blob: e827e767c26426f63e95888208080d697779d665 [file] [log] [blame]
Fred Drake295da241998-08-10 19:42:37 +00001\section{\module{audioop} ---
Fred Drakeffbe6871999-04-22 21:23:22 +00002 Manipulate raw audio data}
Fred Drakeb91e9341998-07-23 17:59:49 +00003
Fred Drakeffbe6871999-04-22 21:23:22 +00004\declaremodule{builtin}{audioop}
Fred Drakeb91e9341998-07-23 17:59:49 +00005\modulesynopsis{Manipulate raw audio data.}
6
Guido van Rossum5fdeeea1994-01-02 01:22:07 +00007
Fred Drakefc576191998-04-04 07:15:02 +00008The \module{audioop} module contains some useful operations on sound
9fragments. It operates on sound fragments consisting of signed
Guido van Rossum33d26892007-08-05 15:29:28 +000010integer samples 8, 16 or 32 bits wide, stored in Python strings.
11All scalar items are integers, unless specified otherwise.
Fred Drakefc576191998-04-04 07:15:02 +000012
13% This para is mostly here to provide an excuse for the index entries...
Thomas Wouters49fd7fa2006-04-21 10:40:58 +000014This module provides support for a-LAW, u-LAW and Intel/DVI ADPCM encodings.
Fred Drakefc576191998-04-04 07:15:02 +000015\index{Intel/DVI ADPCM}
16\index{ADPCM, Intel/DVI}
Thomas Wouters49fd7fa2006-04-21 10:40:58 +000017\index{a-LAW}
Fred Drakefc576191998-04-04 07:15:02 +000018\index{u-LAW}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000019
20A few of the more complicated operations only take 16-bit samples,
Fred Drakefc576191998-04-04 07:15:02 +000021otherwise the sample size (in bytes) is always a parameter of the
22operation.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000023
24The module defines the following variables and functions:
25
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000026\begin{excdesc}{error}
27This exception is raised on all errors, such as unknown number of bytes
28per sample, etc.
29\end{excdesc}
30
Fred Drakecce10901998-03-17 06:33:25 +000031\begin{funcdesc}{add}{fragment1, fragment2, width}
Guido van Rossum470be141995-03-17 16:07:09 +000032Return a fragment which is the addition of the two samples passed as
33parameters. \var{width} is the sample width in bytes, either
34\code{1}, \code{2} or \code{4}. Both fragments should have the same
35length.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000036\end{funcdesc}
37
Fred Drakecce10901998-03-17 06:33:25 +000038\begin{funcdesc}{adpcm2lin}{adpcmfragment, width, state}
Guido van Rossum470be141995-03-17 16:07:09 +000039Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See
Fred Drakefc576191998-04-04 07:15:02 +000040the description of \function{lin2adpcm()} for details on ADPCM coding.
Guido van Rossum470be141995-03-17 16:07:09 +000041Return a tuple \code{(\var{sample}, \var{newstate})} where the sample
42has the width specified in \var{width}.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000043\end{funcdesc}
44
Thomas Wouters49fd7fa2006-04-21 10:40:58 +000045\begin{funcdesc}{alaw2lin}{fragment, width}
46Convert sound fragments in a-LAW encoding to linearly encoded sound
47fragments. a-LAW encoding always uses 8 bits samples, so \var{width}
48refers only to the sample width of the output fragment here.
49\versionadded{2.5}
50\end{funcdesc}
51
Fred Drakecce10901998-03-17 06:33:25 +000052\begin{funcdesc}{avg}{fragment, width}
Guido van Rossum470be141995-03-17 16:07:09 +000053Return the average over all samples in the fragment.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000054\end{funcdesc}
55
Fred Drakecce10901998-03-17 06:33:25 +000056\begin{funcdesc}{avgpp}{fragment, width}
Guido van Rossum470be141995-03-17 16:07:09 +000057Return the average peak-peak value over all samples in the fragment.
58No filtering is done, so the usefulness of this routine is
59questionable.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000060\end{funcdesc}
61
Fred Drakecce10901998-03-17 06:33:25 +000062\begin{funcdesc}{bias}{fragment, width, bias}
Guido van Rossum470be141995-03-17 16:07:09 +000063Return a fragment that is the original fragment with a bias added to
64each sample.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000065\end{funcdesc}
66
Fred Drakecce10901998-03-17 06:33:25 +000067\begin{funcdesc}{cross}{fragment, width}
Guido van Rossum470be141995-03-17 16:07:09 +000068Return the number of zero crossings in the fragment passed as an
69argument.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000070\end{funcdesc}
71
Fred Drakecce10901998-03-17 06:33:25 +000072\begin{funcdesc}{findfactor}{fragment, reference}
Guido van Rossum470be141995-03-17 16:07:09 +000073Return a factor \var{F} such that
Fred Drakefc576191998-04-04 07:15:02 +000074\code{rms(add(\var{fragment}, mul(\var{reference}, -\var{F})))} is
75minimal, i.e., return the factor with which you should multiply
76\var{reference} to make it match as well as possible to
77\var{fragment}. The fragments should both contain 2-byte samples.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000078
Fred Drakefc576191998-04-04 07:15:02 +000079The time taken by this routine is proportional to
80\code{len(\var{fragment})}.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000081\end{funcdesc}
82
Fred Drakecce10901998-03-17 06:33:25 +000083\begin{funcdesc}{findfit}{fragment, reference}
Guido van Rossum470be141995-03-17 16:07:09 +000084Try to match \var{reference} as well as possible to a portion of
85\var{fragment} (which should be the longer fragment). This is
86(conceptually) done by taking slices out of \var{fragment}, using
Fred Drakefc576191998-04-04 07:15:02 +000087\function{findfactor()} to compute the best match, and minimizing the
Guido van Rossum470be141995-03-17 16:07:09 +000088result. The fragments should both contain 2-byte samples. Return a
89tuple \code{(\var{offset}, \var{factor})} where \var{offset} is the
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000090(integer) offset into \var{fragment} where the optimal match started
Guido van Rossum470be141995-03-17 16:07:09 +000091and \var{factor} is the (floating-point) factor as per
Fred Drakefc576191998-04-04 07:15:02 +000092\function{findfactor()}.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000093\end{funcdesc}
94
Fred Drakecce10901998-03-17 06:33:25 +000095\begin{funcdesc}{findmax}{fragment, length}
Guido van Rossum470be141995-03-17 16:07:09 +000096Search \var{fragment} for a slice of length \var{length} samples (not
97bytes!)\ with maximum energy, i.e., return \var{i} for which
98\code{rms(fragment[i*2:(i+length)*2])} is maximal. The fragments
99should both contain 2-byte samples.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000100
Fred Drakefc576191998-04-04 07:15:02 +0000101The routine takes time proportional to \code{len(\var{fragment})}.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000102\end{funcdesc}
103
Fred Drakecce10901998-03-17 06:33:25 +0000104\begin{funcdesc}{getsample}{fragment, width, index}
Guido van Rossum470be141995-03-17 16:07:09 +0000105Return the value of sample \var{index} from the fragment.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000106\end{funcdesc}
107
Fred Drakecce10901998-03-17 06:33:25 +0000108\begin{funcdesc}{lin2adpcm}{fragment, width, state}
Guido van Rossum470be141995-03-17 16:07:09 +0000109Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an
110adaptive coding scheme, whereby each 4 bit number is the difference
111between one sample and the next, divided by a (varying) step. The
112Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it
113may well become a standard.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000114
Fred Drakefc576191998-04-04 07:15:02 +0000115\var{state} is a tuple containing the state of the coder. The coder
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000116returns a tuple \code{(\var{adpcmfrag}, \var{newstate})}, and the
Fred Drakefc576191998-04-04 07:15:02 +0000117\var{newstate} should be passed to the next call of
118\function{lin2adpcm()}. In the initial call, \code{None} can be
119passed as the state. \var{adpcmfrag} is the ADPCM coded fragment
120packed 2 4-bit values per byte.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000121\end{funcdesc}
122
Thomas Wouters49fd7fa2006-04-21 10:40:58 +0000123\begin{funcdesc}{lin2alaw}{fragment, width}
124Convert samples in the audio fragment to a-LAW encoding and return
125this as a Python string. a-LAW is an audio encoding format whereby
126you get a dynamic range of about 13 bits using only 8 bit samples. It
127is used by the Sun audio hardware, among others.
128\versionadded{2.5}
129\end{funcdesc}
130
131\begin{funcdesc}{lin2lin}{fragment, width, newwidth}
132Convert samples between 1-, 2- and 4-byte formats.
133\end{funcdesc}
134
Fred Drakecce10901998-03-17 06:33:25 +0000135\begin{funcdesc}{lin2ulaw}{fragment, width}
Fred Drakefc576191998-04-04 07:15:02 +0000136Convert samples in the audio fragment to u-LAW encoding and return
137this as a Python string. u-LAW is an audio encoding format whereby
Guido van Rossum470be141995-03-17 16:07:09 +0000138you get a dynamic range of about 14 bits using only 8 bit samples. It
139is used by the Sun audio hardware, among others.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000140\end{funcdesc}
141
Fred Drakecce10901998-03-17 06:33:25 +0000142\begin{funcdesc}{minmax}{fragment, width}
Guido van Rossum470be141995-03-17 16:07:09 +0000143Return a tuple consisting of the minimum and maximum values of all
144samples in the sound fragment.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000145\end{funcdesc}
146
Fred Drakecce10901998-03-17 06:33:25 +0000147\begin{funcdesc}{max}{fragment, width}
Fred Drakeaf8a0151998-01-14 14:51:31 +0000148Return the maximum of the \emph{absolute value} of all samples in a
Guido van Rossum470be141995-03-17 16:07:09 +0000149fragment.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000150\end{funcdesc}
151
Fred Drakecce10901998-03-17 06:33:25 +0000152\begin{funcdesc}{maxpp}{fragment, width}
Guido van Rossum470be141995-03-17 16:07:09 +0000153Return the maximum peak-peak value in the sound fragment.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000154\end{funcdesc}
155
Fred Drakecce10901998-03-17 06:33:25 +0000156\begin{funcdesc}{mul}{fragment, width, factor}
Thomas Woutersf8316632000-07-16 19:01:10 +0000157Return a fragment that has all samples in the original fragment
Guido van Rossum470be141995-03-17 16:07:09 +0000158multiplied by the floating-point value \var{factor}. Overflow is
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000159silently ignored.
160\end{funcdesc}
161
Fred Drakefc576191998-04-04 07:15:02 +0000162\begin{funcdesc}{ratecv}{fragment, width, nchannels, inrate, outrate,
163 state\optional{, weightA\optional{, weightB}}}
Guido van Rossum6fb6f101997-02-14 15:59:49 +0000164Convert the frame rate of the input fragment.
165
Fred Drakefc576191998-04-04 07:15:02 +0000166\var{state} is a tuple containing the state of the converter. The
Thomas Woutersf8316632000-07-16 19:01:10 +0000167converter returns a tuple \code{(\var{newfragment}, \var{newstate})},
Fred Drakefc576191998-04-04 07:15:02 +0000168and \var{newstate} should be passed to the next call of
Tim Petersc7cb6922001-12-06 23:16:09 +0000169\function{ratecv()}. The initial call should pass \code{None}
170as the state.
Guido van Rossum6fb6f101997-02-14 15:59:49 +0000171
Fred Drakefc576191998-04-04 07:15:02 +0000172The \var{weightA} and \var{weightB} arguments are parameters for a
Fred Drake4aa4f301999-04-23 17:30:40 +0000173simple digital filter and default to \code{1} and \code{0} respectively.
Guido van Rossum6fb6f101997-02-14 15:59:49 +0000174\end{funcdesc}
175
Fred Drakecce10901998-03-17 06:33:25 +0000176\begin{funcdesc}{reverse}{fragment, width}
Guido van Rossum470be141995-03-17 16:07:09 +0000177Reverse the samples in a fragment and returns the modified fragment.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000178\end{funcdesc}
179
Fred Drakecce10901998-03-17 06:33:25 +0000180\begin{funcdesc}{rms}{fragment, width}
Guido van Rossum470be141995-03-17 16:07:09 +0000181Return the root-mean-square of the fragment, i.e.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000182\begin{displaymath}
183\catcode`_=8
184\sqrt{\frac{\sum{{S_{i}}^{2}}}{n}}
185\end{displaymath}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000186This is a measure of the power in an audio signal.
187\end{funcdesc}
188
Fred Drakecce10901998-03-17 06:33:25 +0000189\begin{funcdesc}{tomono}{fragment, width, lfactor, rfactor}
Guido van Rossum470be141995-03-17 16:07:09 +0000190Convert a stereo fragment to a mono fragment. The left channel is
191multiplied by \var{lfactor} and the right channel by \var{rfactor}
192before adding the two channels to give a mono signal.
Guido van Rossum6bb1adc1995-03-13 10:03:32 +0000193\end{funcdesc}
194
Fred Drakecce10901998-03-17 06:33:25 +0000195\begin{funcdesc}{tostereo}{fragment, width, lfactor, rfactor}
Guido van Rossum470be141995-03-17 16:07:09 +0000196Generate a stereo fragment from a mono fragment. Each pair of samples
197in the stereo fragment are computed from the mono sample, whereby left
198channel samples are multiplied by \var{lfactor} and right channel
199samples by \var{rfactor}.
Guido van Rossum6bb1adc1995-03-13 10:03:32 +0000200\end{funcdesc}
201
Fred Drakecce10901998-03-17 06:33:25 +0000202\begin{funcdesc}{ulaw2lin}{fragment, width}
Fred Drakefc576191998-04-04 07:15:02 +0000203Convert sound fragments in u-LAW encoding to linearly encoded sound
204fragments. u-LAW encoding always uses 8 bits samples, so \var{width}
Guido van Rossum470be141995-03-17 16:07:09 +0000205refers only to the sample width of the output fragment here.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000206\end{funcdesc}
207
Fred Drakefc576191998-04-04 07:15:02 +0000208Note that operations such as \function{mul()} or \function{max()} make
209no distinction between mono and stereo fragments, i.e.\ all samples
210are treated equal. If this is a problem the stereo fragment should be
211split into two mono fragments first and recombined later. Here is an
212example of how to do that:
213
Fred Drake19479911998-02-13 06:58:54 +0000214\begin{verbatim}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000215def mul_stereo(sample, width, lfactor, rfactor):
216 lsample = audioop.tomono(sample, width, 1, 0)
217 rsample = audioop.tomono(sample, width, 0, 1)
218 lsample = audioop.mul(sample, width, lfactor)
219 rsample = audioop.mul(sample, width, rfactor)
220 lsample = audioop.tostereo(lsample, width, 1, 0)
221 rsample = audioop.tostereo(rsample, width, 0, 1)
222 return audioop.add(lsample, rsample, width)
Fred Drake19479911998-02-13 06:58:54 +0000223\end{verbatim}
Fred Drakefc576191998-04-04 07:15:02 +0000224
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000225If you use the ADPCM coder to build network packets and you want your
Guido van Rossum6bb1adc1995-03-13 10:03:32 +0000226protocol to be stateless (i.e.\ to be able to tolerate packet loss)
Guido van Rossum470be141995-03-17 16:07:09 +0000227you should not only transmit the data but also the state. Note that
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000228you should send the \var{initial} state (the one you passed to
Fred Drakefc576191998-04-04 07:15:02 +0000229\function{lin2adpcm()}) along to the decoder, not the final state (as
230returned by the coder). If you want to use \function{struct.struct()}
231to store the state in binary you can code the first element (the
232predicted value) in 16 bits and the second (the delta index) in 8.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000233
234The ADPCM coders have never been tried against other ADPCM coders,
Guido van Rossum470be141995-03-17 16:07:09 +0000235only against themselves. It could well be that I misinterpreted the
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000236standards in which case they will not be interoperable with the
237respective standards.
238
Fred Drakefc576191998-04-04 07:15:02 +0000239The \function{find*()} routines might look a bit funny at first sight.
Guido van Rossum470be141995-03-17 16:07:09 +0000240They are primarily meant to do echo cancellation. A reasonably
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000241fast way to do this is to pick the most energetic piece of the output
242sample, locate that in the input sample and subtract the whole output
243sample from the input sample:
Fred Drakefc576191998-04-04 07:15:02 +0000244
Fred Drake19479911998-02-13 06:58:54 +0000245\begin{verbatim}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000246def echocancel(outputdata, inputdata):
247 pos = audioop.findmax(outputdata, 800) # one tenth second
248 out_test = outputdata[pos*2:]
249 in_test = inputdata[pos*2:]
250 ipos, factor = audioop.findfit(in_test, out_test)
251 # Optional (for better cancellation):
252 # factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
253 # out_test)
254 prefill = '\0'*(pos+ipos)*2
255 postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))
256 outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
257 return audioop.add(inputdata, outputdata, 2)
Fred Drake19479911998-02-13 06:58:54 +0000258\end{verbatim}