blob: 39aea2903ec3d1a726d67ad399e74ae64efc3e4f [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Christian Heimes072c0f12008-01-03 23:01:04 +0000100.. function:: isinf(x)
101
102 Checks if the float *x* is positive or negative infinite.
103
Christian Heimes072c0f12008-01-03 23:01:04 +0000104
105.. function:: isnan(x)
106
107 Checks if the float *x* is a NaN (not a number). NaNs are part of the
Georg Brandl48310cd2009-01-03 21:18:54 +0000108 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
Christian Heimes072c0f12008-01-03 23:01:04 +0000109 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
110 a NaN.
111
Christian Heimes072c0f12008-01-03 23:01:04 +0000112
Georg Brandl116aa622007-08-15 14:28:22 +0000113.. function:: ldexp(x, i)
114
115 Return ``x * (2**i)``. This is essentially the inverse of function
116 :func:`frexp`.
117
118
119.. function:: modf(x)
120
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000121 Return the fractional and integer parts of *x*. Both results carry the sign
122 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000123
Christian Heimes400adb02008-02-01 08:12:03 +0000124
125.. function:: trunc(x)
126
127 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000128 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000129
Christian Heimes400adb02008-02-01 08:12:03 +0000130
Georg Brandl116aa622007-08-15 14:28:22 +0000131Note that :func:`frexp` and :func:`modf` have a different call/return pattern
132than their C equivalents: they take a single argument and return a pair of
133values, rather than returning their second return value through an 'output
134parameter' (there is no such thing in Python).
135
136For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
137floating-point numbers of sufficiently large magnitude are exact integers.
138Python floats typically carry no more than 53 bits of precision (the same as the
139platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
140necessarily has no fractional bits.
141
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000142
143Power and logarithmic functions
144-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000145
Georg Brandl116aa622007-08-15 14:28:22 +0000146.. function:: exp(x)
147
148 Return ``e**x``.
149
150
Mark Dickinson664b5112009-12-16 20:23:42 +0000151.. function:: expm1(x)
152
153 Return ``e**x - 1``. For small floats *x*, the subtraction in
154 ``exp(x) - 1`` can result in a significant loss of precision; the
155 :func:`expm1` function provides a way to compute this quantity to
156 full precision::
157
158 >>> from math import exp, expm1
159 >>> exp(1e-5) - 1 # gives result accurate to 11 places
160 1.0000050000069649e-05
161 >>> expm1(1e-5) # result accurate to full precision
162 1.0000050000166668e-05
163
164
Georg Brandl116aa622007-08-15 14:28:22 +0000165.. function:: log(x[, base])
166
Georg Brandla6053b42009-09-01 08:11:14 +0000167 With one argument, return the natural logarithm of *x* (to base *e*).
168
169 With two arguments, return the logarithm of *x* to the given *base*,
170 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000171
Georg Brandl116aa622007-08-15 14:28:22 +0000172
Christian Heimes53876d92008-04-19 00:31:39 +0000173.. function:: log1p(x)
174
175 Return the natural logarithm of *1+x* (base *e*). The
176 result is calculated in a way which is accurate for *x* near zero.
177
Christian Heimes53876d92008-04-19 00:31:39 +0000178
Georg Brandl116aa622007-08-15 14:28:22 +0000179.. function:: log10(x)
180
Georg Brandla6053b42009-09-01 08:11:14 +0000181 Return the base-10 logarithm of *x*. This is usually more accurate
182 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000183
184
185.. function:: pow(x, y)
186
Christian Heimesa342c012008-04-20 21:01:16 +0000187 Return ``x`` raised to the power ``y``. Exceptional cases follow
188 Annex 'F' of the C99 standard as far as possible. In particular,
189 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
190 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
191 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
192 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000193
Georg Brandl116aa622007-08-15 14:28:22 +0000194
195.. function:: sqrt(x)
196
197 Return the square root of *x*.
198
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000199Trigonometric functions
200-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000201
202
203.. function:: acos(x)
204
205 Return the arc cosine of *x*, in radians.
206
207
208.. function:: asin(x)
209
210 Return the arc sine of *x*, in radians.
211
212
213.. function:: atan(x)
214
215 Return the arc tangent of *x*, in radians.
216
217
218.. function:: atan2(y, x)
219
220 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
221 The vector in the plane from the origin to point ``(x, y)`` makes this angle
222 with the positive X axis. The point of :func:`atan2` is that the signs of both
223 inputs are known to it, so it can compute the correct quadrant for the angle.
224 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
225 -1)`` is ``-3*pi/4``.
226
227
228.. function:: cos(x)
229
230 Return the cosine of *x* radians.
231
232
233.. function:: hypot(x, y)
234
235 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
236 from the origin to point ``(x, y)``.
237
238
239.. function:: sin(x)
240
241 Return the sine of *x* radians.
242
243
244.. function:: tan(x)
245
246 Return the tangent of *x* radians.
247
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000248Angular conversion
249------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000250
251
252.. function:: degrees(x)
253
254 Converts angle *x* from radians to degrees.
255
256
257.. function:: radians(x)
258
259 Converts angle *x* from degrees to radians.
260
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000261Hyperbolic functions
262--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000263
264
Christian Heimesa342c012008-04-20 21:01:16 +0000265.. function:: acosh(x)
266
267 Return the inverse hyperbolic cosine of *x*.
268
Christian Heimesa342c012008-04-20 21:01:16 +0000269
270.. function:: asinh(x)
271
272 Return the inverse hyperbolic sine of *x*.
273
Christian Heimesa342c012008-04-20 21:01:16 +0000274
275.. function:: atanh(x)
276
277 Return the inverse hyperbolic tangent of *x*.
278
Christian Heimesa342c012008-04-20 21:01:16 +0000279
Georg Brandl116aa622007-08-15 14:28:22 +0000280.. function:: cosh(x)
281
282 Return the hyperbolic cosine of *x*.
283
284
285.. function:: sinh(x)
286
287 Return the hyperbolic sine of *x*.
288
289
290.. function:: tanh(x)
291
292 Return the hyperbolic tangent of *x*.
293
Christian Heimes53876d92008-04-19 00:31:39 +0000294
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000295Special functions
296-----------------
297
298.. function:: gamma(x)
299
300 Return the Gamma function at *x*.
301
Mark Dickinson56e09662009-10-01 16:13:29 +0000302 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000303
304
Mark Dickinson05d2e082009-12-11 20:17:17 +0000305.. function:: lgamma(x)
306
307 Return the natural logarithm of the absolute value of the Gamma
308 function at *x*.
309
310 .. versionadded:: 2.7
311
312
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000313Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000314---------
Georg Brandl116aa622007-08-15 14:28:22 +0000315
316.. data:: pi
317
318 The mathematical constant *pi*.
319
320
321.. data:: e
322
323 The mathematical constant *e*.
324
Christian Heimes53876d92008-04-19 00:31:39 +0000325
Georg Brandl495f7b52009-10-27 15:28:25 +0000326.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000327
328 The :mod:`math` module consists mostly of thin wrappers around the platform C
329 math library functions. Behavior in exceptional cases is loosely specified
330 by the C standards, and Python inherits much of its math-function
331 error-reporting behavior from the platform C implementation. As a result,
332 the specific exceptions raised in error cases (and even whether some
333 arguments are considered to be exceptional at all) are not defined in any
334 useful cross-platform or cross-release way. For example, whether
335 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
336 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
337 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
338
Christian Heimesa342c012008-04-20 21:01:16 +0000339 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Benjamin Peterson3e4f0552008-09-02 00:31:15 +0000340 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes53876d92008-04-19 00:31:39 +0000341 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
342 and :exc:`OverflowError` for errno *ERANGE*.
343
Georg Brandl116aa622007-08-15 14:28:22 +0000344
345.. seealso::
346
347 Module :mod:`cmath`
348 Complex number versions of many of these functions.