blob: 3fa006bec22fc400f877abfb3e1f3563aa50fc23 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Stefan Krah1919b7e2012-03-21 18:25:23 +010012.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
Georg Brandl116aa622007-08-15 14:28:22 +000013.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
14
Christian Heimesfe337bf2008-03-23 21:54:12 +000015.. import modules for testing inline doctests with the Sphinx doctest builder
16.. testsetup:: *
17
18 import decimal
19 import math
20 from decimal import *
21 # make sure each group gets a fresh context
22 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000023
Stefan Krah1919b7e2012-03-21 18:25:23 +010024The :mod:`decimal` module provides support for fast correctly-rounded
25decimal floating point arithmetic. It offers several advantages over the
26:class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000027
Christian Heimes3feef612008-02-11 06:19:17 +000028* Decimal "is based on a floating-point model which was designed with people
29 in mind, and necessarily has a paramount guiding principle -- computers must
30 provide an arithmetic that works in the same way as the arithmetic that
31 people learn at school." -- excerpt from the decimal arithmetic specification.
32
Georg Brandl116aa622007-08-15 14:28:22 +000033* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050034 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000035 floating point. End users typically would not expect ``1.1 + 2.2`` to display
36 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000037
38* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000039 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000040 is :const:`5.5511151231257827e-017`. While near to zero, the differences
41 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000042 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000043 equality invariants.
44
45* The decimal module incorporates a notion of significant places so that ``1.30
46 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
47 This is the customary presentation for monetary applications. For
48 multiplication, the "schoolbook" approach uses all the figures in the
49 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
50 1.20`` gives :const:`1.5600`.
51
52* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000053 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000054 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000055
Mark Dickinson43ef32a2010-11-07 11:24:44 +000056 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000057 >>> getcontext().prec = 6
58 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000059 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000060 >>> getcontext().prec = 28
61 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000062 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000063
64* Both binary and decimal floating point are implemented in terms of published
65 standards. While the built-in float type exposes only a modest portion of its
66 capabilities, the decimal module exposes all required parts of the standard.
67 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000068 This includes an option to enforce exact arithmetic by using exceptions
69 to block any inexact operations.
70
71* The decimal module was designed to support "without prejudice, both exact
72 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
73 and rounded floating-point arithmetic." -- excerpt from the decimal
74 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000075
76The module design is centered around three concepts: the decimal number, the
77context for arithmetic, and signals.
78
79A decimal number is immutable. It has a sign, coefficient digits, and an
80exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000081trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000082:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
83differentiates :const:`-0` from :const:`+0`.
84
85The context for arithmetic is an environment specifying precision, rounding
86rules, limits on exponents, flags indicating the results of operations, and trap
87enablers which determine whether signals are treated as exceptions. Rounding
88options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
89:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000090:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000091
92Signals are groups of exceptional conditions arising during the course of
93computation. Depending on the needs of the application, signals may be ignored,
94considered as informational, or treated as exceptions. The signals in the
95decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
96:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
Stefan Krah1919b7e2012-03-21 18:25:23 +010097:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
Georg Brandl116aa622007-08-15 14:28:22 +000098
99For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +0000100encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +0000101set to one, an exception is raised. Flags are sticky, so the user needs to
102reset them before monitoring a calculation.
103
104
105.. seealso::
106
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000107 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000108 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000109
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000110 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000111 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000112
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000113.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000114
115
116.. _decimal-tutorial:
117
118Quick-start Tutorial
119--------------------
120
121The usual start to using decimals is importing the module, viewing the current
122context with :func:`getcontext` and, if necessary, setting new values for
123precision, rounding, or enabled traps::
124
125 >>> from decimal import *
126 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100127 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000128 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000129 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000130
131 >>> getcontext().prec = 7 # Set a new precision
132
Mark Dickinsone534a072010-04-04 22:13:14 +0000133Decimal instances can be constructed from integers, strings, floats, or tuples.
134Construction from an integer or a float performs an exact conversion of the
135value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000136:const:`NaN` which stands for "Not a number", positive and negative
Stefan Krah1919b7e2012-03-21 18:25:23 +0100137:const:`Infinity`, and :const:`-0`::
Georg Brandl116aa622007-08-15 14:28:22 +0000138
Facundo Batista789bdf02008-06-21 17:29:41 +0000139 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000140 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000141 Decimal('10')
142 >>> Decimal('3.14')
143 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000144 >>> Decimal(3.14)
145 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000146 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000147 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000148 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000149 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000150 >>> Decimal(2) ** Decimal('0.5')
151 Decimal('1.414213562373095048801688724')
152 >>> Decimal('NaN')
153 Decimal('NaN')
154 >>> Decimal('-Infinity')
155 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000156
Stefan Krah1919b7e2012-03-21 18:25:23 +0100157If the :exc:`FloatOperation` signal is trapped, accidental mixing of
158decimals and floats in constructors or ordering comparisons raises
159an exception::
160
161 >>> c = getcontext()
162 >>> c.traps[FloatOperation] = True
163 >>> Decimal(3.14)
164 Traceback (most recent call last):
165 File "<stdin>", line 1, in <module>
166 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
167 >>> Decimal('3.5') < 3.7
168 Traceback (most recent call last):
169 File "<stdin>", line 1, in <module>
170 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
171 >>> Decimal('3.5') == 3.5
172 True
173
174.. versionadded:: 3.3
175
Georg Brandl116aa622007-08-15 14:28:22 +0000176The significance of a new Decimal is determined solely by the number of digits
177input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000178operations.
179
180.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000181
182 >>> getcontext().prec = 6
183 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000184 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000185 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000186 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000187 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000188 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000189 >>> getcontext().rounding = ROUND_UP
190 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000191 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000192
Stefan Krah1919b7e2012-03-21 18:25:23 +0100193If the internal limits of the C version are exceeded, constructing
194a decimal raises :class:`InvalidOperation`::
195
196 >>> Decimal("1e9999999999999999999")
197 Traceback (most recent call last):
198 File "<stdin>", line 1, in <module>
199 decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
200
201.. versionchanged:: 3.3
202
Georg Brandl116aa622007-08-15 14:28:22 +0000203Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000204floating point flying circus:
205
206.. doctest::
207 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000208
Facundo Batista789bdf02008-06-21 17:29:41 +0000209 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000210 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000211 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000212 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000213 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000214 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000215 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
216 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000217 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000218 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000219 >>> a,b,c = data[:3]
220 >>> str(a)
221 '1.34'
222 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000223 1.34
224 >>> round(a, 1)
225 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000226 >>> int(a)
227 1
228 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000229 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000230 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000231 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000232 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000233 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000234
Christian Heimesfe337bf2008-03-23 21:54:12 +0000235And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000236
Facundo Batista789bdf02008-06-21 17:29:41 +0000237 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000238 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000239 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000240 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000241 Decimal('2.718281828459045235360287471')
242 >>> Decimal('10').ln()
243 Decimal('2.302585092994045684017991455')
244 >>> Decimal('10').log10()
245 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000246
Georg Brandl116aa622007-08-15 14:28:22 +0000247The :meth:`quantize` method rounds a number to a fixed exponent. This method is
248useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000249places:
Georg Brandl116aa622007-08-15 14:28:22 +0000250
251 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000252 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000253 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000254 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000255
256As shown above, the :func:`getcontext` function accesses the current context and
257allows the settings to be changed. This approach meets the needs of most
258applications.
259
260For more advanced work, it may be useful to create alternate contexts using the
261Context() constructor. To make an alternate active, use the :func:`setcontext`
262function.
263
264In accordance with the standard, the :mod:`Decimal` module provides two ready to
265use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
266former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000267enabled:
268
269.. doctest:: newcontext
270 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000271
272 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
273 >>> setcontext(myothercontext)
274 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000275 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000276
277 >>> ExtendedContext
Stefan Krah1919b7e2012-03-21 18:25:23 +0100278 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000279 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000280 >>> setcontext(ExtendedContext)
281 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000282 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000283 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000284 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000285
286 >>> setcontext(BasicContext)
287 >>> Decimal(42) / Decimal(0)
288 Traceback (most recent call last):
289 File "<pyshell#143>", line 1, in -toplevel-
290 Decimal(42) / Decimal(0)
291 DivisionByZero: x / 0
292
293Contexts also have signal flags for monitoring exceptional conditions
294encountered during computations. The flags remain set until explicitly cleared,
295so it is best to clear the flags before each set of monitored computations by
296using the :meth:`clear_flags` method. ::
297
298 >>> setcontext(ExtendedContext)
299 >>> getcontext().clear_flags()
300 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000301 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000302 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100303 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000304 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000305
306The *flags* entry shows that the rational approximation to :const:`Pi` was
307rounded (digits beyond the context precision were thrown away) and that the
308result is inexact (some of the discarded digits were non-zero).
309
310Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000311context:
Georg Brandl116aa622007-08-15 14:28:22 +0000312
Christian Heimesfe337bf2008-03-23 21:54:12 +0000313.. doctest:: newcontext
314
315 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000316 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000317 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000318 >>> getcontext().traps[DivisionByZero] = 1
319 >>> Decimal(1) / Decimal(0)
320 Traceback (most recent call last):
321 File "<pyshell#112>", line 1, in -toplevel-
322 Decimal(1) / Decimal(0)
323 DivisionByZero: x / 0
324
325Most programs adjust the current context only once, at the beginning of the
326program. And, in many applications, data is converted to :class:`Decimal` with
327a single cast inside a loop. With context set and decimals created, the bulk of
328the program manipulates the data no differently than with other Python numeric
329types.
330
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000331.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000332
333
334.. _decimal-decimal:
335
336Decimal objects
337---------------
338
339
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000340.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000341
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000342 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000343
Raymond Hettinger96798592010-04-02 16:58:27 +0000344 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000345 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000346 string, it should conform to the decimal numeric string syntax after leading
347 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000348
349 sign ::= '+' | '-'
350 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
351 indicator ::= 'e' | 'E'
352 digits ::= digit [digit]...
353 decimal-part ::= digits '.' [digits] | ['.'] digits
354 exponent-part ::= indicator [sign] digits
355 infinity ::= 'Infinity' | 'Inf'
356 nan ::= 'NaN' [digits] | 'sNaN' [digits]
357 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000358 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000359
Mark Dickinson345adc42009-08-02 10:14:23 +0000360 Other Unicode decimal digits are also permitted where ``digit``
361 appears above. These include decimal digits from various other
362 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
363 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
364
Georg Brandl116aa622007-08-15 14:28:22 +0000365 If *value* is a :class:`tuple`, it should have three components, a sign
366 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
367 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000368 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000369
Raymond Hettinger96798592010-04-02 16:58:27 +0000370 If *value* is a :class:`float`, the binary floating point value is losslessly
371 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000372 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
373 converts to
374 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000375
Georg Brandl116aa622007-08-15 14:28:22 +0000376 The *context* precision does not affect how many digits are stored. That is
377 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000378 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000379 only three.
380
381 The purpose of the *context* argument is determining what to do if *value* is a
382 malformed string. If the context traps :const:`InvalidOperation`, an exception
383 is raised; otherwise, the constructor returns a new Decimal with the value of
384 :const:`NaN`.
385
386 Once constructed, :class:`Decimal` objects are immutable.
387
Mark Dickinsone534a072010-04-04 22:13:14 +0000388 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000389 The argument to the constructor is now permitted to be a :class:`float`
390 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000391
Stefan Krah1919b7e2012-03-21 18:25:23 +0100392 .. versionchanged:: 3.3
393 :class:`float` arguments raise an exception if the :exc:`FloatOperation`
394 trap is set. By default the trap is off.
395
Benjamin Petersone41251e2008-04-25 01:59:09 +0000396 Decimal floating point objects share many properties with the other built-in
397 numeric types such as :class:`float` and :class:`int`. All of the usual math
398 operations and special methods apply. Likewise, decimal objects can be
399 copied, pickled, printed, used as dictionary keys, used as set elements,
400 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000401 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000402
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000403 Decimal objects cannot generally be combined with floats or
404 instances of :class:`fractions.Fraction` in arithmetic operations:
405 an attempt to add a :class:`Decimal` to a :class:`float`, for
406 example, will raise a :exc:`TypeError`. However, it is possible to
407 use Python's comparison operators to compare a :class:`Decimal`
408 instance ``x`` with another number ``y``. This avoids confusing results
409 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000410
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000411 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000412 Mixed-type comparisons between :class:`Decimal` instances and other
413 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000414
Benjamin Petersone41251e2008-04-25 01:59:09 +0000415 In addition to the standard numeric properties, decimal floating point
416 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000417
Georg Brandl116aa622007-08-15 14:28:22 +0000418
Benjamin Petersone41251e2008-04-25 01:59:09 +0000419 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000420
Benjamin Petersone41251e2008-04-25 01:59:09 +0000421 Return the adjusted exponent after shifting out the coefficient's
422 rightmost digits until only the lead digit remains:
423 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
424 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000425
Georg Brandl116aa622007-08-15 14:28:22 +0000426
Benjamin Petersone41251e2008-04-25 01:59:09 +0000427 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000428
Benjamin Petersone41251e2008-04-25 01:59:09 +0000429 Return a :term:`named tuple` representation of the number:
430 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000431
Christian Heimes25bb7832008-01-11 16:17:00 +0000432
Benjamin Petersone41251e2008-04-25 01:59:09 +0000433 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000434
Benjamin Petersone41251e2008-04-25 01:59:09 +0000435 Return the canonical encoding of the argument. Currently, the encoding of
436 a :class:`Decimal` instance is always canonical, so this operation returns
437 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000438
Benjamin Petersone41251e2008-04-25 01:59:09 +0000439 .. method:: compare(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000440
Georg Brandl05f5ab72008-09-24 09:11:47 +0000441 Compare the values of two Decimal instances. :meth:`compare` returns a
442 Decimal instance, and if either operand is a NaN then the result is a
443 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000444
Georg Brandl05f5ab72008-09-24 09:11:47 +0000445 a or b is a NaN ==> Decimal('NaN')
446 a < b ==> Decimal('-1')
447 a == b ==> Decimal('0')
448 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000449
Benjamin Petersone41251e2008-04-25 01:59:09 +0000450 .. method:: compare_signal(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000451
Benjamin Petersone41251e2008-04-25 01:59:09 +0000452 This operation is identical to the :meth:`compare` method, except that all
453 NaNs signal. That is, if neither operand is a signaling NaN then any
454 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000455
Benjamin Petersone41251e2008-04-25 01:59:09 +0000456 .. method:: compare_total(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000457
Benjamin Petersone41251e2008-04-25 01:59:09 +0000458 Compare two operands using their abstract representation rather than their
459 numerical value. Similar to the :meth:`compare` method, but the result
460 gives a total ordering on :class:`Decimal` instances. Two
461 :class:`Decimal` instances with the same numeric value but different
462 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000463
Benjamin Petersone41251e2008-04-25 01:59:09 +0000464 >>> Decimal('12.0').compare_total(Decimal('12'))
465 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000466
Benjamin Petersone41251e2008-04-25 01:59:09 +0000467 Quiet and signaling NaNs are also included in the total ordering. The
468 result of this function is ``Decimal('0')`` if both operands have the same
469 representation, ``Decimal('-1')`` if the first operand is lower in the
470 total order than the second, and ``Decimal('1')`` if the first operand is
471 higher in the total order than the second operand. See the specification
472 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000473
Benjamin Petersone41251e2008-04-25 01:59:09 +0000474 .. method:: compare_total_mag(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000475
Benjamin Petersone41251e2008-04-25 01:59:09 +0000476 Compare two operands using their abstract representation rather than their
477 value as in :meth:`compare_total`, but ignoring the sign of each operand.
478 ``x.compare_total_mag(y)`` is equivalent to
479 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000480
Facundo Batista789bdf02008-06-21 17:29:41 +0000481 .. method:: conjugate()
482
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000483 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000484 Specification.
485
Benjamin Petersone41251e2008-04-25 01:59:09 +0000486 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000487
Benjamin Petersone41251e2008-04-25 01:59:09 +0000488 Return the absolute value of the argument. This operation is unaffected
489 by the context and is quiet: no flags are changed and no rounding is
490 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000491
Benjamin Petersone41251e2008-04-25 01:59:09 +0000492 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000493
Benjamin Petersone41251e2008-04-25 01:59:09 +0000494 Return the negation of the argument. This operation is unaffected by the
495 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000496
Benjamin Petersone41251e2008-04-25 01:59:09 +0000497 .. method:: copy_sign(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000498
Benjamin Petersone41251e2008-04-25 01:59:09 +0000499 Return a copy of the first operand with the sign set to be the same as the
500 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000501
Benjamin Petersone41251e2008-04-25 01:59:09 +0000502 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
503 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000504
Benjamin Petersone41251e2008-04-25 01:59:09 +0000505 This operation is unaffected by the context and is quiet: no flags are
506 changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000507
Benjamin Petersone41251e2008-04-25 01:59:09 +0000508 .. method:: exp([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000509
Benjamin Petersone41251e2008-04-25 01:59:09 +0000510 Return the value of the (natural) exponential function ``e**x`` at the
511 given number. The result is correctly rounded using the
512 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000513
Benjamin Petersone41251e2008-04-25 01:59:09 +0000514 >>> Decimal(1).exp()
515 Decimal('2.718281828459045235360287471')
516 >>> Decimal(321).exp()
517 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000518
Raymond Hettinger771ed762009-01-03 19:20:32 +0000519 .. method:: from_float(f)
520
521 Classmethod that converts a float to a decimal number, exactly.
522
523 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
524 Since 0.1 is not exactly representable in binary floating point, the
525 value is stored as the nearest representable value which is
526 `0x1.999999999999ap-4`. That equivalent value in decimal is
527 `0.1000000000000000055511151231257827021181583404541015625`.
528
Mark Dickinsone534a072010-04-04 22:13:14 +0000529 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
530 can also be constructed directly from a :class:`float`.
531
Raymond Hettinger771ed762009-01-03 19:20:32 +0000532 .. doctest::
533
534 >>> Decimal.from_float(0.1)
535 Decimal('0.1000000000000000055511151231257827021181583404541015625')
536 >>> Decimal.from_float(float('nan'))
537 Decimal('NaN')
538 >>> Decimal.from_float(float('inf'))
539 Decimal('Infinity')
540 >>> Decimal.from_float(float('-inf'))
541 Decimal('-Infinity')
542
Georg Brandl45f53372009-01-03 21:15:20 +0000543 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000544
Benjamin Petersone41251e2008-04-25 01:59:09 +0000545 .. method:: fma(other, third[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000546
Benjamin Petersone41251e2008-04-25 01:59:09 +0000547 Fused multiply-add. Return self*other+third with no rounding of the
548 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000549
Benjamin Petersone41251e2008-04-25 01:59:09 +0000550 >>> Decimal(2).fma(3, 5)
551 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000552
Benjamin Petersone41251e2008-04-25 01:59:09 +0000553 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000554
Benjamin Petersone41251e2008-04-25 01:59:09 +0000555 Return :const:`True` if the argument is canonical and :const:`False`
556 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
557 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000558
Benjamin Petersone41251e2008-04-25 01:59:09 +0000559 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000560
Benjamin Petersone41251e2008-04-25 01:59:09 +0000561 Return :const:`True` if the argument is a finite number, and
562 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000563
Benjamin Petersone41251e2008-04-25 01:59:09 +0000564 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000565
Benjamin Petersone41251e2008-04-25 01:59:09 +0000566 Return :const:`True` if the argument is either positive or negative
567 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000568
Benjamin Petersone41251e2008-04-25 01:59:09 +0000569 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000570
Benjamin Petersone41251e2008-04-25 01:59:09 +0000571 Return :const:`True` if the argument is a (quiet or signaling) NaN and
572 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000573
Benjamin Petersone41251e2008-04-25 01:59:09 +0000574 .. method:: is_normal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000575
Benjamin Petersone41251e2008-04-25 01:59:09 +0000576 Return :const:`True` if the argument is a *normal* finite number. Return
577 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000578
Benjamin Petersone41251e2008-04-25 01:59:09 +0000579 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000580
Benjamin Petersone41251e2008-04-25 01:59:09 +0000581 Return :const:`True` if the argument is a quiet NaN, and
582 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000583
Benjamin Petersone41251e2008-04-25 01:59:09 +0000584 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000585
Benjamin Petersone41251e2008-04-25 01:59:09 +0000586 Return :const:`True` if the argument has a negative sign and
587 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000588
Benjamin Petersone41251e2008-04-25 01:59:09 +0000589 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000590
Benjamin Petersone41251e2008-04-25 01:59:09 +0000591 Return :const:`True` if the argument is a signaling NaN and :const:`False`
592 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000593
Benjamin Petersone41251e2008-04-25 01:59:09 +0000594 .. method:: is_subnormal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000595
Benjamin Petersone41251e2008-04-25 01:59:09 +0000596 Return :const:`True` if the argument is subnormal, and :const:`False`
597 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000598
Benjamin Petersone41251e2008-04-25 01:59:09 +0000599 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000600
Benjamin Petersone41251e2008-04-25 01:59:09 +0000601 Return :const:`True` if the argument is a (positive or negative) zero and
602 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000603
Benjamin Petersone41251e2008-04-25 01:59:09 +0000604 .. method:: ln([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000605
Benjamin Petersone41251e2008-04-25 01:59:09 +0000606 Return the natural (base e) logarithm of the operand. The result is
607 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000608
Benjamin Petersone41251e2008-04-25 01:59:09 +0000609 .. method:: log10([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000610
Benjamin Petersone41251e2008-04-25 01:59:09 +0000611 Return the base ten logarithm of the operand. The result is correctly
612 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000613
Benjamin Petersone41251e2008-04-25 01:59:09 +0000614 .. method:: logb([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000615
Benjamin Petersone41251e2008-04-25 01:59:09 +0000616 For a nonzero number, return the adjusted exponent of its operand as a
617 :class:`Decimal` instance. If the operand is a zero then
618 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
619 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
620 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000621
Benjamin Petersone41251e2008-04-25 01:59:09 +0000622 .. method:: logical_and(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000623
Benjamin Petersone41251e2008-04-25 01:59:09 +0000624 :meth:`logical_and` is a logical operation which takes two *logical
625 operands* (see :ref:`logical_operands_label`). The result is the
626 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000627
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000628 .. method:: logical_invert([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000629
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000630 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000631 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000632
Benjamin Petersone41251e2008-04-25 01:59:09 +0000633 .. method:: logical_or(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000634
Benjamin Petersone41251e2008-04-25 01:59:09 +0000635 :meth:`logical_or` is a logical operation which takes two *logical
636 operands* (see :ref:`logical_operands_label`). The result is the
637 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000638
Benjamin Petersone41251e2008-04-25 01:59:09 +0000639 .. method:: logical_xor(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000640
Benjamin Petersone41251e2008-04-25 01:59:09 +0000641 :meth:`logical_xor` is a logical operation which takes two *logical
642 operands* (see :ref:`logical_operands_label`). The result is the
643 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000644
Benjamin Petersone41251e2008-04-25 01:59:09 +0000645 .. method:: max(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000646
Benjamin Petersone41251e2008-04-25 01:59:09 +0000647 Like ``max(self, other)`` except that the context rounding rule is applied
648 before returning and that :const:`NaN` values are either signaled or
649 ignored (depending on the context and whether they are signaling or
650 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000651
Benjamin Petersone41251e2008-04-25 01:59:09 +0000652 .. method:: max_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000653
Georg Brandl502d9a52009-07-26 15:02:41 +0000654 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000655 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000656
Benjamin Petersone41251e2008-04-25 01:59:09 +0000657 .. method:: min(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000658
Benjamin Petersone41251e2008-04-25 01:59:09 +0000659 Like ``min(self, other)`` except that the context rounding rule is applied
660 before returning and that :const:`NaN` values are either signaled or
661 ignored (depending on the context and whether they are signaling or
662 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000663
Benjamin Petersone41251e2008-04-25 01:59:09 +0000664 .. method:: min_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000665
Georg Brandl502d9a52009-07-26 15:02:41 +0000666 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000667 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000668
Benjamin Petersone41251e2008-04-25 01:59:09 +0000669 .. method:: next_minus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000670
Benjamin Petersone41251e2008-04-25 01:59:09 +0000671 Return the largest number representable in the given context (or in the
672 current thread's context if no context is given) that is smaller than the
673 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000674
Benjamin Petersone41251e2008-04-25 01:59:09 +0000675 .. method:: next_plus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000676
Benjamin Petersone41251e2008-04-25 01:59:09 +0000677 Return the smallest number representable in the given context (or in the
678 current thread's context if no context is given) that is larger than the
679 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000680
Benjamin Petersone41251e2008-04-25 01:59:09 +0000681 .. method:: next_toward(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000682
Benjamin Petersone41251e2008-04-25 01:59:09 +0000683 If the two operands are unequal, return the number closest to the first
684 operand in the direction of the second operand. If both operands are
685 numerically equal, return a copy of the first operand with the sign set to
686 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000687
Benjamin Petersone41251e2008-04-25 01:59:09 +0000688 .. method:: normalize([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000689
Benjamin Petersone41251e2008-04-25 01:59:09 +0000690 Normalize the number by stripping the rightmost trailing zeros and
691 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700692 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000693 of an equivalence class. For example, ``Decimal('32.100')`` and
694 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
695 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000696
Benjamin Petersone41251e2008-04-25 01:59:09 +0000697 .. method:: number_class([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000698
Benjamin Petersone41251e2008-04-25 01:59:09 +0000699 Return a string describing the *class* of the operand. The returned value
700 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000701
Benjamin Petersone41251e2008-04-25 01:59:09 +0000702 * ``"-Infinity"``, indicating that the operand is negative infinity.
703 * ``"-Normal"``, indicating that the operand is a negative normal number.
704 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
705 * ``"-Zero"``, indicating that the operand is a negative zero.
706 * ``"+Zero"``, indicating that the operand is a positive zero.
707 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
708 * ``"+Normal"``, indicating that the operand is a positive normal number.
709 * ``"+Infinity"``, indicating that the operand is positive infinity.
710 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
711 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000712
Benjamin Petersone41251e2008-04-25 01:59:09 +0000713 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000714
Benjamin Petersone41251e2008-04-25 01:59:09 +0000715 Return a value equal to the first operand after rounding and having the
716 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000717
Benjamin Petersone41251e2008-04-25 01:59:09 +0000718 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
719 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000720
Benjamin Petersone41251e2008-04-25 01:59:09 +0000721 Unlike other operations, if the length of the coefficient after the
722 quantize operation would be greater than precision, then an
723 :const:`InvalidOperation` is signaled. This guarantees that, unless there
724 is an error condition, the quantized exponent is always equal to that of
725 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000726
Benjamin Petersone41251e2008-04-25 01:59:09 +0000727 Also unlike other operations, quantize never signals Underflow, even if
728 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000729
Benjamin Petersone41251e2008-04-25 01:59:09 +0000730 If the exponent of the second operand is larger than that of the first
731 then rounding may be necessary. In this case, the rounding mode is
732 determined by the ``rounding`` argument if given, else by the given
733 ``context`` argument; if neither argument is given the rounding mode of
734 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000735
Benjamin Petersone41251e2008-04-25 01:59:09 +0000736 If *watchexp* is set (default), then an error is returned whenever the
737 resulting exponent is greater than :attr:`Emax` or less than
738 :attr:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000739
Benjamin Petersone41251e2008-04-25 01:59:09 +0000740 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000741
Benjamin Petersone41251e2008-04-25 01:59:09 +0000742 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
743 class does all its arithmetic. Included for compatibility with the
744 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000745
Benjamin Petersone41251e2008-04-25 01:59:09 +0000746 .. method:: remainder_near(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000747
Benjamin Petersone41251e2008-04-25 01:59:09 +0000748 Compute the modulo as either a positive or negative value depending on
749 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
750 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000751
Benjamin Petersone41251e2008-04-25 01:59:09 +0000752 If both are equally close, the one chosen will have the same sign as
753 *self*.
Georg Brandl116aa622007-08-15 14:28:22 +0000754
Benjamin Petersone41251e2008-04-25 01:59:09 +0000755 .. method:: rotate(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000756
Benjamin Petersone41251e2008-04-25 01:59:09 +0000757 Return the result of rotating the digits of the first operand by an amount
758 specified by the second operand. The second operand must be an integer in
759 the range -precision through precision. The absolute value of the second
760 operand gives the number of places to rotate. If the second operand is
761 positive then rotation is to the left; otherwise rotation is to the right.
762 The coefficient of the first operand is padded on the left with zeros to
763 length precision if necessary. The sign and exponent of the first operand
764 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000765
Benjamin Petersone41251e2008-04-25 01:59:09 +0000766 .. method:: same_quantum(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000767
Benjamin Petersone41251e2008-04-25 01:59:09 +0000768 Test whether self and other have the same exponent or whether both are
769 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000770
Benjamin Petersone41251e2008-04-25 01:59:09 +0000771 .. method:: scaleb(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000772
Benjamin Petersone41251e2008-04-25 01:59:09 +0000773 Return the first operand with exponent adjusted by the second.
774 Equivalently, return the first operand multiplied by ``10**other``. The
775 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000776
Benjamin Petersone41251e2008-04-25 01:59:09 +0000777 .. method:: shift(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000778
Benjamin Petersone41251e2008-04-25 01:59:09 +0000779 Return the result of shifting the digits of the first operand by an amount
780 specified by the second operand. The second operand must be an integer in
781 the range -precision through precision. The absolute value of the second
782 operand gives the number of places to shift. If the second operand is
783 positive then the shift is to the left; otherwise the shift is to the
784 right. Digits shifted into the coefficient are zeros. The sign and
785 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000786
Benjamin Petersone41251e2008-04-25 01:59:09 +0000787 .. method:: sqrt([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000788
Benjamin Petersone41251e2008-04-25 01:59:09 +0000789 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000790
Georg Brandl116aa622007-08-15 14:28:22 +0000791
Benjamin Petersone41251e2008-04-25 01:59:09 +0000792 .. method:: to_eng_string([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000793
Benjamin Petersone41251e2008-04-25 01:59:09 +0000794 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000795
Benjamin Petersone41251e2008-04-25 01:59:09 +0000796 Engineering notation has an exponent which is a multiple of 3, so there
797 are up to 3 digits left of the decimal place. For example, converts
798 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000799
Benjamin Petersone41251e2008-04-25 01:59:09 +0000800 .. method:: to_integral([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000801
Benjamin Petersone41251e2008-04-25 01:59:09 +0000802 Identical to the :meth:`to_integral_value` method. The ``to_integral``
803 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000804
Benjamin Petersone41251e2008-04-25 01:59:09 +0000805 .. method:: to_integral_exact([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000806
Benjamin Petersone41251e2008-04-25 01:59:09 +0000807 Round to the nearest integer, signaling :const:`Inexact` or
808 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
809 determined by the ``rounding`` parameter if given, else by the given
810 ``context``. If neither parameter is given then the rounding mode of the
811 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000812
Benjamin Petersone41251e2008-04-25 01:59:09 +0000813 .. method:: to_integral_value([rounding[, context]])
Georg Brandl116aa622007-08-15 14:28:22 +0000814
Benjamin Petersone41251e2008-04-25 01:59:09 +0000815 Round to the nearest integer without signaling :const:`Inexact` or
816 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
817 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000818
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000819
820.. _logical_operands_label:
821
822Logical operands
823^^^^^^^^^^^^^^^^
824
825The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
826and :meth:`logical_xor` methods expect their arguments to be *logical
827operands*. A *logical operand* is a :class:`Decimal` instance whose
828exponent and sign are both zero, and whose digits are all either
829:const:`0` or :const:`1`.
830
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000831.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000832
833
834.. _decimal-context:
835
836Context objects
837---------------
838
839Contexts are environments for arithmetic operations. They govern precision, set
840rules for rounding, determine which signals are treated as exceptions, and limit
841the range for exponents.
842
843Each thread has its own current context which is accessed or changed using the
844:func:`getcontext` and :func:`setcontext` functions:
845
846
847.. function:: getcontext()
848
849 Return the current context for the active thread.
850
851
852.. function:: setcontext(c)
853
854 Set the current context for the active thread to *c*.
855
Georg Brandle6bcc912008-05-12 18:05:20 +0000856You can also use the :keyword:`with` statement and the :func:`localcontext`
857function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000858
859.. function:: localcontext([c])
860
861 Return a context manager that will set the current context for the active thread
862 to a copy of *c* on entry to the with-statement and restore the previous context
863 when exiting the with-statement. If no context is specified, a copy of the
864 current context is used.
865
Georg Brandl116aa622007-08-15 14:28:22 +0000866 For example, the following code sets the current decimal precision to 42 places,
867 performs a calculation, and then automatically restores the previous context::
868
Georg Brandl116aa622007-08-15 14:28:22 +0000869 from decimal import localcontext
870
871 with localcontext() as ctx:
872 ctx.prec = 42 # Perform a high precision calculation
873 s = calculate_something()
874 s = +s # Round the final result back to the default precision
875
876New contexts can also be created using the :class:`Context` constructor
877described below. In addition, the module provides three pre-made contexts:
878
879
880.. class:: BasicContext
881
882 This is a standard context defined by the General Decimal Arithmetic
883 Specification. Precision is set to nine. Rounding is set to
884 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
885 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
886 :const:`Subnormal`.
887
888 Because many of the traps are enabled, this context is useful for debugging.
889
890
891.. class:: ExtendedContext
892
893 This is a standard context defined by the General Decimal Arithmetic
894 Specification. Precision is set to nine. Rounding is set to
895 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
896 exceptions are not raised during computations).
897
Christian Heimes3feef612008-02-11 06:19:17 +0000898 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000899 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
900 raising exceptions. This allows an application to complete a run in the
901 presence of conditions that would otherwise halt the program.
902
903
904.. class:: DefaultContext
905
906 This context is used by the :class:`Context` constructor as a prototype for new
907 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000908 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000909
910 This context is most useful in multi-threaded environments. Changing one of the
911 fields before threads are started has the effect of setting system-wide
912 defaults. Changing the fields after threads have started is not recommended as
913 it would require thread synchronization to prevent race conditions.
914
915 In single threaded environments, it is preferable to not use this context at
916 all. Instead, simply create contexts explicitly as described below.
917
Stefan Krah1919b7e2012-03-21 18:25:23 +0100918 The default values are :attr:`prec`\ =\ :const:`28`,
919 :attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
920 and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
921 :class:`DivisionByZero`.
Georg Brandl116aa622007-08-15 14:28:22 +0000922
923In addition to the three supplied contexts, new contexts can be created with the
924:class:`Context` constructor.
925
926
Stefan Krah1919b7e2012-03-21 18:25:23 +0100927.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000928
929 Creates a new context. If a field is not specified or is :const:`None`, the
930 default values are copied from the :const:`DefaultContext`. If the *flags*
931 field is not specified or is :const:`None`, all flags are cleared.
932
Stefan Krah1919b7e2012-03-21 18:25:23 +0100933 *prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
934 the precision for arithmetic operations in the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000935
Stefan Krah1919b7e2012-03-21 18:25:23 +0100936 The *rounding* option is one of the constants listed in the section
937 `Rounding Modes`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000938
939 The *traps* and *flags* fields list any signals to be set. Generally, new
940 contexts should only set traps and leave the flags clear.
941
942 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
Stefan Krah1919b7e2012-03-21 18:25:23 +0100943 for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
944 *Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
Georg Brandl116aa622007-08-15 14:28:22 +0000945
946 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
947 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
948 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
949
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000950 The *clamp* field is either :const:`0` (the default) or :const:`1`.
951 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
952 instance representable in this context is strictly limited to the
953 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
954 :const:`0` then a weaker condition holds: the adjusted exponent of
955 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
956 :const:`1`, a large normal number will, where possible, have its
957 exponent reduced and a corresponding number of zeros added to its
958 coefficient, in order to fit the exponent constraints; this
959 preserves the value of the number but loses information about
960 significant trailing zeros. For example::
961
962 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
963 Decimal('1.23000E+999')
964
965 A *clamp* value of :const:`1` allows compatibility with the
966 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +0000967
Benjamin Petersone41251e2008-04-25 01:59:09 +0000968 The :class:`Context` class defines several general purpose methods as well as
969 a large number of methods for doing arithmetic directly in a given context.
970 In addition, for each of the :class:`Decimal` methods described above (with
971 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +0000972 a corresponding :class:`Context` method. For example, for a :class:`Context`
973 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
974 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000975 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +0000976 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +0000977
978
Benjamin Petersone41251e2008-04-25 01:59:09 +0000979 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +0000980
Benjamin Petersone41251e2008-04-25 01:59:09 +0000981 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000982
Stefan Krah1919b7e2012-03-21 18:25:23 +0100983 .. method:: clear_traps()
984
985 Resets all of the traps to :const:`0`.
986
987 .. versionadded:: 3.3
988
Benjamin Petersone41251e2008-04-25 01:59:09 +0000989 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000990
Benjamin Petersone41251e2008-04-25 01:59:09 +0000991 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000992
Benjamin Petersone41251e2008-04-25 01:59:09 +0000993 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +0000994
Benjamin Petersone41251e2008-04-25 01:59:09 +0000995 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +0000996
Benjamin Petersone41251e2008-04-25 01:59:09 +0000997 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000998
Benjamin Petersone41251e2008-04-25 01:59:09 +0000999 Creates a new Decimal instance from *num* but using *self* as
1000 context. Unlike the :class:`Decimal` constructor, the context precision,
1001 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +00001002
Benjamin Petersone41251e2008-04-25 01:59:09 +00001003 This is useful because constants are often given to a greater precision
1004 than is needed by the application. Another benefit is that rounding
1005 immediately eliminates unintended effects from digits beyond the current
1006 precision. In the following example, using unrounded inputs means that
1007 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +00001008
Benjamin Petersone41251e2008-04-25 01:59:09 +00001009 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001010
Benjamin Petersone41251e2008-04-25 01:59:09 +00001011 >>> getcontext().prec = 3
1012 >>> Decimal('3.4445') + Decimal('1.0023')
1013 Decimal('4.45')
1014 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1015 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +00001016
Benjamin Petersone41251e2008-04-25 01:59:09 +00001017 This method implements the to-number operation of the IBM specification.
1018 If the argument is a string, no leading or trailing whitespace is
1019 permitted.
1020
Georg Brandl45f53372009-01-03 21:15:20 +00001021 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +00001022
1023 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +00001024 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +00001025 the context precision, rounding method, flags, and traps are applied to
1026 the conversion.
1027
1028 .. doctest::
1029
Georg Brandl45f53372009-01-03 21:15:20 +00001030 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1031 >>> context.create_decimal_from_float(math.pi)
1032 Decimal('3.1415')
1033 >>> context = Context(prec=5, traps=[Inexact])
1034 >>> context.create_decimal_from_float(math.pi)
1035 Traceback (most recent call last):
1036 ...
1037 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001038
Georg Brandl45f53372009-01-03 21:15:20 +00001039 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001040
Benjamin Petersone41251e2008-04-25 01:59:09 +00001041 .. method:: Etiny()
1042
1043 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1044 value for subnormal results. When underflow occurs, the exponent is set
1045 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001046
Benjamin Petersone41251e2008-04-25 01:59:09 +00001047 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001048
Benjamin Petersone41251e2008-04-25 01:59:09 +00001049 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001050
Benjamin Petersone41251e2008-04-25 01:59:09 +00001051 The usual approach to working with decimals is to create :class:`Decimal`
1052 instances and then apply arithmetic operations which take place within the
1053 current context for the active thread. An alternative approach is to use
1054 context methods for calculating within a specific context. The methods are
1055 similar to those for the :class:`Decimal` class and are only briefly
1056 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001057
1058
Benjamin Petersone41251e2008-04-25 01:59:09 +00001059 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001060
Benjamin Petersone41251e2008-04-25 01:59:09 +00001061 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001062
1063
Benjamin Petersone41251e2008-04-25 01:59:09 +00001064 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001065
Benjamin Petersone41251e2008-04-25 01:59:09 +00001066 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001067
1068
Facundo Batista789bdf02008-06-21 17:29:41 +00001069 .. method:: canonical(x)
1070
1071 Returns the same Decimal object *x*.
1072
1073
1074 .. method:: compare(x, y)
1075
1076 Compares *x* and *y* numerically.
1077
1078
1079 .. method:: compare_signal(x, y)
1080
1081 Compares the values of the two operands numerically.
1082
1083
1084 .. method:: compare_total(x, y)
1085
1086 Compares two operands using their abstract representation.
1087
1088
1089 .. method:: compare_total_mag(x, y)
1090
1091 Compares two operands using their abstract representation, ignoring sign.
1092
1093
1094 .. method:: copy_abs(x)
1095
1096 Returns a copy of *x* with the sign set to 0.
1097
1098
1099 .. method:: copy_negate(x)
1100
1101 Returns a copy of *x* with the sign inverted.
1102
1103
1104 .. method:: copy_sign(x, y)
1105
1106 Copies the sign from *y* to *x*.
1107
1108
Benjamin Petersone41251e2008-04-25 01:59:09 +00001109 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001110
Benjamin Petersone41251e2008-04-25 01:59:09 +00001111 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001112
1113
Benjamin Petersone41251e2008-04-25 01:59:09 +00001114 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001115
Benjamin Petersone41251e2008-04-25 01:59:09 +00001116 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001117
1118
Benjamin Petersone41251e2008-04-25 01:59:09 +00001119 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001120
Benjamin Petersone41251e2008-04-25 01:59:09 +00001121 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001122
1123
Facundo Batista789bdf02008-06-21 17:29:41 +00001124 .. method:: exp(x)
1125
1126 Returns `e ** x`.
1127
1128
1129 .. method:: fma(x, y, z)
1130
1131 Returns *x* multiplied by *y*, plus *z*.
1132
1133
1134 .. method:: is_canonical(x)
1135
1136 Returns True if *x* is canonical; otherwise returns False.
1137
1138
1139 .. method:: is_finite(x)
1140
1141 Returns True if *x* is finite; otherwise returns False.
1142
1143
1144 .. method:: is_infinite(x)
1145
1146 Returns True if *x* is infinite; otherwise returns False.
1147
1148
1149 .. method:: is_nan(x)
1150
1151 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1152
1153
1154 .. method:: is_normal(x)
1155
1156 Returns True if *x* is a normal number; otherwise returns False.
1157
1158
1159 .. method:: is_qnan(x)
1160
1161 Returns True if *x* is a quiet NaN; otherwise returns False.
1162
1163
1164 .. method:: is_signed(x)
1165
1166 Returns True if *x* is negative; otherwise returns False.
1167
1168
1169 .. method:: is_snan(x)
1170
1171 Returns True if *x* is a signaling NaN; otherwise returns False.
1172
1173
1174 .. method:: is_subnormal(x)
1175
1176 Returns True if *x* is subnormal; otherwise returns False.
1177
1178
1179 .. method:: is_zero(x)
1180
1181 Returns True if *x* is a zero; otherwise returns False.
1182
1183
1184 .. method:: ln(x)
1185
1186 Returns the natural (base e) logarithm of *x*.
1187
1188
1189 .. method:: log10(x)
1190
1191 Returns the base 10 logarithm of *x*.
1192
1193
1194 .. method:: logb(x)
1195
1196 Returns the exponent of the magnitude of the operand's MSD.
1197
1198
1199 .. method:: logical_and(x, y)
1200
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001201 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001202
1203
1204 .. method:: logical_invert(x)
1205
1206 Invert all the digits in *x*.
1207
1208
1209 .. method:: logical_or(x, y)
1210
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001211 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001212
1213
1214 .. method:: logical_xor(x, y)
1215
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001216 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001217
1218
1219 .. method:: max(x, y)
1220
1221 Compares two values numerically and returns the maximum.
1222
1223
1224 .. method:: max_mag(x, y)
1225
1226 Compares the values numerically with their sign ignored.
1227
1228
1229 .. method:: min(x, y)
1230
1231 Compares two values numerically and returns the minimum.
1232
1233
1234 .. method:: min_mag(x, y)
1235
1236 Compares the values numerically with their sign ignored.
1237
1238
Benjamin Petersone41251e2008-04-25 01:59:09 +00001239 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001240
Benjamin Petersone41251e2008-04-25 01:59:09 +00001241 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001242
1243
Benjamin Petersone41251e2008-04-25 01:59:09 +00001244 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001245
Benjamin Petersone41251e2008-04-25 01:59:09 +00001246 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001247
1248
Facundo Batista789bdf02008-06-21 17:29:41 +00001249 .. method:: next_minus(x)
1250
1251 Returns the largest representable number smaller than *x*.
1252
1253
1254 .. method:: next_plus(x)
1255
1256 Returns the smallest representable number larger than *x*.
1257
1258
1259 .. method:: next_toward(x, y)
1260
1261 Returns the number closest to *x*, in direction towards *y*.
1262
1263
1264 .. method:: normalize(x)
1265
1266 Reduces *x* to its simplest form.
1267
1268
1269 .. method:: number_class(x)
1270
1271 Returns an indication of the class of *x*.
1272
1273
Benjamin Petersone41251e2008-04-25 01:59:09 +00001274 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001275
Benjamin Petersone41251e2008-04-25 01:59:09 +00001276 Plus corresponds to the unary prefix plus operator in Python. This
1277 operation applies the context precision and rounding, so it is *not* an
1278 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001279
1280
Benjamin Petersone41251e2008-04-25 01:59:09 +00001281 .. method:: power(x, y[, modulo])
Georg Brandl116aa622007-08-15 14:28:22 +00001282
Benjamin Petersone41251e2008-04-25 01:59:09 +00001283 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001284
Benjamin Petersone41251e2008-04-25 01:59:09 +00001285 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1286 must be integral. The result will be inexact unless ``y`` is integral and
1287 the result is finite and can be expressed exactly in 'precision' digits.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001288 The rounding mode of the context is used. Results are always correctly-rounded
1289 in the Python version.
1290
1291 .. versionchanged:: 3.3
1292 The C module computes :meth:`power` in terms of the correctly-rounded
1293 :meth:`exp` and :meth:`ln` functions. The result is well-defined but
1294 only "almost always correctly-rounded".
Georg Brandl116aa622007-08-15 14:28:22 +00001295
Benjamin Petersone41251e2008-04-25 01:59:09 +00001296 With three arguments, compute ``(x**y) % modulo``. For the three argument
1297 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001298
Benjamin Petersone41251e2008-04-25 01:59:09 +00001299 - all three arguments must be integral
1300 - ``y`` must be nonnegative
1301 - at least one of ``x`` or ``y`` must be nonzero
1302 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001303
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001304 The value resulting from ``Context.power(x, y, modulo)`` is
1305 equal to the value that would be obtained by computing ``(x**y)
1306 % modulo`` with unbounded precision, but is computed more
1307 efficiently. The exponent of the result is zero, regardless of
1308 the exponents of ``x``, ``y`` and ``modulo``. The result is
1309 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001310
Facundo Batista789bdf02008-06-21 17:29:41 +00001311
1312 .. method:: quantize(x, y)
1313
1314 Returns a value equal to *x* (rounded), having the exponent of *y*.
1315
1316
1317 .. method:: radix()
1318
1319 Just returns 10, as this is Decimal, :)
1320
1321
Benjamin Petersone41251e2008-04-25 01:59:09 +00001322 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001323
Benjamin Petersone41251e2008-04-25 01:59:09 +00001324 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001325
Benjamin Petersone41251e2008-04-25 01:59:09 +00001326 The sign of the result, if non-zero, is the same as that of the original
1327 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001328
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001329
Facundo Batista789bdf02008-06-21 17:29:41 +00001330 .. method:: remainder_near(x, y)
1331
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001332 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1333 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001334
1335
1336 .. method:: rotate(x, y)
1337
1338 Returns a rotated copy of *x*, *y* times.
1339
1340
1341 .. method:: same_quantum(x, y)
1342
1343 Returns True if the two operands have the same exponent.
1344
1345
1346 .. method:: scaleb (x, y)
1347
1348 Returns the first operand after adding the second value its exp.
1349
1350
1351 .. method:: shift(x, y)
1352
1353 Returns a shifted copy of *x*, *y* times.
1354
1355
1356 .. method:: sqrt(x)
1357
1358 Square root of a non-negative number to context precision.
1359
1360
Benjamin Petersone41251e2008-04-25 01:59:09 +00001361 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001362
Benjamin Petersone41251e2008-04-25 01:59:09 +00001363 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001364
Facundo Batista789bdf02008-06-21 17:29:41 +00001365
1366 .. method:: to_eng_string(x)
1367
1368 Converts a number to a string, using scientific notation.
1369
1370
1371 .. method:: to_integral_exact(x)
1372
1373 Rounds to an integer.
1374
1375
Benjamin Petersone41251e2008-04-25 01:59:09 +00001376 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001377
Benjamin Petersone41251e2008-04-25 01:59:09 +00001378 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001379
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001380.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001381
Stefan Krah1919b7e2012-03-21 18:25:23 +01001382.. _decimal-rounding-modes:
1383
1384Constants
1385---------
1386
1387The constants in this section are only relevant for the C module. They
1388are also included in the pure Python version for compatibility.
1389
Stefan Krah851a07e2012-03-21 18:47:20 +01001390+---------------------+---------------------+-------------------------------+
1391| | 32-bit | 64-bit |
1392+=====================+=====================+===============================+
1393| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
1394+---------------------+---------------------+-------------------------------+
1395| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
1396+---------------------+---------------------+-------------------------------+
1397| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
1398+---------------------+---------------------+-------------------------------+
1399| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
1400+---------------------+---------------------+-------------------------------+
1401
Stefan Krah1919b7e2012-03-21 18:25:23 +01001402
1403.. data:: HAVE_THREADS
1404
1405 The default value is True. If Python is compiled without threads, the
1406 C version automatically disables the expensive thread local context
1407 machinery. In this case, the value is False.
1408
1409Rounding modes
1410--------------
1411
1412.. data:: ROUND_CEILING
1413
1414 Round towards :const:`Infinity`.
1415
1416.. data:: ROUND_DOWN
1417
1418 Round towards zero.
1419
1420.. data:: ROUND_FLOOR
1421
1422 Round towards :const:`-Infinity`.
1423
1424.. data:: ROUND_HALF_DOWN
1425
1426 Round to nearest with ties going towards zero.
1427
1428.. data:: ROUND_HALF_EVEN
1429
1430 Round to nearest with ties going to nearest even integer.
1431
1432.. data:: ROUND_HALF_UP
1433
1434 Round to nearest with ties going away from zero.
1435
1436.. data:: ROUND_UP
1437
1438 Round away from zero.
1439
1440.. data:: ROUND_05UP
1441
1442 Round away from zero if last digit after rounding towards zero would have
1443 been 0 or 5; otherwise round towards zero.
1444
Georg Brandl116aa622007-08-15 14:28:22 +00001445
1446.. _decimal-signals:
1447
1448Signals
1449-------
1450
1451Signals represent conditions that arise during computation. Each corresponds to
1452one context flag and one context trap enabler.
1453
Raymond Hettinger86173da2008-02-01 20:38:12 +00001454The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001455computation, flags may be checked for informational purposes (for instance, to
1456determine whether a computation was exact). After checking the flags, be sure to
1457clear all flags before starting the next computation.
1458
1459If the context's trap enabler is set for the signal, then the condition causes a
1460Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1461is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1462condition.
1463
1464
1465.. class:: Clamped
1466
1467 Altered an exponent to fit representation constraints.
1468
1469 Typically, clamping occurs when an exponent falls outside the context's
1470 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001471 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001472
1473
1474.. class:: DecimalException
1475
1476 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1477
1478
1479.. class:: DivisionByZero
1480
1481 Signals the division of a non-infinite number by zero.
1482
1483 Can occur with division, modulo division, or when raising a number to a negative
1484 power. If this signal is not trapped, returns :const:`Infinity` or
1485 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1486
1487
1488.. class:: Inexact
1489
1490 Indicates that rounding occurred and the result is not exact.
1491
1492 Signals when non-zero digits were discarded during rounding. The rounded result
1493 is returned. The signal flag or trap is used to detect when results are
1494 inexact.
1495
1496
1497.. class:: InvalidOperation
1498
1499 An invalid operation was performed.
1500
1501 Indicates that an operation was requested that does not make sense. If not
1502 trapped, returns :const:`NaN`. Possible causes include::
1503
1504 Infinity - Infinity
1505 0 * Infinity
1506 Infinity / Infinity
1507 x % 0
1508 Infinity % x
Georg Brandl116aa622007-08-15 14:28:22 +00001509 sqrt(-x) and x > 0
1510 0 ** 0
1511 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001512 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001513
1514
1515.. class:: Overflow
1516
1517 Numerical overflow.
1518
Benjamin Petersone41251e2008-04-25 01:59:09 +00001519 Indicates the exponent is larger than :attr:`Emax` after rounding has
1520 occurred. If not trapped, the result depends on the rounding mode, either
1521 pulling inward to the largest representable finite number or rounding outward
1522 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1523 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001524
1525
1526.. class:: Rounded
1527
1528 Rounding occurred though possibly no information was lost.
1529
Benjamin Petersone41251e2008-04-25 01:59:09 +00001530 Signaled whenever rounding discards digits; even if those digits are zero
1531 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1532 the result unchanged. This signal is used to detect loss of significant
1533 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001534
1535
1536.. class:: Subnormal
1537
1538 Exponent was lower than :attr:`Emin` prior to rounding.
1539
Benjamin Petersone41251e2008-04-25 01:59:09 +00001540 Occurs when an operation result is subnormal (the exponent is too small). If
1541 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001542
1543
1544.. class:: Underflow
1545
1546 Numerical underflow with result rounded to zero.
1547
1548 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1549 and :class:`Subnormal` are also signaled.
1550
Stefan Krah1919b7e2012-03-21 18:25:23 +01001551
1552.. class:: FloatOperation
1553
1554 Enable stricter semantics for mixing floats and Decimals.
1555
1556 If the signal is not trapped (default), mixing floats and Decimals is
1557 permitted in the :class:`~decimal.Decimal` constructor,
1558 :meth:`~decimal.Context.create_decimal` and all comparison operators.
1559 Both conversion and comparisons are exact. Any occurrence of a mixed
1560 operation is silently recorded by setting :exc:`FloatOperation` in the
1561 context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
1562 or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
1563
1564 Otherwise (the signal is trapped), only equality comparisons and explicit
1565 conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
1566
1567
Georg Brandl116aa622007-08-15 14:28:22 +00001568The following table summarizes the hierarchy of signals::
1569
1570 exceptions.ArithmeticError(exceptions.Exception)
1571 DecimalException
1572 Clamped
1573 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1574 Inexact
1575 Overflow(Inexact, Rounded)
1576 Underflow(Inexact, Rounded, Subnormal)
1577 InvalidOperation
1578 Rounded
1579 Subnormal
Stefan Krahb6405ef2012-03-23 14:46:48 +01001580 FloatOperation(DecimalException, exceptions.TypeError)
Georg Brandl116aa622007-08-15 14:28:22 +00001581
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001582.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001583
1584
Stefan Krah1919b7e2012-03-21 18:25:23 +01001585
Georg Brandl116aa622007-08-15 14:28:22 +00001586.. _decimal-notes:
1587
1588Floating Point Notes
1589--------------------
1590
1591
1592Mitigating round-off error with increased precision
1593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1594
1595The use of decimal floating point eliminates decimal representation error
1596(making it possible to represent :const:`0.1` exactly); however, some operations
1597can still incur round-off error when non-zero digits exceed the fixed precision.
1598
1599The effects of round-off error can be amplified by the addition or subtraction
1600of nearly offsetting quantities resulting in loss of significance. Knuth
1601provides two instructive examples where rounded floating point arithmetic with
1602insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001603properties of addition:
1604
1605.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001606
1607 # Examples from Seminumerical Algorithms, Section 4.2.2.
1608 >>> from decimal import Decimal, getcontext
1609 >>> getcontext().prec = 8
1610
1611 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1612 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001613 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001614 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001615 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001616
1617 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1618 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001619 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001620 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001621 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001622
1623The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001624expanding the precision sufficiently to avoid loss of significance:
1625
1626.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001627
1628 >>> getcontext().prec = 20
1629 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1630 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001631 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001632 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001633 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001634 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001635 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1636 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001637 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001638 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001639 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001640
1641
1642Special values
1643^^^^^^^^^^^^^^
1644
1645The number system for the :mod:`decimal` module provides special values
1646including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001647and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001648
1649Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1650they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1651not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1652can result from rounding beyond the limits of the largest representable number.
1653
1654The infinities are signed (affine) and can be used in arithmetic operations
1655where they get treated as very large, indeterminate numbers. For instance,
1656adding a constant to infinity gives another infinite result.
1657
1658Some operations are indeterminate and return :const:`NaN`, or if the
1659:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1660``0/0`` returns :const:`NaN` which means "not a number". This variety of
1661:const:`NaN` is quiet and, once created, will flow through other computations
1662always resulting in another :const:`NaN`. This behavior can be useful for a
1663series of computations that occasionally have missing inputs --- it allows the
1664calculation to proceed while flagging specific results as invalid.
1665
1666A variant is :const:`sNaN` which signals rather than remaining quiet after every
1667operation. This is a useful return value when an invalid result needs to
1668interrupt a calculation for special handling.
1669
Christian Heimes77c02eb2008-02-09 02:18:51 +00001670The behavior of Python's comparison operators can be a little surprising where a
1671:const:`NaN` is involved. A test for equality where one of the operands is a
1672quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1673``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1674:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1675``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1676if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001677not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001678specify the behavior of direct comparisons; these rules for comparisons
1679involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1680section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1681and :meth:`compare-signal` methods instead.
1682
Georg Brandl116aa622007-08-15 14:28:22 +00001683The signed zeros can result from calculations that underflow. They keep the sign
1684that would have resulted if the calculation had been carried out to greater
1685precision. Since their magnitude is zero, both positive and negative zeros are
1686treated as equal and their sign is informational.
1687
1688In addition to the two signed zeros which are distinct yet equal, there are
1689various representations of zero with differing precisions yet equivalent in
1690value. This takes a bit of getting used to. For an eye accustomed to
1691normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001692the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001693
1694 >>> 1 / Decimal('Infinity')
Stefan Krah1919b7e2012-03-21 18:25:23 +01001695 Decimal('0E-1000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001696
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001697.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001698
1699
1700.. _decimal-threads:
1701
1702Working with threads
1703--------------------
1704
1705The :func:`getcontext` function accesses a different :class:`Context` object for
1706each thread. Having separate thread contexts means that threads may make
Stefan Krah1919b7e2012-03-21 18:25:23 +01001707changes (such as ``getcontext().prec=10``) without interfering with other threads.
Georg Brandl116aa622007-08-15 14:28:22 +00001708
1709Likewise, the :func:`setcontext` function automatically assigns its target to
1710the current thread.
1711
1712If :func:`setcontext` has not been called before :func:`getcontext`, then
1713:func:`getcontext` will automatically create a new context for use in the
1714current thread.
1715
1716The new context is copied from a prototype context called *DefaultContext*. To
1717control the defaults so that each thread will use the same values throughout the
1718application, directly modify the *DefaultContext* object. This should be done
1719*before* any threads are started so that there won't be a race condition between
1720threads calling :func:`getcontext`. For example::
1721
1722 # Set applicationwide defaults for all threads about to be launched
1723 DefaultContext.prec = 12
1724 DefaultContext.rounding = ROUND_DOWN
1725 DefaultContext.traps = ExtendedContext.traps.copy()
1726 DefaultContext.traps[InvalidOperation] = 1
1727 setcontext(DefaultContext)
1728
1729 # Afterwards, the threads can be started
1730 t1.start()
1731 t2.start()
1732 t3.start()
1733 . . .
1734
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001735.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001736
1737
1738.. _decimal-recipes:
1739
1740Recipes
1741-------
1742
1743Here are a few recipes that serve as utility functions and that demonstrate ways
1744to work with the :class:`Decimal` class::
1745
1746 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1747 pos='', neg='-', trailneg=''):
1748 """Convert Decimal to a money formatted string.
1749
1750 places: required number of places after the decimal point
1751 curr: optional currency symbol before the sign (may be blank)
1752 sep: optional grouping separator (comma, period, space, or blank)
1753 dp: decimal point indicator (comma or period)
1754 only specify as blank when places is zero
1755 pos: optional sign for positive numbers: '+', space or blank
1756 neg: optional sign for negative numbers: '-', '(', space or blank
1757 trailneg:optional trailing minus indicator: '-', ')', space or blank
1758
1759 >>> d = Decimal('-1234567.8901')
1760 >>> moneyfmt(d, curr='$')
1761 '-$1,234,567.89'
1762 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1763 '1.234.568-'
1764 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1765 '($1,234,567.89)'
1766 >>> moneyfmt(Decimal(123456789), sep=' ')
1767 '123 456 789.00'
1768 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001769 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001770
1771 """
Christian Heimesa156e092008-02-16 07:38:31 +00001772 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001773 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001774 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001775 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001776 build, next = result.append, digits.pop
1777 if sign:
1778 build(trailneg)
1779 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001780 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001781 if places:
1782 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001783 if not digits:
1784 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001785 i = 0
1786 while digits:
1787 build(next())
1788 i += 1
1789 if i == 3 and digits:
1790 i = 0
1791 build(sep)
1792 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001793 build(neg if sign else pos)
1794 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001795
1796 def pi():
1797 """Compute Pi to the current precision.
1798
Georg Brandl6911e3c2007-09-04 07:15:32 +00001799 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001800 3.141592653589793238462643383
1801
1802 """
1803 getcontext().prec += 2 # extra digits for intermediate steps
1804 three = Decimal(3) # substitute "three=3.0" for regular floats
1805 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1806 while s != lasts:
1807 lasts = s
1808 n, na = n+na, na+8
1809 d, da = d+da, da+32
1810 t = (t * n) / d
1811 s += t
1812 getcontext().prec -= 2
1813 return +s # unary plus applies the new precision
1814
1815 def exp(x):
1816 """Return e raised to the power of x. Result type matches input type.
1817
Georg Brandl6911e3c2007-09-04 07:15:32 +00001818 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001819 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001820 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001821 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001822 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001823 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001824 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001825 (7.38905609893+0j)
1826
1827 """
1828 getcontext().prec += 2
1829 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1830 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001831 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001832 i += 1
1833 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001834 num *= x
1835 s += num / fact
1836 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001837 return +s
1838
1839 def cos(x):
1840 """Return the cosine of x as measured in radians.
1841
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001842 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001843 For larger values, first compute x = x % (2 * pi).
1844
Georg Brandl6911e3c2007-09-04 07:15:32 +00001845 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001846 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001847 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001848 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001849 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001850 (0.87758256189+0j)
1851
1852 """
1853 getcontext().prec += 2
1854 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1855 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001856 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001857 i += 2
1858 fact *= i * (i-1)
1859 num *= x * x
1860 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001861 s += num / fact * sign
1862 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001863 return +s
1864
1865 def sin(x):
1866 """Return the sine of x as measured in radians.
1867
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001868 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001869 For larger values, first compute x = x % (2 * pi).
1870
Georg Brandl6911e3c2007-09-04 07:15:32 +00001871 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001872 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001873 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001874 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001875 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001876 (0.479425538604+0j)
1877
1878 """
1879 getcontext().prec += 2
1880 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1881 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001882 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001883 i += 2
1884 fact *= i * (i-1)
1885 num *= x * x
1886 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001887 s += num / fact * sign
1888 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001889 return +s
1890
1891
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001892.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001893
1894
1895.. _decimal-faq:
1896
1897Decimal FAQ
1898-----------
1899
1900Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1901minimize typing when using the interactive interpreter?
1902
Christian Heimesfe337bf2008-03-23 21:54:12 +00001903A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001904
1905 >>> D = decimal.Decimal
1906 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001907 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001908
1909Q. In a fixed-point application with two decimal places, some inputs have many
1910places and need to be rounded. Others are not supposed to have excess digits
1911and need to be validated. What methods should be used?
1912
1913A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001914the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001915
1916 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1917
1918 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001919 >>> Decimal('3.214').quantize(TWOPLACES)
1920 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001921
Georg Brandl48310cd2009-01-03 21:18:54 +00001922 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001923 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1924 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001925
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001926 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001927 Traceback (most recent call last):
1928 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001929 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001930
1931Q. Once I have valid two place inputs, how do I maintain that invariant
1932throughout an application?
1933
Christian Heimesa156e092008-02-16 07:38:31 +00001934A. Some operations like addition, subtraction, and multiplication by an integer
1935will automatically preserve fixed point. Others operations, like division and
1936non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001937be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001938
1939 >>> a = Decimal('102.72') # Initial fixed-point values
1940 >>> b = Decimal('3.17')
1941 >>> a + b # Addition preserves fixed-point
1942 Decimal('105.89')
1943 >>> a - b
1944 Decimal('99.55')
1945 >>> a * 42 # So does integer multiplication
1946 Decimal('4314.24')
1947 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1948 Decimal('325.62')
1949 >>> (b / a).quantize(TWOPLACES) # And quantize division
1950 Decimal('0.03')
1951
1952In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001953to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001954
1955 >>> def mul(x, y, fp=TWOPLACES):
1956 ... return (x * y).quantize(fp)
1957 >>> def div(x, y, fp=TWOPLACES):
1958 ... return (x / y).quantize(fp)
1959
1960 >>> mul(a, b) # Automatically preserve fixed-point
1961 Decimal('325.62')
1962 >>> div(b, a)
1963 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00001964
1965Q. There are many ways to express the same value. The numbers :const:`200`,
1966:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1967various precisions. Is there a way to transform them to a single recognizable
1968canonical value?
1969
1970A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00001971representative:
Georg Brandl116aa622007-08-15 14:28:22 +00001972
1973 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1974 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001975 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00001976
1977Q. Some decimal values always print with exponential notation. Is there a way
1978to get a non-exponential representation?
1979
1980A. For some values, exponential notation is the only way to express the number
1981of significant places in the coefficient. For example, expressing
1982:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1983original's two-place significance.
1984
Christian Heimesa156e092008-02-16 07:38:31 +00001985If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00001986remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001987value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00001988
1989 >>> def remove_exponent(d):
1990 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1991
1992 >>> remove_exponent(Decimal('5E+3'))
1993 Decimal('5000')
1994
Georg Brandl116aa622007-08-15 14:28:22 +00001995Q. Is there a way to convert a regular float to a :class:`Decimal`?
1996
Mark Dickinsone534a072010-04-04 22:13:14 +00001997A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00001998Decimal though an exact conversion may take more precision than intuition would
1999suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00002000
Christian Heimesfe337bf2008-03-23 21:54:12 +00002001.. doctest::
2002
Raymond Hettinger96798592010-04-02 16:58:27 +00002003 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002004 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00002005
Georg Brandl116aa622007-08-15 14:28:22 +00002006Q. Within a complex calculation, how can I make sure that I haven't gotten a
2007spurious result because of insufficient precision or rounding anomalies.
2008
2009A. The decimal module makes it easy to test results. A best practice is to
2010re-run calculations using greater precision and with various rounding modes.
2011Widely differing results indicate insufficient precision, rounding mode issues,
2012ill-conditioned inputs, or a numerically unstable algorithm.
2013
2014Q. I noticed that context precision is applied to the results of operations but
2015not to the inputs. Is there anything to watch out for when mixing values of
2016different precisions?
2017
2018A. Yes. The principle is that all values are considered to be exact and so is
2019the arithmetic on those values. Only the results are rounded. The advantage
2020for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002021results can look odd if you forget that the inputs haven't been rounded:
2022
2023.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002024
2025 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00002026 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002027 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00002028 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002029 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00002030
2031The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00002032using the unary plus operation:
2033
2034.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002035
2036 >>> getcontext().prec = 3
2037 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002038 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00002039
2040Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002041:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00002042
2043 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002044 Decimal('1.2345')
Georg Brandl116aa622007-08-15 14:28:22 +00002045