blob: 55e03bfa5574089cade2b994808e2d6155811660 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
Georg Brandl116aa622007-08-15 14:28:22 +000024
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000025Number-theoretic and representation functions
26---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000027
28.. function:: ceil(x)
29
Georg Brandl2a033732008-04-05 17:37:09 +000030 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
31 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
32 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000033
34
35.. function:: copysign(x, y)
36
37 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
38 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
39
Georg Brandl116aa622007-08-15 14:28:22 +000040
41.. function:: fabs(x)
42
43 Return the absolute value of *x*.
44
Georg Brandlc28e1fa2008-06-10 19:20:26 +000045.. function:: factorial(x)
46
Benjamin Petersonfea6a942008-07-02 16:11:42 +000047 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000048 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000049
50.. function:: floor(x)
51
Georg Brandl2a033732008-04-05 17:37:09 +000052 Return the floor of *x*, the largest integer less than or equal to *x*.
53 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
54 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000055
56
57.. function:: fmod(x, y)
58
59 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
60 Python expression ``x % y`` may not return the same result. The intent of the C
61 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
62 precision) equal to ``x - n*y`` for some integer *n* such that the result has
63 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
64 returns a result with the sign of *y* instead, and may not be exactly computable
65 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
66 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
67 represented exactly as a float, and rounds to the surprising ``1e100``. For
68 this reason, function :func:`fmod` is generally preferred when working with
69 floats, while Python's ``x % y`` is preferred when working with integers.
70
71
72.. function:: frexp(x)
73
74 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
75 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
76 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
77 apart" the internal representation of a float in a portable way.
78
79
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000080.. function:: fsum(iterable)
81
82 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000083 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000084
Raymond Hettingerf3936f82009-02-19 05:48:05 +000085 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
86 0.99999999999999989
87 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
88 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000089
Raymond Hettingerf3936f82009-02-19 05:48:05 +000090 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
91 typical case where the rounding mode is half-even. On some non-Windows
92 builds, the underlying C library uses extended precision addition and may
93 occasionally double-round an intermediate sum causing it to be off in its
94 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000095
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000096
Christian Heimes072c0f12008-01-03 23:01:04 +000097.. function:: isinf(x)
98
99 Checks if the float *x* is positive or negative infinite.
100
Christian Heimes072c0f12008-01-03 23:01:04 +0000101
102.. function:: isnan(x)
103
104 Checks if the float *x* is a NaN (not a number). NaNs are part of the
Georg Brandl48310cd2009-01-03 21:18:54 +0000105 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
Christian Heimes072c0f12008-01-03 23:01:04 +0000106 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
107 a NaN.
108
Christian Heimes072c0f12008-01-03 23:01:04 +0000109
Georg Brandl116aa622007-08-15 14:28:22 +0000110.. function:: ldexp(x, i)
111
112 Return ``x * (2**i)``. This is essentially the inverse of function
113 :func:`frexp`.
114
115
116.. function:: modf(x)
117
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000118 Return the fractional and integer parts of *x*. Both results carry the sign
119 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000120
Christian Heimes400adb02008-02-01 08:12:03 +0000121
122.. function:: trunc(x)
123
124 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000125 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000126
Christian Heimes400adb02008-02-01 08:12:03 +0000127
Georg Brandl116aa622007-08-15 14:28:22 +0000128Note that :func:`frexp` and :func:`modf` have a different call/return pattern
129than their C equivalents: they take a single argument and return a pair of
130values, rather than returning their second return value through an 'output
131parameter' (there is no such thing in Python).
132
133For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
134floating-point numbers of sufficiently large magnitude are exact integers.
135Python floats typically carry no more than 53 bits of precision (the same as the
136platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
137necessarily has no fractional bits.
138
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000139
140Power and logarithmic functions
141-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000142
Georg Brandl116aa622007-08-15 14:28:22 +0000143.. function:: exp(x)
144
145 Return ``e**x``.
146
147
148.. function:: log(x[, base])
149
150 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
151 return the natural logarithm of *x* (that is, the logarithm to base *e*).
152
Georg Brandl116aa622007-08-15 14:28:22 +0000153
Christian Heimes53876d92008-04-19 00:31:39 +0000154.. function:: log1p(x)
155
156 Return the natural logarithm of *1+x* (base *e*). The
157 result is calculated in a way which is accurate for *x* near zero.
158
Christian Heimes53876d92008-04-19 00:31:39 +0000159
Georg Brandl116aa622007-08-15 14:28:22 +0000160.. function:: log10(x)
161
162 Return the base-10 logarithm of *x*.
163
164
165.. function:: pow(x, y)
166
Christian Heimesa342c012008-04-20 21:01:16 +0000167 Return ``x`` raised to the power ``y``. Exceptional cases follow
168 Annex 'F' of the C99 standard as far as possible. In particular,
169 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
170 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
171 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
172 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000173
Georg Brandl116aa622007-08-15 14:28:22 +0000174
175.. function:: sqrt(x)
176
177 Return the square root of *x*.
178
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000179Trigonometric functions
180-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000181
182
183.. function:: acos(x)
184
185 Return the arc cosine of *x*, in radians.
186
187
188.. function:: asin(x)
189
190 Return the arc sine of *x*, in radians.
191
192
193.. function:: atan(x)
194
195 Return the arc tangent of *x*, in radians.
196
197
198.. function:: atan2(y, x)
199
200 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
201 The vector in the plane from the origin to point ``(x, y)`` makes this angle
202 with the positive X axis. The point of :func:`atan2` is that the signs of both
203 inputs are known to it, so it can compute the correct quadrant for the angle.
204 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
205 -1)`` is ``-3*pi/4``.
206
207
208.. function:: cos(x)
209
210 Return the cosine of *x* radians.
211
212
213.. function:: hypot(x, y)
214
215 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
216 from the origin to point ``(x, y)``.
217
218
219.. function:: sin(x)
220
221 Return the sine of *x* radians.
222
223
224.. function:: tan(x)
225
226 Return the tangent of *x* radians.
227
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000228Angular conversion
229------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000230
231
232.. function:: degrees(x)
233
234 Converts angle *x* from radians to degrees.
235
236
237.. function:: radians(x)
238
239 Converts angle *x* from degrees to radians.
240
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000241Hyperbolic functions
242--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000243
244
Christian Heimesa342c012008-04-20 21:01:16 +0000245.. function:: acosh(x)
246
247 Return the inverse hyperbolic cosine of *x*.
248
Christian Heimesa342c012008-04-20 21:01:16 +0000249
250.. function:: asinh(x)
251
252 Return the inverse hyperbolic sine of *x*.
253
Christian Heimesa342c012008-04-20 21:01:16 +0000254
255.. function:: atanh(x)
256
257 Return the inverse hyperbolic tangent of *x*.
258
Christian Heimesa342c012008-04-20 21:01:16 +0000259
Georg Brandl116aa622007-08-15 14:28:22 +0000260.. function:: cosh(x)
261
262 Return the hyperbolic cosine of *x*.
263
264
265.. function:: sinh(x)
266
267 Return the hyperbolic sine of *x*.
268
269
270.. function:: tanh(x)
271
272 Return the hyperbolic tangent of *x*.
273
Christian Heimes53876d92008-04-19 00:31:39 +0000274
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000275Constants
276=========
Georg Brandl116aa622007-08-15 14:28:22 +0000277
278.. data:: pi
279
280 The mathematical constant *pi*.
281
282
283.. data:: e
284
285 The mathematical constant *e*.
286
Christian Heimes53876d92008-04-19 00:31:39 +0000287
Georg Brandl116aa622007-08-15 14:28:22 +0000288.. note::
289
290 The :mod:`math` module consists mostly of thin wrappers around the platform C
291 math library functions. Behavior in exceptional cases is loosely specified
292 by the C standards, and Python inherits much of its math-function
293 error-reporting behavior from the platform C implementation. As a result,
294 the specific exceptions raised in error cases (and even whether some
295 arguments are considered to be exceptional at all) are not defined in any
296 useful cross-platform or cross-release way. For example, whether
297 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
298 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
299 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
300
Christian Heimesa342c012008-04-20 21:01:16 +0000301 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Benjamin Peterson3e4f0552008-09-02 00:31:15 +0000302 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes53876d92008-04-19 00:31:39 +0000303 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
304 and :exc:`OverflowError` for errno *ERANGE*.
305
Georg Brandl116aa622007-08-15 14:28:22 +0000306
307.. seealso::
308
309 Module :mod:`cmath`
310 Complex number versions of many of these functions.