (ulong)q[3];
815}
816
817/* Write the 4 least-significant bytes of n as a big-endian unsigned int,
818 MSB at address p, LSB at p+3. */
819static void
820write4(void *p, ulong n)
821{
Tim Peters62c06ba2002-03-23 22:28:18 +0000822 uchar *q = (uchar *)p;
823 q[0] = (uchar)((n >> 24) & 0xff);
824 q[1] = (uchar)((n >> 16) & 0xff);
825 q[2] = (uchar)((n >> 8) & 0xff);
826 q[3] = (uchar)( n & 0xff);
Tim Petersddea2082002-03-23 10:03:50 +0000827}
828
Tim Petersddea2082002-03-23 10:03:50 +0000829/* The debug malloc asks for 16 extra bytes and fills them with useful stuff,
830 here calling the underlying malloc's result p:
831
832p[0:4]
833 Number of bytes originally asked for. 4-byte unsigned integer,
834 big-endian (easier to read in a memory dump).
Tim Petersd1139e02002-03-28 07:32:11 +0000835p[4:8]
Tim Petersddea2082002-03-23 10:03:50 +0000836 Copies of PYMALLOC_FORBIDDENBYTE. Used to catch under- writes
837 and reads.
838p[8:8+n]
839 The requested memory, filled with copies of PYMALLOC_CLEANBYTE.
840 Used to catch reference to uninitialized memory.
841 &p[8] is returned. Note that this is 8-byte aligned if PyMalloc
842 handled the request itself.
843p[8+n:8+n+4]
844 Copies of PYMALLOC_FORBIDDENBYTE. Used to catch over- writes
845 and reads.
846p[8+n+4:8+n+8]
847 A serial number, incremented by 1 on each call to _PyMalloc_DebugMalloc
848 and _PyMalloc_DebugRealloc.
849 4-byte unsigned integer, big-endian.
850 If "bad memory" is detected later, the serial number gives an
851 excellent way to set a breakpoint on the next run, to capture the
852 instant at which this block was passed out.
853*/
854
855void *
Tim Petersd1139e02002-03-28 07:32:11 +0000856_PyMalloc_DebugMalloc(size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +0000857{
858 uchar *p; /* base address of malloc'ed block */
Tim Peters62c06ba2002-03-23 22:28:18 +0000859 uchar *tail; /* p + 8 + nbytes == pointer to tail pad bytes */
Tim Petersddea2082002-03-23 10:03:50 +0000860 size_t total; /* nbytes + 16 */
861
Tim Peterse0850172002-03-24 00:34:21 +0000862 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +0000863 total = nbytes + 16;
864 if (total < nbytes || (total >> 31) > 1) {
865 /* overflow, or we can't represent it in 4 bytes */
866 /* Obscure: can't do (total >> 32) != 0 instead, because
867 C doesn't define what happens for a right-shift of 32
868 when size_t is a 32-bit type. At least C guarantees
869 size_t is an unsigned type. */
870 return NULL;
871 }
872
Tim Petersd1139e02002-03-28 07:32:11 +0000873 p = _PyMalloc_Malloc(total);
Tim Petersddea2082002-03-23 10:03:50 +0000874 if (p == NULL)
875 return NULL;
876
877 write4(p, nbytes);
Tim Petersd1139e02002-03-28 07:32:11 +0000878 p[4] = p[5] = p[6] = p[7] = PYMALLOC_FORBIDDENBYTE;
Tim Petersddea2082002-03-23 10:03:50 +0000879
880 if (nbytes > 0)
881 memset(p+8, PYMALLOC_CLEANBYTE, nbytes);
882
Tim Peters62c06ba2002-03-23 22:28:18 +0000883 tail = p + 8 + nbytes;
884 tail[0] = tail[1] = tail[2] = tail[3] = PYMALLOC_FORBIDDENBYTE;
885 write4(tail + 4, serialno);
Tim Petersddea2082002-03-23 10:03:50 +0000886
887 return p+8;
888}
889
Tim Peters62c06ba2002-03-23 22:28:18 +0000890/* The debug free first checks the 8 bytes on each end for sanity (in
891 particular, that the PYMALLOC_FORBIDDENBYTEs are still intact).
Tim Petersddea2082002-03-23 10:03:50 +0000892 Then fills the original bytes with PYMALLOC_DEADBYTE.
893 Then calls the underlying free.
894*/
895void
Tim Petersd1139e02002-03-28 07:32:11 +0000896_PyMalloc_DebugFree(void *p)
Tim Petersddea2082002-03-23 10:03:50 +0000897{
Tim Peters62c06ba2002-03-23 22:28:18 +0000898 uchar *q = (uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +0000899 size_t nbytes;
900
Tim Petersddea2082002-03-23 10:03:50 +0000901 if (p == NULL)
902 return;
Tim Petersddea2082002-03-23 10:03:50 +0000903 _PyMalloc_DebugCheckAddress(p);
904 nbytes = read4(q-8);
905 if (nbytes > 0)
906 memset(q, PYMALLOC_DEADBYTE, nbytes);
Tim Petersd1139e02002-03-28 07:32:11 +0000907 _PyMalloc_Free(q-8);
Tim Petersddea2082002-03-23 10:03:50 +0000908}
909
910void *
Tim Petersd1139e02002-03-28 07:32:11 +0000911_PyMalloc_DebugRealloc(void *p, size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +0000912{
913 uchar *q = (uchar *)p;
914 size_t original_nbytes;
Tim Peterse0850172002-03-24 00:34:21 +0000915 void *fresh; /* new memory block, if needed */
Tim Petersddea2082002-03-23 10:03:50 +0000916
Tim Petersddea2082002-03-23 10:03:50 +0000917 if (p == NULL)
Tim Petersd1139e02002-03-28 07:32:11 +0000918 return _PyMalloc_DebugMalloc(nbytes);
Tim Petersddea2082002-03-23 10:03:50 +0000919
Tim Petersddea2082002-03-23 10:03:50 +0000920 _PyMalloc_DebugCheckAddress(p);
Tim Petersddea2082002-03-23 10:03:50 +0000921 original_nbytes = read4(q-8);
922 if (nbytes == original_nbytes) {
923 /* note that this case is likely to be common due to the
924 way Python appends to lists */
Tim Peterse0850172002-03-24 00:34:21 +0000925 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +0000926 write4(q + nbytes + 4, serialno);
927 return p;
928 }
929
930 if (nbytes < original_nbytes) {
931 /* shrinking -- leave the guts alone, except to
932 fill the excess with DEADBYTE */
933 const size_t excess = original_nbytes - nbytes;
Tim Peterse0850172002-03-24 00:34:21 +0000934 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +0000935 write4(q-8, nbytes);
936 /* kill the excess bytes plus the trailing 8 pad bytes */
Tim Petersddea2082002-03-23 10:03:50 +0000937 q += nbytes;
938 q[0] = q[1] = q[2] = q[3] = PYMALLOC_FORBIDDENBYTE;
939 write4(q+4, serialno);
Tim Petersd1139e02002-03-28 07:32:11 +0000940 memset(q+8, PYMALLOC_DEADBYTE, excess);
Tim Petersddea2082002-03-23 10:03:50 +0000941 return p;
942 }
943
944 /* More memory is needed: get it, copy over the first original_nbytes
945 of the original data, and free the original memory. */
Tim Petersd1139e02002-03-28 07:32:11 +0000946 fresh = _PyMalloc_DebugMalloc(nbytes);
Tim Petersddea2082002-03-23 10:03:50 +0000947 if (fresh != NULL && original_nbytes > 0)
948 memcpy(fresh, p, original_nbytes);
Tim Petersd1139e02002-03-28 07:32:11 +0000949 _PyMalloc_DebugFree(p);
Tim Petersddea2082002-03-23 10:03:50 +0000950 return fresh;
951}
952
953void
954_PyMalloc_DebugCheckAddress(const void *p)
955{
956 const uchar *q = (const uchar *)p;
Tim Petersd1139e02002-03-28 07:32:11 +0000957 char *msg;
958 int i;
Tim Petersddea2082002-03-23 10:03:50 +0000959
Tim Petersd1139e02002-03-28 07:32:11 +0000960 if (p == NULL) {
Tim Petersddea2082002-03-23 10:03:50 +0000961 msg = "didn't expect a NULL pointer";
Tim Petersd1139e02002-03-28 07:32:11 +0000962 goto error;
963 }
Tim Petersddea2082002-03-23 10:03:50 +0000964
Tim Petersd1139e02002-03-28 07:32:11 +0000965 for (i = 4; i >= 1; --i) {
966 if (*(q-i) != PYMALLOC_FORBIDDENBYTE) {
967 msg = "bad leading pad byte";
968 goto error;
969 }
970 }
Tim Petersddea2082002-03-23 10:03:50 +0000971
Tim Petersd1139e02002-03-28 07:32:11 +0000972 {
Tim Petersddea2082002-03-23 10:03:50 +0000973 const ulong nbytes = read4(q-8);
974 const uchar *tail = q + nbytes;
Tim Petersddea2082002-03-23 10:03:50 +0000975 for (i = 0; i < 4; ++i) {
976 if (tail[i] != PYMALLOC_FORBIDDENBYTE) {
977 msg = "bad trailing pad byte";
Tim Petersd1139e02002-03-28 07:32:11 +0000978 goto error;
Tim Petersddea2082002-03-23 10:03:50 +0000979 }
980 }
981 }
982
Tim Petersd1139e02002-03-28 07:32:11 +0000983 return;
984
985error:
986 _PyMalloc_DebugDumpAddress(p);
987 Py_FatalError(msg);
Tim Petersddea2082002-03-23 10:03:50 +0000988}
989
990void
991_PyMalloc_DebugDumpAddress(const void *p)
992{
993 const uchar *q = (const uchar *)p;
994 const uchar *tail;
995 ulong nbytes, serial;
Tim Petersd1139e02002-03-28 07:32:11 +0000996 int i;
Tim Petersddea2082002-03-23 10:03:50 +0000997
998 fprintf(stderr, "Debug memory block at address p=%p:\n", p);
999 if (p == NULL)
1000 return;
1001
1002 nbytes = read4(q-8);
1003 fprintf(stderr, " %lu bytes originally allocated\n", nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001004
1005 /* In case this is nuts, check the pad bytes before trying to read up
1006 the serial number (the address deref could blow up). */
1007
Tim Petersd1139e02002-03-28 07:32:11 +00001008 fputs(" the 4 pad bytes at p-4 are ", stderr);
1009 if (*(q-4) == PYMALLOC_FORBIDDENBYTE &&
1010 *(q-3) == PYMALLOC_FORBIDDENBYTE &&
Tim Petersddea2082002-03-23 10:03:50 +00001011 *(q-2) == PYMALLOC_FORBIDDENBYTE &&
1012 *(q-1) == PYMALLOC_FORBIDDENBYTE) {
Tim Peters62c06ba2002-03-23 22:28:18 +00001013 fputs("PYMALLOC_FORBIDDENBYTE, as expected\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001014 }
1015 else {
Tim Petersddea2082002-03-23 10:03:50 +00001016 fprintf(stderr, "not all PYMALLOC_FORBIDDENBYTE (0x%02x):\n",
1017 PYMALLOC_FORBIDDENBYTE);
Tim Petersd1139e02002-03-28 07:32:11 +00001018 for (i = 4; i >= 1; --i) {
Tim Petersddea2082002-03-23 10:03:50 +00001019 const uchar byte = *(q-i);
1020 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
1021 if (byte != PYMALLOC_FORBIDDENBYTE)
1022 fputs(" *** OUCH", stderr);
1023 fputc('\n', stderr);
1024 }
1025 }
1026
1027 tail = q + nbytes;
1028 fprintf(stderr, " the 4 pad bytes at tail=%p are ", tail);
1029 if (tail[0] == PYMALLOC_FORBIDDENBYTE &&
1030 tail[1] == PYMALLOC_FORBIDDENBYTE &&
1031 tail[2] == PYMALLOC_FORBIDDENBYTE &&
1032 tail[3] == PYMALLOC_FORBIDDENBYTE) {
Tim Peters62c06ba2002-03-23 22:28:18 +00001033 fputs("PYMALLOC_FORBIDDENBYTE, as expected\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001034 }
1035 else {
Tim Petersddea2082002-03-23 10:03:50 +00001036 fprintf(stderr, "not all PYMALLOC_FORBIDDENBYTE (0x%02x):\n",
1037 PYMALLOC_FORBIDDENBYTE);
1038 for (i = 0; i < 4; ++i) {
1039 const uchar byte = tail[i];
1040 fprintf(stderr, " at tail+%d: 0x%02x",
1041 i, byte);
1042 if (byte != PYMALLOC_FORBIDDENBYTE)
1043 fputs(" *** OUCH", stderr);
1044 fputc('\n', stderr);
1045 }
1046 }
1047
1048 serial = read4(tail+4);
1049 fprintf(stderr, " the block was made by call #%lu to "
1050 "debug malloc/realloc\n", serial);
1051
1052 if (nbytes > 0) {
1053 int i = 0;
Tim Peters62c06ba2002-03-23 22:28:18 +00001054 fputs(" data at p:", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001055 /* print up to 8 bytes at the start */
1056 while (q < tail && i < 8) {
1057 fprintf(stderr, " %02x", *q);
1058 ++i;
1059 ++q;
1060 }
1061 /* and up to 8 at the end */
1062 if (q < tail) {
1063 if (tail - q > 8) {
Tim Peters62c06ba2002-03-23 22:28:18 +00001064 fputs(" ...", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001065 q = tail - 8;
1066 }
1067 while (q < tail) {
1068 fprintf(stderr, " %02x", *q);
1069 ++q;
1070 }
1071 }
Tim Peters62c06ba2002-03-23 22:28:18 +00001072 fputc('\n', stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001073 }
1074}
1075
1076#endif /* PYMALLOC_DEBUG */