Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1 | """"Executable documentation" for the pickle module. |
| 2 | |
| 3 | Extensive comments about the pickle protocols and pickle-machine opcodes |
| 4 | can be found here. Some functions meant for external use: |
| 5 | |
| 6 | genops(pickle) |
| 7 | Generate all the opcodes in a pickle, as (opcode, arg, position) triples. |
| 8 | |
| 9 | dis(pickle, out=None, indentlevel=4) |
| 10 | Print a symbolic disassembly of a pickle. |
| 11 | """ |
| 12 | |
| 13 | # Other ideas: |
| 14 | # |
| 15 | # - A pickle verifier: read a pickle and check it exhaustively for |
| 16 | # well-formedness. |
| 17 | # |
| 18 | # - A protocol identifier: examine a pickle and return its protocol number |
| 19 | # (== the highest .proto attr value among all the opcodes in the pickle). |
| 20 | # |
| 21 | # - A pickle optimizer: for example, tuple-building code is sometimes more |
| 22 | # elaborate than necessary, catering for the possibility that the tuple |
| 23 | # is recursive. Or lots of times a PUT is generated that's never accessed |
| 24 | # by a later GET. |
| 25 | |
| 26 | |
| 27 | """ |
| 28 | "A pickle" is a program for a virtual pickle machine (PM, but more accurately |
| 29 | called an unpickling machine). It's a sequence of opcodes, interpreted by the |
| 30 | PM, building an arbitrarily complex Python object. |
| 31 | |
| 32 | For the most part, the PM is very simple: there are no looping, testing, or |
| 33 | conditional instructions, no arithmetic and no function calls. Opcodes are |
| 34 | executed once each, from first to last, until a STOP opcode is reached. |
| 35 | |
| 36 | The PM has two data areas, "the stack" and "the memo". |
| 37 | |
| 38 | Many opcodes push Python objects onto the stack; e.g., INT pushes a Python |
| 39 | integer object on the stack, whose value is gotten from a decimal string |
| 40 | literal immediately following the INT opcode in the pickle bytestream. Other |
| 41 | opcodes take Python objects off the stack. The result of unpickling is |
| 42 | whatever object is left on the stack when the final STOP opcode is executed. |
| 43 | |
| 44 | The memo is simply an array of objects, or it can be implemented as a dict |
| 45 | mapping little integers to objects. The memo serves as the PM's "long term |
| 46 | memory", and the little integers indexing the memo are akin to variable |
| 47 | names. Some opcodes pop a stack object into the memo at a given index, |
| 48 | and others push a memo object at a given index onto the stack again. |
| 49 | |
| 50 | At heart, that's all the PM has. Subtleties arise for these reasons: |
| 51 | |
| 52 | + Object identity. Objects can be arbitrarily complex, and subobjects |
| 53 | may be shared (for example, the list [a, a] refers to the same object a |
| 54 | twice). It can be vital that unpickling recreate an isomorphic object |
| 55 | graph, faithfully reproducing sharing. |
| 56 | |
| 57 | + Recursive objects. For example, after "L = []; L.append(L)", L is a |
| 58 | list, and L[0] is the same list. This is related to the object identity |
| 59 | point, and some sequences of pickle opcodes are subtle in order to |
| 60 | get the right result in all cases. |
| 61 | |
| 62 | + Things pickle doesn't know everything about. Examples of things pickle |
| 63 | does know everything about are Python's builtin scalar and container |
| 64 | types, like ints and tuples. They generally have opcodes dedicated to |
| 65 | them. For things like module references and instances of user-defined |
| 66 | classes, pickle's knowledge is limited. Historically, many enhancements |
| 67 | have been made to the pickle protocol in order to do a better (faster, |
| 68 | and/or more compact) job on those. |
| 69 | |
| 70 | + Backward compatibility and micro-optimization. As explained below, |
| 71 | pickle opcodes never go away, not even when better ways to do a thing |
| 72 | get invented. The repertoire of the PM just keeps growing over time. |
Tim Peters | 1996e23 | 2003-01-27 19:38:34 +0000 | [diff] [blame] | 73 | So, e.g., there are now five distinct opcodes for building a Python integer, |
| 74 | four of them devoted to "short" integers. Even so, the only way to pickle |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 75 | a Python long int takes time quadratic in the number of digits, for both |
| 76 | pickling and unpickling. This isn't so much a subtlety as a source of |
| 77 | wearying complication. |
| 78 | |
| 79 | |
| 80 | Pickle protocols: |
| 81 | |
| 82 | For compatibility, the meaning of a pickle opcode never changes. Instead new |
| 83 | pickle opcodes get added, and each version's unpickler can handle all the |
| 84 | pickle opcodes in all protocol versions to date. So old pickles continue to |
| 85 | be readable forever. The pickler can generally be told to restrict itself to |
| 86 | the subset of opcodes available under previous protocol versions too, so that |
| 87 | users can create pickles under the current version readable by older |
| 88 | versions. However, a pickle does not contain its version number embedded |
| 89 | within it. If an older unpickler tries to read a pickle using a later |
| 90 | protocol, the result is most likely an exception due to seeing an unknown (in |
| 91 | the older unpickler) opcode. |
| 92 | |
| 93 | The original pickle used what's now called "protocol 0", and what was called |
| 94 | "text mode" before Python 2.3. The entire pickle bytestream is made up of |
| 95 | printable 7-bit ASCII characters, plus the newline character, in protocol 0. |
| 96 | That's why it was called text mode. |
| 97 | |
| 98 | The second major set of additions is now called "protocol 1", and was called |
| 99 | "binary mode" before Python 2.3. This added many opcodes with arguments |
| 100 | consisting of arbitrary bytes, including NUL bytes and unprintable "high bit" |
| 101 | bytes. Binary mode pickles can be substantially smaller than equivalent |
| 102 | text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte |
| 103 | int as 4 bytes following the opcode, which is cheaper to unpickle than the |
| 104 | (perhaps) 11-character decimal string attached to INT. |
| 105 | |
| 106 | The third major set of additions came in Python 2.3, and is called "protocol |
| 107 | 2". XXX Write a short blurb when Guido figures out what they are <wink>. XXX |
| 108 | """ |
| 109 | |
| 110 | # Meta-rule: Descriptions are stored in instances of descriptor objects, |
| 111 | # with plain constructors. No meta-language is defined from which |
| 112 | # descriptors could be constructed. If you want, e.g., XML, write a little |
| 113 | # program to generate XML from the objects. |
| 114 | |
| 115 | ############################################################################## |
| 116 | # Some pickle opcodes have an argument, following the opcode in the |
| 117 | # bytestream. An argument is of a specific type, described by an instance |
| 118 | # of ArgumentDescriptor. These are not to be confused with arguments taken |
| 119 | # off the stack -- ArgumentDescriptor applies only to arguments embedded in |
| 120 | # the opcode stream, immediately following an opcode. |
| 121 | |
| 122 | # Represents the number of bytes consumed by an argument delimited by the |
| 123 | # next newline character. |
| 124 | UP_TO_NEWLINE = -1 |
| 125 | |
| 126 | # Represents the number of bytes consumed by a two-argument opcode where |
| 127 | # the first argument gives the number of bytes in the second argument. |
| 128 | TAKEN_FROM_ARGUMENT = -2 |
| 129 | |
| 130 | class ArgumentDescriptor(object): |
| 131 | __slots__ = ( |
| 132 | # name of descriptor record, also a module global name; a string |
| 133 | 'name', |
| 134 | |
| 135 | # length of argument, in bytes; an int; UP_TO_NEWLINE and |
| 136 | # TAKEN_FROM_ARGUMENT are negative values for variable-length cases |
| 137 | 'n', |
| 138 | |
| 139 | # a function taking a file-like object, reading this kind of argument |
| 140 | # from the object at the current position, advancing the current |
| 141 | # position by n bytes, and returning the value of the argument |
| 142 | 'reader', |
| 143 | |
| 144 | # human-readable docs for this arg descriptor; a string |
| 145 | 'doc', |
| 146 | ) |
| 147 | |
| 148 | def __init__(self, name, n, reader, doc): |
| 149 | assert isinstance(name, str) |
| 150 | self.name = name |
| 151 | |
| 152 | assert isinstance(n, int) and (n >= 0 or |
| 153 | n is UP_TO_NEWLINE or |
| 154 | n is TAKEN_FROM_ARGUMENT) |
| 155 | self.n = n |
| 156 | |
| 157 | self.reader = reader |
| 158 | |
| 159 | assert isinstance(doc, str) |
| 160 | self.doc = doc |
| 161 | |
| 162 | from struct import unpack as _unpack |
| 163 | |
| 164 | def read_uint1(f): |
| 165 | """ |
| 166 | >>> import StringIO |
| 167 | >>> read_uint1(StringIO.StringIO('\\xff')) |
| 168 | 255 |
| 169 | """ |
| 170 | |
| 171 | data = f.read(1) |
| 172 | if data: |
| 173 | return ord(data) |
| 174 | raise ValueError("not enough data in stream to read uint1") |
| 175 | |
| 176 | uint1 = ArgumentDescriptor( |
| 177 | name='uint1', |
| 178 | n=1, |
| 179 | reader=read_uint1, |
| 180 | doc="One-byte unsigned integer.") |
| 181 | |
| 182 | |
| 183 | def read_uint2(f): |
| 184 | """ |
| 185 | >>> import StringIO |
| 186 | >>> read_uint2(StringIO.StringIO('\\xff\\x00')) |
| 187 | 255 |
| 188 | >>> read_uint2(StringIO.StringIO('\\xff\\xff')) |
| 189 | 65535 |
| 190 | """ |
| 191 | |
| 192 | data = f.read(2) |
| 193 | if len(data) == 2: |
| 194 | return _unpack("<H", data)[0] |
| 195 | raise ValueError("not enough data in stream to read uint2") |
| 196 | |
| 197 | uint2 = ArgumentDescriptor( |
| 198 | name='uint2', |
| 199 | n=2, |
| 200 | reader=read_uint2, |
| 201 | doc="Two-byte unsigned integer, little-endian.") |
| 202 | |
| 203 | |
| 204 | def read_int4(f): |
| 205 | """ |
| 206 | >>> import StringIO |
| 207 | >>> read_int4(StringIO.StringIO('\\xff\\x00\\x00\\x00')) |
| 208 | 255 |
| 209 | >>> read_int4(StringIO.StringIO('\\x00\\x00\\x00\\x80')) == -(2**31) |
| 210 | True |
| 211 | """ |
| 212 | |
| 213 | data = f.read(4) |
| 214 | if len(data) == 4: |
| 215 | return _unpack("<i", data)[0] |
| 216 | raise ValueError("not enough data in stream to read int4") |
| 217 | |
| 218 | int4 = ArgumentDescriptor( |
| 219 | name='int4', |
| 220 | n=4, |
| 221 | reader=read_int4, |
| 222 | doc="Four-byte signed integer, little-endian, 2's complement.") |
| 223 | |
| 224 | |
| 225 | def read_stringnl(f, decode=True, stripquotes=True): |
| 226 | """ |
| 227 | >>> import StringIO |
| 228 | >>> read_stringnl(StringIO.StringIO("'abcd'\\nefg\\n")) |
| 229 | 'abcd' |
| 230 | |
| 231 | >>> read_stringnl(StringIO.StringIO("\\n")) |
| 232 | Traceback (most recent call last): |
| 233 | ... |
| 234 | ValueError: no string quotes around '' |
| 235 | |
| 236 | >>> read_stringnl(StringIO.StringIO("\\n"), stripquotes=False) |
| 237 | '' |
| 238 | |
| 239 | >>> read_stringnl(StringIO.StringIO("''\\n")) |
| 240 | '' |
| 241 | |
| 242 | >>> read_stringnl(StringIO.StringIO('"abcd"')) |
| 243 | Traceback (most recent call last): |
| 244 | ... |
| 245 | ValueError: no newline found when trying to read stringnl |
| 246 | |
| 247 | Embedded escapes are undone in the result. |
| 248 | >>> read_stringnl(StringIO.StringIO("'a\\\\nb\\x00c\\td'\\n'e'")) |
| 249 | 'a\\nb\\x00c\\td' |
| 250 | """ |
| 251 | |
| 252 | data = f.readline() |
| 253 | if not data.endswith('\n'): |
| 254 | raise ValueError("no newline found when trying to read stringnl") |
| 255 | data = data[:-1] # lose the newline |
| 256 | |
| 257 | if stripquotes: |
| 258 | for q in "'\"": |
| 259 | if data.startswith(q): |
| 260 | if not data.endswith(q): |
| 261 | raise ValueError("strinq quote %r not found at both " |
| 262 | "ends of %r" % (q, data)) |
| 263 | data = data[1:-1] |
| 264 | break |
| 265 | else: |
| 266 | raise ValueError("no string quotes around %r" % data) |
| 267 | |
| 268 | # I'm not sure when 'string_escape' was added to the std codecs; it's |
| 269 | # crazy not to use it if it's there. |
| 270 | if decode: |
| 271 | data = data.decode('string_escape') |
| 272 | return data |
| 273 | |
| 274 | stringnl = ArgumentDescriptor( |
| 275 | name='stringnl', |
| 276 | n=UP_TO_NEWLINE, |
| 277 | reader=read_stringnl, |
| 278 | doc="""A newline-terminated string. |
| 279 | |
| 280 | This is a repr-style string, with embedded escapes, and |
| 281 | bracketing quotes. |
| 282 | """) |
| 283 | |
| 284 | def read_stringnl_noescape(f): |
| 285 | return read_stringnl(f, decode=False, stripquotes=False) |
| 286 | |
| 287 | stringnl_noescape = ArgumentDescriptor( |
| 288 | name='stringnl_noescape', |
| 289 | n=UP_TO_NEWLINE, |
| 290 | reader=read_stringnl_noescape, |
| 291 | doc="""A newline-terminated string. |
| 292 | |
| 293 | This is a str-style string, without embedded escapes, |
| 294 | or bracketing quotes. It should consist solely of |
| 295 | printable ASCII characters. |
| 296 | """) |
| 297 | |
| 298 | def read_stringnl_noescape_pair(f): |
| 299 | """ |
| 300 | >>> import StringIO |
| 301 | >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\\nEmpty\\njunk")) |
Tim Peters | d916cf4 | 2003-01-27 19:01:47 +0000 | [diff] [blame] | 302 | 'Queue Empty' |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 303 | """ |
| 304 | |
Tim Peters | d916cf4 | 2003-01-27 19:01:47 +0000 | [diff] [blame] | 305 | return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f)) |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 306 | |
| 307 | stringnl_noescape_pair = ArgumentDescriptor( |
| 308 | name='stringnl_noescape_pair', |
| 309 | n=UP_TO_NEWLINE, |
| 310 | reader=read_stringnl_noescape_pair, |
| 311 | doc="""A pair of newline-terminated strings. |
| 312 | |
| 313 | These are str-style strings, without embedded |
| 314 | escapes, or bracketing quotes. They should |
| 315 | consist solely of printable ASCII characters. |
| 316 | The pair is returned as a single string, with |
Tim Peters | d916cf4 | 2003-01-27 19:01:47 +0000 | [diff] [blame] | 317 | a single blank separating the two strings. |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 318 | """) |
| 319 | |
| 320 | def read_string4(f): |
| 321 | """ |
| 322 | >>> import StringIO |
| 323 | >>> read_string4(StringIO.StringIO("\\x00\\x00\\x00\\x00abc")) |
| 324 | '' |
| 325 | >>> read_string4(StringIO.StringIO("\\x03\\x00\\x00\\x00abcdef")) |
| 326 | 'abc' |
| 327 | >>> read_string4(StringIO.StringIO("\\x00\\x00\\x00\\x03abcdef")) |
| 328 | Traceback (most recent call last): |
| 329 | ... |
| 330 | ValueError: expected 50331648 bytes in a string4, but only 6 remain |
| 331 | """ |
| 332 | |
| 333 | n = read_int4(f) |
| 334 | if n < 0: |
| 335 | raise ValueError("string4 byte count < 0: %d" % n) |
| 336 | data = f.read(n) |
| 337 | if len(data) == n: |
| 338 | return data |
| 339 | raise ValueError("expected %d bytes in a string4, but only %d remain" % |
| 340 | (n, len(data))) |
| 341 | |
| 342 | string4 = ArgumentDescriptor( |
| 343 | name="string4", |
| 344 | n=TAKEN_FROM_ARGUMENT, |
| 345 | reader=read_string4, |
| 346 | doc="""A counted string. |
| 347 | |
| 348 | The first argument is a 4-byte little-endian signed int giving |
| 349 | the number of bytes in the string, and the second argument is |
| 350 | that many bytes. |
| 351 | """) |
| 352 | |
| 353 | |
| 354 | def read_string1(f): |
| 355 | """ |
| 356 | >>> import StringIO |
| 357 | >>> read_string1(StringIO.StringIO("\\x00")) |
| 358 | '' |
| 359 | >>> read_string1(StringIO.StringIO("\\x03abcdef")) |
| 360 | 'abc' |
| 361 | """ |
| 362 | |
| 363 | n = read_uint1(f) |
| 364 | assert n >= 0 |
| 365 | data = f.read(n) |
| 366 | if len(data) == n: |
| 367 | return data |
| 368 | raise ValueError("expected %d bytes in a string1, but only %d remain" % |
| 369 | (n, len(data))) |
| 370 | |
| 371 | string1 = ArgumentDescriptor( |
| 372 | name="string1", |
| 373 | n=TAKEN_FROM_ARGUMENT, |
| 374 | reader=read_string1, |
| 375 | doc="""A counted string. |
| 376 | |
| 377 | The first argument is a 1-byte unsigned int giving the number |
| 378 | of bytes in the string, and the second argument is that many |
| 379 | bytes. |
| 380 | """) |
| 381 | |
| 382 | |
| 383 | def read_unicodestringnl(f): |
| 384 | """ |
| 385 | >>> import StringIO |
| 386 | >>> read_unicodestringnl(StringIO.StringIO("abc\\uabcd\\njunk")) |
| 387 | u'abc\\uabcd' |
| 388 | """ |
| 389 | |
| 390 | data = f.readline() |
| 391 | if not data.endswith('\n'): |
| 392 | raise ValueError("no newline found when trying to read " |
| 393 | "unicodestringnl") |
| 394 | data = data[:-1] # lose the newline |
| 395 | return unicode(data, 'raw-unicode-escape') |
| 396 | |
| 397 | unicodestringnl = ArgumentDescriptor( |
| 398 | name='unicodestringnl', |
| 399 | n=UP_TO_NEWLINE, |
| 400 | reader=read_unicodestringnl, |
| 401 | doc="""A newline-terminated Unicode string. |
| 402 | |
| 403 | This is raw-unicode-escape encoded, so consists of |
| 404 | printable ASCII characters, and may contain embedded |
| 405 | escape sequences. |
| 406 | """) |
| 407 | |
| 408 | def read_unicodestring4(f): |
| 409 | """ |
| 410 | >>> import StringIO |
| 411 | >>> s = u'abcd\\uabcd' |
| 412 | >>> enc = s.encode('utf-8') |
| 413 | >>> enc |
| 414 | 'abcd\\xea\\xaf\\x8d' |
| 415 | >>> n = chr(len(enc)) + chr(0) * 3 # little-endian 4-byte length |
| 416 | >>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk')) |
| 417 | >>> s == t |
| 418 | True |
| 419 | |
| 420 | >>> read_unicodestring4(StringIO.StringIO(n + enc[:-1])) |
| 421 | Traceback (most recent call last): |
| 422 | ... |
| 423 | ValueError: expected 7 bytes in a unicodestring4, but only 6 remain |
| 424 | """ |
| 425 | |
| 426 | n = read_int4(f) |
| 427 | if n < 0: |
| 428 | raise ValueError("unicodestring4 byte count < 0: %d" % n) |
| 429 | data = f.read(n) |
| 430 | if len(data) == n: |
| 431 | return unicode(data, 'utf-8') |
| 432 | raise ValueError("expected %d bytes in a unicodestring4, but only %d " |
| 433 | "remain" % (n, len(data))) |
| 434 | |
| 435 | unicodestring4 = ArgumentDescriptor( |
| 436 | name="unicodestring4", |
| 437 | n=TAKEN_FROM_ARGUMENT, |
| 438 | reader=read_unicodestring4, |
| 439 | doc="""A counted Unicode string. |
| 440 | |
| 441 | The first argument is a 4-byte little-endian signed int |
| 442 | giving the number of bytes in the string, and the second |
| 443 | argument-- the UTF-8 encoding of the Unicode string -- |
| 444 | contains that many bytes. |
| 445 | """) |
| 446 | |
| 447 | |
| 448 | def read_decimalnl_short(f): |
| 449 | """ |
| 450 | >>> import StringIO |
| 451 | >>> read_decimalnl_short(StringIO.StringIO("1234\\n56")) |
| 452 | 1234 |
| 453 | |
| 454 | >>> read_decimalnl_short(StringIO.StringIO("1234L\\n56")) |
| 455 | Traceback (most recent call last): |
| 456 | ... |
| 457 | ValueError: trailing 'L' not allowed in '1234L' |
| 458 | """ |
| 459 | |
| 460 | s = read_stringnl(f, decode=False, stripquotes=False) |
| 461 | if s.endswith("L"): |
| 462 | raise ValueError("trailing 'L' not allowed in %r" % s) |
| 463 | |
| 464 | # It's not necessarily true that the result fits in a Python short int: |
| 465 | # the pickle may have been written on a 64-bit box. There's also a hack |
| 466 | # for True and False here. |
| 467 | if s == "00": |
| 468 | return False |
| 469 | elif s == "01": |
| 470 | return True |
| 471 | |
| 472 | try: |
| 473 | return int(s) |
| 474 | except OverflowError: |
| 475 | return long(s) |
| 476 | |
| 477 | def read_decimalnl_long(f): |
| 478 | """ |
| 479 | >>> import StringIO |
| 480 | |
| 481 | >>> read_decimalnl_long(StringIO.StringIO("1234\\n56")) |
| 482 | Traceback (most recent call last): |
| 483 | ... |
| 484 | ValueError: trailing 'L' required in '1234' |
| 485 | |
| 486 | Someday the trailing 'L' will probably go away from this output. |
| 487 | |
| 488 | >>> read_decimalnl_long(StringIO.StringIO("1234L\\n56")) |
| 489 | 1234L |
| 490 | |
| 491 | >>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\\n6")) |
| 492 | 123456789012345678901234L |
| 493 | """ |
| 494 | |
| 495 | s = read_stringnl(f, decode=False, stripquotes=False) |
| 496 | if not s.endswith("L"): |
| 497 | raise ValueError("trailing 'L' required in %r" % s) |
| 498 | return long(s) |
| 499 | |
| 500 | |
| 501 | decimalnl_short = ArgumentDescriptor( |
| 502 | name='decimalnl_short', |
| 503 | n=UP_TO_NEWLINE, |
| 504 | reader=read_decimalnl_short, |
| 505 | doc="""A newline-terminated decimal integer literal. |
| 506 | |
| 507 | This never has a trailing 'L', and the integer fit |
| 508 | in a short Python int on the box where the pickle |
| 509 | was written -- but there's no guarantee it will fit |
| 510 | in a short Python int on the box where the pickle |
| 511 | is read. |
| 512 | """) |
| 513 | |
| 514 | decimalnl_long = ArgumentDescriptor( |
| 515 | name='decimalnl_long', |
| 516 | n=UP_TO_NEWLINE, |
| 517 | reader=read_decimalnl_long, |
| 518 | doc="""A newline-terminated decimal integer literal. |
| 519 | |
| 520 | This has a trailing 'L', and can represent integers |
| 521 | of any size. |
| 522 | """) |
| 523 | |
| 524 | |
| 525 | def read_floatnl(f): |
| 526 | """ |
| 527 | >>> import StringIO |
| 528 | >>> read_floatnl(StringIO.StringIO("-1.25\\n6")) |
| 529 | -1.25 |
| 530 | """ |
| 531 | s = read_stringnl(f, decode=False, stripquotes=False) |
| 532 | return float(s) |
| 533 | |
| 534 | floatnl = ArgumentDescriptor( |
| 535 | name='floatnl', |
| 536 | n=UP_TO_NEWLINE, |
| 537 | reader=read_floatnl, |
| 538 | doc="""A newline-terminated decimal floating literal. |
| 539 | |
| 540 | In general this requires 17 significant digits for roundtrip |
| 541 | identity, and pickling then unpickling infinities, NaNs, and |
| 542 | minus zero doesn't work across boxes, or on some boxes even |
| 543 | on itself (e.g., Windows can't read the strings it produces |
| 544 | for infinities or NaNs). |
| 545 | """) |
| 546 | |
| 547 | def read_float8(f): |
| 548 | """ |
| 549 | >>> import StringIO, struct |
| 550 | >>> raw = struct.pack(">d", -1.25) |
| 551 | >>> raw |
| 552 | '\\xbf\\xf4\\x00\\x00\\x00\\x00\\x00\\x00' |
| 553 | >>> read_float8(StringIO.StringIO(raw + "\\n")) |
| 554 | -1.25 |
| 555 | """ |
| 556 | |
| 557 | data = f.read(8) |
| 558 | if len(data) == 8: |
| 559 | return _unpack(">d", data)[0] |
| 560 | raise ValueError("not enough data in stream to read float8") |
| 561 | |
| 562 | |
| 563 | float8 = ArgumentDescriptor( |
| 564 | name='float8', |
| 565 | n=8, |
| 566 | reader=read_float8, |
| 567 | doc="""An 8-byte binary representation of a float, big-endian. |
| 568 | |
| 569 | The format is unique to Python, and shared with the struct |
| 570 | module (format string '>d') "in theory" (the struct and cPickle |
| 571 | implementations don't share the code -- they should). It's |
| 572 | strongly related to the IEEE-754 double format, and, in normal |
| 573 | cases, is in fact identical to the big-endian 754 double format. |
| 574 | On other boxes the dynamic range is limited to that of a 754 |
| 575 | double, and "add a half and chop" rounding is used to reduce |
| 576 | the precision to 53 bits. However, even on a 754 box, |
| 577 | infinities, NaNs, and minus zero may not be handled correctly |
| 578 | (may not survive roundtrip pickling intact). |
| 579 | """) |
| 580 | |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 581 | # Protocol 2 formats |
| 582 | |
| 583 | def decode_long(data): |
| 584 | r"""Decode a long from a two's complement little-endian binary string. |
| 585 | >>> decode_long("\xff\x00") |
| 586 | 255L |
| 587 | >>> decode_long("\xff\x7f") |
| 588 | 32767L |
| 589 | >>> decode_long("\x00\xff") |
| 590 | -256L |
| 591 | >>> decode_long("\x00\x80") |
| 592 | -32768L |
Tim Peters | 217e571 | 2003-01-27 23:51:11 +0000 | [diff] [blame] | 593 | >>> decode_long("\x80") |
| 594 | -128L |
| 595 | >>> decode_long("\x7f") |
| 596 | 127L |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 597 | """ |
| 598 | x = 0L |
| 599 | i = 0L |
| 600 | for c in data: |
| 601 | x |= long(ord(c)) << i |
| 602 | i += 8L |
Tim Peters | 217e571 | 2003-01-27 23:51:11 +0000 | [diff] [blame] | 603 | if data and ord(c) >= 0x80: |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 604 | x -= 1L << i |
| 605 | return x |
| 606 | |
| 607 | def read_long1(f): |
| 608 | r""" |
| 609 | >>> import StringIO |
| 610 | >>> read_long1(StringIO.StringIO("\x02\xff\x00")) |
| 611 | 255L |
| 612 | >>> read_long1(StringIO.StringIO("\x02\xff\x7f")) |
| 613 | 32767L |
| 614 | >>> read_long1(StringIO.StringIO("\x02\x00\xff")) |
| 615 | -256L |
| 616 | >>> read_long1(StringIO.StringIO("\x02\x00\x80")) |
| 617 | -32768L |
Tim Peters | 5eed340 | 2003-01-27 23:51:36 +0000 | [diff] [blame^] | 618 | >>> |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 619 | """ |
| 620 | |
| 621 | n = read_uint1(f) |
| 622 | data = f.read(n) |
| 623 | if len(data) != n: |
| 624 | raise ValueError("not enough data in stream to read long1") |
| 625 | return decode_long(data) |
| 626 | |
| 627 | long1 = ArgumentDescriptor( |
| 628 | name="long1", |
| 629 | n=TAKEN_FROM_ARGUMENT, |
| 630 | reader=read_long1, |
| 631 | doc="""A binary long, little-endian, using 1-byte size. |
| 632 | |
| 633 | This first reads one byte as an unsigned size, then reads that |
| 634 | many bytes and interprets them as a little-endian long. |
| 635 | """) |
| 636 | |
| 637 | def read_long2(f): |
| 638 | r""" |
| 639 | >>> import StringIO |
| 640 | >>> read_long2(StringIO.StringIO("\x02\x00\xff\x00")) |
| 641 | 255L |
| 642 | >>> read_long2(StringIO.StringIO("\x02\x00\xff\x7f")) |
| 643 | 32767L |
| 644 | >>> read_long2(StringIO.StringIO("\x02\x00\x00\xff")) |
| 645 | -256L |
| 646 | >>> read_long2(StringIO.StringIO("\x02\x00\x00\x80")) |
| 647 | -32768L |
Tim Peters | 5eed340 | 2003-01-27 23:51:36 +0000 | [diff] [blame^] | 648 | >>> |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 649 | """ |
| 650 | |
| 651 | n = read_uint2(f) |
| 652 | data = f.read(n) |
| 653 | if len(data) != n: |
| 654 | raise ValueError("not enough data in stream to read long2") |
| 655 | return decode_long(data) |
| 656 | |
| 657 | long2 = ArgumentDescriptor( |
| 658 | name="long2", |
| 659 | n=TAKEN_FROM_ARGUMENT, |
| 660 | reader=read_long2, |
| 661 | doc="""A binary long, little-endian, using 2-byte size. |
| 662 | |
| 663 | This first reads two byte as an unsigned size, then reads that |
| 664 | many bytes and interprets them as a little-endian long. |
| 665 | """) |
| 666 | |
| 667 | def read_long4(f): |
| 668 | r""" |
| 669 | >>> import StringIO |
| 670 | >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00")) |
| 671 | 255L |
| 672 | >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f")) |
| 673 | 32767L |
| 674 | >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff")) |
| 675 | -256L |
| 676 | >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80")) |
| 677 | -32768L |
Tim Peters | 5eed340 | 2003-01-27 23:51:36 +0000 | [diff] [blame^] | 678 | >>> |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 679 | """ |
| 680 | |
| 681 | n = read_int4(f) |
| 682 | if n < 0: |
| 683 | raise ValueError("unicodestring4 byte count < 0: %d" % n) |
| 684 | data = f.read(n) |
| 685 | if len(data) != n: |
| 686 | raise ValueError("not enough data in stream to read long1") |
| 687 | return decode_long(data) |
| 688 | |
| 689 | long4 = ArgumentDescriptor( |
| 690 | name="long4", |
| 691 | n=TAKEN_FROM_ARGUMENT, |
| 692 | reader=read_long4, |
| 693 | doc="""A binary representation of a long, little-endian. |
| 694 | |
| 695 | This first reads four bytes as a signed size (but requires the |
| 696 | size to be >= 0), then reads that many bytes and interprets them |
| 697 | as a little-endian long. |
| 698 | """) |
| 699 | |
| 700 | |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 701 | ############################################################################## |
| 702 | # Object descriptors. The stack used by the pickle machine holds objects, |
| 703 | # and in the stack_before and stack_after attributes of OpcodeInfo |
| 704 | # descriptors we need names to describe the various types of objects that can |
| 705 | # appear on the stack. |
| 706 | |
| 707 | class StackObject(object): |
| 708 | __slots__ = ( |
| 709 | # name of descriptor record, for info only |
| 710 | 'name', |
| 711 | |
| 712 | # type of object, or tuple of type objects (meaning the object can |
| 713 | # be of any type in the tuple) |
| 714 | 'obtype', |
| 715 | |
| 716 | # human-readable docs for this kind of stack object; a string |
| 717 | 'doc', |
| 718 | ) |
| 719 | |
| 720 | def __init__(self, name, obtype, doc): |
| 721 | assert isinstance(name, str) |
| 722 | self.name = name |
| 723 | |
| 724 | assert isinstance(obtype, type) or isinstance(obtype, tuple) |
| 725 | if isinstance(obtype, tuple): |
| 726 | for contained in obtype: |
| 727 | assert isinstance(contained, type) |
| 728 | self.obtype = obtype |
| 729 | |
| 730 | assert isinstance(doc, str) |
| 731 | self.doc = doc |
| 732 | |
| 733 | |
| 734 | pyint = StackObject( |
| 735 | name='int', |
| 736 | obtype=int, |
| 737 | doc="A short (as opposed to long) Python integer object.") |
| 738 | |
| 739 | pylong = StackObject( |
| 740 | name='long', |
| 741 | obtype=long, |
| 742 | doc="A long (as opposed to short) Python integer object.") |
| 743 | |
| 744 | pyinteger_or_bool = StackObject( |
| 745 | name='int_or_bool', |
| 746 | obtype=(int, long, bool), |
| 747 | doc="A Python integer object (short or long), or " |
| 748 | "a Python bool.") |
| 749 | |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 750 | pybool = StackObject( |
| 751 | name='bool', |
| 752 | obtype=(bool,), |
| 753 | doc="A Python bool object.") |
| 754 | |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 755 | pyfloat = StackObject( |
| 756 | name='float', |
| 757 | obtype=float, |
| 758 | doc="A Python float object.") |
| 759 | |
| 760 | pystring = StackObject( |
| 761 | name='str', |
| 762 | obtype=str, |
| 763 | doc="A Python string object.") |
| 764 | |
| 765 | pyunicode = StackObject( |
| 766 | name='unicode', |
| 767 | obtype=unicode, |
| 768 | doc="A Python Unicode string object.") |
| 769 | |
| 770 | pynone = StackObject( |
| 771 | name="None", |
| 772 | obtype=type(None), |
| 773 | doc="The Python None object.") |
| 774 | |
| 775 | pytuple = StackObject( |
| 776 | name="tuple", |
| 777 | obtype=tuple, |
| 778 | doc="A Python tuple object.") |
| 779 | |
| 780 | pylist = StackObject( |
| 781 | name="list", |
| 782 | obtype=list, |
| 783 | doc="A Python list object.") |
| 784 | |
| 785 | pydict = StackObject( |
| 786 | name="dict", |
| 787 | obtype=dict, |
| 788 | doc="A Python dict object.") |
| 789 | |
| 790 | anyobject = StackObject( |
| 791 | name='any', |
| 792 | obtype=object, |
| 793 | doc="Any kind of object whatsoever.") |
| 794 | |
| 795 | markobject = StackObject( |
| 796 | name="mark", |
| 797 | obtype=StackObject, |
| 798 | doc="""'The mark' is a unique object. |
| 799 | |
| 800 | Opcodes that operate on a variable number of objects |
| 801 | generally don't embed the count of objects in the opcode, |
| 802 | or pull it off the stack. Instead the MARK opcode is used |
| 803 | to push a special marker object on the stack, and then |
| 804 | some other opcodes grab all the objects from the top of |
| 805 | the stack down to (but not including) the topmost marker |
| 806 | object. |
| 807 | """) |
| 808 | |
| 809 | stackslice = StackObject( |
| 810 | name="stackslice", |
| 811 | obtype=StackObject, |
| 812 | doc="""An object representing a contiguous slice of the stack. |
| 813 | |
| 814 | This is used in conjuction with markobject, to represent all |
| 815 | of the stack following the topmost markobject. For example, |
| 816 | the POP_MARK opcode changes the stack from |
| 817 | |
| 818 | [..., markobject, stackslice] |
| 819 | to |
| 820 | [...] |
| 821 | |
| 822 | No matter how many object are on the stack after the topmost |
| 823 | markobject, POP_MARK gets rid of all of them (including the |
| 824 | topmost markobject too). |
| 825 | """) |
| 826 | |
| 827 | ############################################################################## |
| 828 | # Descriptors for pickle opcodes. |
| 829 | |
| 830 | class OpcodeInfo(object): |
| 831 | |
| 832 | __slots__ = ( |
| 833 | # symbolic name of opcode; a string |
| 834 | 'name', |
| 835 | |
| 836 | # the code used in a bytestream to represent the opcode; a |
| 837 | # one-character string |
| 838 | 'code', |
| 839 | |
| 840 | # If the opcode has an argument embedded in the byte string, an |
| 841 | # instance of ArgumentDescriptor specifying its type. Note that |
| 842 | # arg.reader(s) can be used to read and decode the argument from |
| 843 | # the bytestream s, and arg.doc documents the format of the raw |
| 844 | # argument bytes. If the opcode doesn't have an argument embedded |
| 845 | # in the bytestream, arg should be None. |
| 846 | 'arg', |
| 847 | |
| 848 | # what the stack looks like before this opcode runs; a list |
| 849 | 'stack_before', |
| 850 | |
| 851 | # what the stack looks like after this opcode runs; a list |
| 852 | 'stack_after', |
| 853 | |
| 854 | # the protocol number in which this opcode was introduced; an int |
| 855 | 'proto', |
| 856 | |
| 857 | # human-readable docs for this opcode; a string |
| 858 | 'doc', |
| 859 | ) |
| 860 | |
| 861 | def __init__(self, name, code, arg, |
| 862 | stack_before, stack_after, proto, doc): |
| 863 | assert isinstance(name, str) |
| 864 | self.name = name |
| 865 | |
| 866 | assert isinstance(code, str) |
| 867 | assert len(code) == 1 |
| 868 | self.code = code |
| 869 | |
| 870 | assert arg is None or isinstance(arg, ArgumentDescriptor) |
| 871 | self.arg = arg |
| 872 | |
| 873 | assert isinstance(stack_before, list) |
| 874 | for x in stack_before: |
| 875 | assert isinstance(x, StackObject) |
| 876 | self.stack_before = stack_before |
| 877 | |
| 878 | assert isinstance(stack_after, list) |
| 879 | for x in stack_after: |
| 880 | assert isinstance(x, StackObject) |
| 881 | self.stack_after = stack_after |
| 882 | |
| 883 | assert isinstance(proto, int) and 0 <= proto <= 2 |
| 884 | self.proto = proto |
| 885 | |
| 886 | assert isinstance(doc, str) |
| 887 | self.doc = doc |
| 888 | |
| 889 | I = OpcodeInfo |
| 890 | opcodes = [ |
| 891 | |
| 892 | # Ways to spell integers. |
| 893 | |
| 894 | I(name='INT', |
| 895 | code='I', |
| 896 | arg=decimalnl_short, |
| 897 | stack_before=[], |
| 898 | stack_after=[pyinteger_or_bool], |
| 899 | proto=0, |
| 900 | doc="""Push an integer or bool. |
| 901 | |
| 902 | The argument is a newline-terminated decimal literal string. |
| 903 | |
| 904 | The intent may have been that this always fit in a short Python int, |
| 905 | but INT can be generated in pickles written on a 64-bit box that |
| 906 | require a Python long on a 32-bit box. The difference between this |
| 907 | and LONG then is that INT skips a trailing 'L', and produces a short |
| 908 | int whenever possible. |
| 909 | |
| 910 | Another difference is due to that, when bool was introduced as a |
| 911 | distinct type in 2.3, builtin names True and False were also added to |
| 912 | 2.2.2, mapping to ints 1 and 0. For compatibility in both directions, |
| 913 | True gets pickled as INT + "I01\\n", and False as INT + "I00\\n". |
| 914 | Leading zeroes are never produced for a genuine integer. The 2.3 |
| 915 | (and later) unpicklers special-case these and return bool instead; |
| 916 | earlier unpicklers ignore the leading "0" and return the int. |
| 917 | """), |
| 918 | |
| 919 | I(name='LONG', |
| 920 | code='L', |
| 921 | arg=decimalnl_long, |
| 922 | stack_before=[], |
| 923 | stack_after=[pylong], |
| 924 | proto=0, |
| 925 | doc="""Push a long integer. |
| 926 | |
| 927 | The same as INT, except that the literal ends with 'L', and always |
| 928 | unpickles to a Python long. There doesn't seem a real purpose to the |
| 929 | trailing 'L'. |
| 930 | """), |
| 931 | |
| 932 | I(name='BININT', |
| 933 | code='J', |
| 934 | arg=int4, |
| 935 | stack_before=[], |
| 936 | stack_after=[pyint], |
| 937 | proto=1, |
| 938 | doc="""Push a four-byte signed integer. |
| 939 | |
| 940 | This handles the full range of Python (short) integers on a 32-bit |
| 941 | box, directly as binary bytes (1 for the opcode and 4 for the integer). |
| 942 | If the integer is non-negative and fits in 1 or 2 bytes, pickling via |
| 943 | BININT1 or BININT2 saves space. |
| 944 | """), |
| 945 | |
| 946 | I(name='BININT1', |
| 947 | code='K', |
| 948 | arg=uint1, |
| 949 | stack_before=[], |
| 950 | stack_after=[pyint], |
| 951 | proto=1, |
| 952 | doc="""Push a one-byte unsigned integer. |
| 953 | |
| 954 | This is a space optimization for pickling very small non-negative ints, |
| 955 | in range(256). |
| 956 | """), |
| 957 | |
| 958 | I(name='BININT2', |
| 959 | code='M', |
| 960 | arg=uint2, |
| 961 | stack_before=[], |
| 962 | stack_after=[pyint], |
| 963 | proto=1, |
| 964 | doc="""Push a two-byte unsigned integer. |
| 965 | |
| 966 | This is a space optimization for pickling small positive ints, in |
| 967 | range(256, 2**16). Integers in range(256) can also be pickled via |
| 968 | BININT2, but BININT1 instead saves a byte. |
| 969 | """), |
| 970 | |
| 971 | # Ways to spell strings (8-bit, not Unicode). |
| 972 | |
| 973 | I(name='STRING', |
| 974 | code='S', |
| 975 | arg=stringnl, |
| 976 | stack_before=[], |
| 977 | stack_after=[pystring], |
| 978 | proto=0, |
| 979 | doc="""Push a Python string object. |
| 980 | |
| 981 | The argument is a repr-style string, with bracketing quote characters, |
| 982 | and perhaps embedded escapes. The argument extends until the next |
| 983 | newline character. |
| 984 | """), |
| 985 | |
| 986 | I(name='BINSTRING', |
| 987 | code='T', |
| 988 | arg=string4, |
| 989 | stack_before=[], |
| 990 | stack_after=[pystring], |
| 991 | proto=1, |
| 992 | doc="""Push a Python string object. |
| 993 | |
| 994 | There are two arguments: the first is a 4-byte little-endian signed int |
| 995 | giving the number of bytes in the string, and the second is that many |
| 996 | bytes, which are taken literally as the string content. |
| 997 | """), |
| 998 | |
| 999 | I(name='SHORT_BINSTRING', |
| 1000 | code='U', |
| 1001 | arg=string1, |
| 1002 | stack_before=[], |
| 1003 | stack_after=[pystring], |
| 1004 | proto=1, |
| 1005 | doc="""Push a Python string object. |
| 1006 | |
| 1007 | There are two arguments: the first is a 1-byte unsigned int giving |
| 1008 | the number of bytes in the string, and the second is that many bytes, |
| 1009 | which are taken literally as the string content. |
| 1010 | """), |
| 1011 | |
| 1012 | # Ways to spell None. |
| 1013 | |
| 1014 | I(name='NONE', |
| 1015 | code='N', |
| 1016 | arg=None, |
| 1017 | stack_before=[], |
| 1018 | stack_after=[pynone], |
| 1019 | proto=0, |
| 1020 | doc="Push None on the stack."), |
| 1021 | |
| 1022 | # Ways to spell Unicode strings. |
| 1023 | |
| 1024 | I(name='UNICODE', |
| 1025 | code='V', |
| 1026 | arg=unicodestringnl, |
| 1027 | stack_before=[], |
| 1028 | stack_after=[pyunicode], |
| 1029 | proto=0, # this may be pure-text, but it's a later addition |
| 1030 | doc="""Push a Python Unicode string object. |
| 1031 | |
| 1032 | The argument is a raw-unicode-escape encoding of a Unicode string, |
| 1033 | and so may contain embedded escape sequences. The argument extends |
| 1034 | until the next newline character. |
| 1035 | """), |
| 1036 | |
| 1037 | I(name='BINUNICODE', |
| 1038 | code='X', |
| 1039 | arg=unicodestring4, |
| 1040 | stack_before=[], |
| 1041 | stack_after=[pyunicode], |
| 1042 | proto=1, |
| 1043 | doc="""Push a Python Unicode string object. |
| 1044 | |
| 1045 | There are two arguments: the first is a 4-byte little-endian signed int |
| 1046 | giving the number of bytes in the string. The second is that many |
| 1047 | bytes, and is the UTF-8 encoding of the Unicode string. |
| 1048 | """), |
| 1049 | |
| 1050 | # Ways to spell floats. |
| 1051 | |
| 1052 | I(name='FLOAT', |
| 1053 | code='F', |
| 1054 | arg=floatnl, |
| 1055 | stack_before=[], |
| 1056 | stack_after=[pyfloat], |
| 1057 | proto=0, |
| 1058 | doc="""Newline-terminated decimal float literal. |
| 1059 | |
| 1060 | The argument is repr(a_float), and in general requires 17 significant |
| 1061 | digits for roundtrip conversion to be an identity (this is so for |
| 1062 | IEEE-754 double precision values, which is what Python float maps to |
| 1063 | on most boxes). |
| 1064 | |
| 1065 | In general, FLOAT cannot be used to transport infinities, NaNs, or |
| 1066 | minus zero across boxes (or even on a single box, if the platform C |
| 1067 | library can't read the strings it produces for such things -- Windows |
| 1068 | is like that), but may do less damage than BINFLOAT on boxes with |
| 1069 | greater precision or dynamic range than IEEE-754 double. |
| 1070 | """), |
| 1071 | |
| 1072 | I(name='BINFLOAT', |
| 1073 | code='G', |
| 1074 | arg=float8, |
| 1075 | stack_before=[], |
| 1076 | stack_after=[pyfloat], |
| 1077 | proto=1, |
| 1078 | doc="""Float stored in binary form, with 8 bytes of data. |
| 1079 | |
| 1080 | This generally requires less than half the space of FLOAT encoding. |
| 1081 | In general, BINFLOAT cannot be used to transport infinities, NaNs, or |
| 1082 | minus zero, raises an exception if the exponent exceeds the range of |
| 1083 | an IEEE-754 double, and retains no more than 53 bits of precision (if |
| 1084 | there are more than that, "add a half and chop" rounding is used to |
| 1085 | cut it back to 53 significant bits). |
| 1086 | """), |
| 1087 | |
| 1088 | # Ways to build lists. |
| 1089 | |
| 1090 | I(name='EMPTY_LIST', |
| 1091 | code=']', |
| 1092 | arg=None, |
| 1093 | stack_before=[], |
| 1094 | stack_after=[pylist], |
| 1095 | proto=1, |
| 1096 | doc="Push an empty list."), |
| 1097 | |
| 1098 | I(name='APPEND', |
| 1099 | code='a', |
| 1100 | arg=None, |
| 1101 | stack_before=[pylist, anyobject], |
| 1102 | stack_after=[pylist], |
| 1103 | proto=0, |
| 1104 | doc="""Append an object to a list. |
| 1105 | |
| 1106 | Stack before: ... pylist anyobject |
| 1107 | Stack after: ... pylist+[anyobject] |
| 1108 | """), |
| 1109 | |
| 1110 | I(name='APPENDS', |
| 1111 | code='e', |
| 1112 | arg=None, |
| 1113 | stack_before=[pylist, markobject, stackslice], |
| 1114 | stack_after=[pylist], |
| 1115 | proto=1, |
| 1116 | doc="""Extend a list by a slice of stack objects. |
| 1117 | |
| 1118 | Stack before: ... pylist markobject stackslice |
| 1119 | Stack after: ... pylist+stackslice |
| 1120 | """), |
| 1121 | |
| 1122 | I(name='LIST', |
| 1123 | code='l', |
| 1124 | arg=None, |
| 1125 | stack_before=[markobject, stackslice], |
| 1126 | stack_after=[pylist], |
| 1127 | proto=0, |
| 1128 | doc="""Build a list out of the topmost stack slice, after markobject. |
| 1129 | |
| 1130 | All the stack entries following the topmost markobject are placed into |
| 1131 | a single Python list, which single list object replaces all of the |
| 1132 | stack from the topmost markobject onward. For example, |
| 1133 | |
| 1134 | Stack before: ... markobject 1 2 3 'abc' |
| 1135 | Stack after: ... [1, 2, 3, 'abc'] |
| 1136 | """), |
| 1137 | |
| 1138 | # Ways to build tuples. |
| 1139 | |
| 1140 | I(name='EMPTY_TUPLE', |
| 1141 | code=')', |
| 1142 | arg=None, |
| 1143 | stack_before=[], |
| 1144 | stack_after=[pytuple], |
| 1145 | proto=1, |
| 1146 | doc="Push an empty tuple."), |
| 1147 | |
| 1148 | I(name='TUPLE', |
| 1149 | code='t', |
| 1150 | arg=None, |
| 1151 | stack_before=[markobject, stackslice], |
| 1152 | stack_after=[pytuple], |
| 1153 | proto=0, |
| 1154 | doc="""Build a tuple out of the topmost stack slice, after markobject. |
| 1155 | |
| 1156 | All the stack entries following the topmost markobject are placed into |
| 1157 | a single Python tuple, which single tuple object replaces all of the |
| 1158 | stack from the topmost markobject onward. For example, |
| 1159 | |
| 1160 | Stack before: ... markobject 1 2 3 'abc' |
| 1161 | Stack after: ... (1, 2, 3, 'abc') |
| 1162 | """), |
| 1163 | |
| 1164 | # Ways to build dicts. |
| 1165 | |
| 1166 | I(name='EMPTY_DICT', |
| 1167 | code='}', |
| 1168 | arg=None, |
| 1169 | stack_before=[], |
| 1170 | stack_after=[pydict], |
| 1171 | proto=1, |
| 1172 | doc="Push an empty dict."), |
| 1173 | |
| 1174 | I(name='DICT', |
| 1175 | code='d', |
| 1176 | arg=None, |
| 1177 | stack_before=[markobject, stackslice], |
| 1178 | stack_after=[pydict], |
| 1179 | proto=0, |
| 1180 | doc="""Build a dict out of the topmost stack slice, after markobject. |
| 1181 | |
| 1182 | All the stack entries following the topmost markobject are placed into |
| 1183 | a single Python dict, which single dict object replaces all of the |
| 1184 | stack from the topmost markobject onward. The stack slice alternates |
| 1185 | key, value, key, value, .... For example, |
| 1186 | |
| 1187 | Stack before: ... markobject 1 2 3 'abc' |
| 1188 | Stack after: ... {1: 2, 3: 'abc'} |
| 1189 | """), |
| 1190 | |
| 1191 | I(name='SETITEM', |
| 1192 | code='s', |
| 1193 | arg=None, |
| 1194 | stack_before=[pydict, anyobject, anyobject], |
| 1195 | stack_after=[pydict], |
| 1196 | proto=0, |
| 1197 | doc="""Add a key+value pair to an existing dict. |
| 1198 | |
| 1199 | Stack before: ... pydict key value |
| 1200 | Stack after: ... pydict |
| 1201 | |
| 1202 | where pydict has been modified via pydict[key] = value. |
| 1203 | """), |
| 1204 | |
| 1205 | I(name='SETITEMS', |
| 1206 | code='u', |
| 1207 | arg=None, |
| 1208 | stack_before=[pydict, markobject, stackslice], |
| 1209 | stack_after=[pydict], |
| 1210 | proto=1, |
| 1211 | doc="""Add an arbitrary number of key+value pairs to an existing dict. |
| 1212 | |
| 1213 | The slice of the stack following the topmost markobject is taken as |
| 1214 | an alternating sequence of keys and values, added to the dict |
| 1215 | immediately under the topmost markobject. Everything at and after the |
| 1216 | topmost markobject is popped, leaving the mutated dict at the top |
| 1217 | of the stack. |
| 1218 | |
| 1219 | Stack before: ... pydict markobject key_1 value_1 ... key_n value_n |
| 1220 | Stack after: ... pydict |
| 1221 | |
| 1222 | where pydict has been modified via pydict[key_i] = value_i for i in |
| 1223 | 1, 2, ..., n, and in that order. |
| 1224 | """), |
| 1225 | |
| 1226 | # Stack manipulation. |
| 1227 | |
| 1228 | I(name='POP', |
| 1229 | code='0', |
| 1230 | arg=None, |
| 1231 | stack_before=[anyobject], |
| 1232 | stack_after=[], |
| 1233 | proto=0, |
| 1234 | doc="Discard the top stack item, shrinking the stack by one item."), |
| 1235 | |
| 1236 | I(name='DUP', |
| 1237 | code='2', |
| 1238 | arg=None, |
| 1239 | stack_before=[anyobject], |
| 1240 | stack_after=[anyobject, anyobject], |
| 1241 | proto=0, |
| 1242 | doc="Push the top stack item onto the stack again, duplicating it."), |
| 1243 | |
| 1244 | I(name='MARK', |
| 1245 | code='(', |
| 1246 | arg=None, |
| 1247 | stack_before=[], |
| 1248 | stack_after=[markobject], |
| 1249 | proto=0, |
| 1250 | doc="""Push markobject onto the stack. |
| 1251 | |
| 1252 | markobject is a unique object, used by other opcodes to identify a |
| 1253 | region of the stack containing a variable number of objects for them |
| 1254 | to work on. See markobject.doc for more detail. |
| 1255 | """), |
| 1256 | |
| 1257 | I(name='POP_MARK', |
| 1258 | code='1', |
| 1259 | arg=None, |
| 1260 | stack_before=[markobject, stackslice], |
| 1261 | stack_after=[], |
| 1262 | proto=0, |
| 1263 | doc="""Pop all the stack objects at and above the topmost markobject. |
| 1264 | |
| 1265 | When an opcode using a variable number of stack objects is done, |
| 1266 | POP_MARK is used to remove those objects, and to remove the markobject |
| 1267 | that delimited their starting position on the stack. |
| 1268 | """), |
| 1269 | |
| 1270 | # Memo manipulation. There are really only two operations (get and put), |
| 1271 | # each in all-text, "short binary", and "long binary" flavors. |
| 1272 | |
| 1273 | I(name='GET', |
| 1274 | code='g', |
| 1275 | arg=decimalnl_short, |
| 1276 | stack_before=[], |
| 1277 | stack_after=[anyobject], |
| 1278 | proto=0, |
| 1279 | doc="""Read an object from the memo and push it on the stack. |
| 1280 | |
| 1281 | The index of the memo object to push is given by the newline-teriminated |
| 1282 | decimal string following. BINGET and LONG_BINGET are space-optimized |
| 1283 | versions. |
| 1284 | """), |
| 1285 | |
| 1286 | I(name='BINGET', |
| 1287 | code='h', |
| 1288 | arg=uint1, |
| 1289 | stack_before=[], |
| 1290 | stack_after=[anyobject], |
| 1291 | proto=1, |
| 1292 | doc="""Read an object from the memo and push it on the stack. |
| 1293 | |
| 1294 | The index of the memo object to push is given by the 1-byte unsigned |
| 1295 | integer following. |
| 1296 | """), |
| 1297 | |
| 1298 | I(name='LONG_BINGET', |
| 1299 | code='j', |
| 1300 | arg=int4, |
| 1301 | stack_before=[], |
| 1302 | stack_after=[anyobject], |
| 1303 | proto=1, |
| 1304 | doc="""Read an object from the memo and push it on the stack. |
| 1305 | |
| 1306 | The index of the memo object to push is given by the 4-byte signed |
| 1307 | little-endian integer following. |
| 1308 | """), |
| 1309 | |
| 1310 | I(name='PUT', |
| 1311 | code='p', |
| 1312 | arg=decimalnl_short, |
| 1313 | stack_before=[], |
| 1314 | stack_after=[], |
| 1315 | proto=0, |
| 1316 | doc="""Store the stack top into the memo. The stack is not popped. |
| 1317 | |
| 1318 | The index of the memo location to write into is given by the newline- |
| 1319 | terminated decimal string following. BINPUT and LONG_BINPUT are |
| 1320 | space-optimized versions. |
| 1321 | """), |
| 1322 | |
| 1323 | I(name='BINPUT', |
| 1324 | code='q', |
| 1325 | arg=uint1, |
| 1326 | stack_before=[], |
| 1327 | stack_after=[], |
| 1328 | proto=1, |
| 1329 | doc="""Store the stack top into the memo. The stack is not popped. |
| 1330 | |
| 1331 | The index of the memo location to write into is given by the 1-byte |
| 1332 | unsigned integer following. |
| 1333 | """), |
| 1334 | |
| 1335 | I(name='LONG_BINPUT', |
| 1336 | code='r', |
| 1337 | arg=int4, |
| 1338 | stack_before=[], |
| 1339 | stack_after=[], |
| 1340 | proto=1, |
| 1341 | doc="""Store the stack top into the memo. The stack is not popped. |
| 1342 | |
| 1343 | The index of the memo location to write into is given by the 4-byte |
| 1344 | signed little-endian integer following. |
| 1345 | """), |
| 1346 | |
| 1347 | # Push a class object, or module function, on the stack, via its module |
| 1348 | # and name. |
| 1349 | |
| 1350 | I(name='GLOBAL', |
| 1351 | code='c', |
| 1352 | arg=stringnl_noescape_pair, |
| 1353 | stack_before=[], |
| 1354 | stack_after=[anyobject], |
| 1355 | proto=0, |
| 1356 | doc="""Push a global object (module.attr) on the stack. |
| 1357 | |
| 1358 | Two newline-terminated strings follow the GLOBAL opcode. The first is |
| 1359 | taken as a module name, and the second as a class name. The class |
| 1360 | object module.class is pushed on the stack. More accurately, the |
| 1361 | object returned by self.find_class(module, class) is pushed on the |
| 1362 | stack, so unpickling subclasses can override this form of lookup. |
| 1363 | """), |
| 1364 | |
| 1365 | # Ways to build objects of classes pickle doesn't know about directly |
| 1366 | # (user-defined classes). I despair of documenting this accurately |
| 1367 | # and comprehensibly -- you really have to read the pickle code to |
| 1368 | # find all the special cases. |
| 1369 | |
| 1370 | I(name='REDUCE', |
| 1371 | code='R', |
| 1372 | arg=None, |
| 1373 | stack_before=[anyobject, anyobject], |
| 1374 | stack_after=[anyobject], |
| 1375 | proto=0, |
| 1376 | doc="""Push an object built from a callable and an argument tuple. |
| 1377 | |
| 1378 | The opcode is named to remind of the __reduce__() method. |
| 1379 | |
| 1380 | Stack before: ... callable pytuple |
| 1381 | Stack after: ... callable(*pytuple) |
| 1382 | |
| 1383 | The callable and the argument tuple are the first two items returned |
| 1384 | by a __reduce__ method. Applying the callable to the argtuple is |
| 1385 | supposed to reproduce the original object, or at least get it started. |
| 1386 | If the __reduce__ method returns a 3-tuple, the last component is an |
| 1387 | argument to be passed to the object's __setstate__, and then the REDUCE |
| 1388 | opcode is followed by code to create setstate's argument, and then a |
| 1389 | BUILD opcode to apply __setstate__ to that argument. |
| 1390 | |
| 1391 | There are lots of special cases here. The argtuple can be None, in |
| 1392 | which case callable.__basicnew__() is called instead to produce the |
| 1393 | object to be pushed on the stack. This appears to be a trick unique |
| 1394 | to ExtensionClasses, and is deprecated regardless. |
| 1395 | |
| 1396 | If type(callable) is not ClassType, REDUCE complains unless the |
| 1397 | callable has been registered with the copy_reg module's |
| 1398 | safe_constructors dict, or the callable has a magic |
| 1399 | '__safe_for_unpickling__' attribute with a true value. I'm not sure |
| 1400 | why it does this, but I've sure seen this complaint often enough when |
| 1401 | I didn't want to <wink>. |
| 1402 | """), |
| 1403 | |
| 1404 | I(name='BUILD', |
| 1405 | code='b', |
| 1406 | arg=None, |
| 1407 | stack_before=[anyobject, anyobject], |
| 1408 | stack_after=[anyobject], |
| 1409 | proto=0, |
| 1410 | doc="""Finish building an object, via __setstate__ or dict update. |
| 1411 | |
| 1412 | Stack before: ... anyobject argument |
| 1413 | Stack after: ... anyobject |
| 1414 | |
| 1415 | where anyobject may have been mutated, as follows: |
| 1416 | |
| 1417 | If the object has a __setstate__ method, |
| 1418 | |
| 1419 | anyobject.__setstate__(argument) |
| 1420 | |
| 1421 | is called. |
| 1422 | |
| 1423 | Else the argument must be a dict, the object must have a __dict__, and |
| 1424 | the object is updated via |
| 1425 | |
| 1426 | anyobject.__dict__.update(argument) |
| 1427 | |
| 1428 | This may raise RuntimeError in restricted execution mode (which |
| 1429 | disallows access to __dict__ directly); in that case, the object |
| 1430 | is updated instead via |
| 1431 | |
| 1432 | for k, v in argument.items(): |
| 1433 | anyobject[k] = v |
| 1434 | """), |
| 1435 | |
| 1436 | I(name='INST', |
| 1437 | code='i', |
| 1438 | arg=stringnl_noescape_pair, |
| 1439 | stack_before=[markobject, stackslice], |
| 1440 | stack_after=[anyobject], |
| 1441 | proto=0, |
| 1442 | doc="""Build a class instance. |
| 1443 | |
| 1444 | This is the protocol 0 version of protocol 1's OBJ opcode. |
| 1445 | INST is followed by two newline-terminated strings, giving a |
| 1446 | module and class name, just as for the GLOBAL opcode (and see |
| 1447 | GLOBAL for more details about that). self.find_class(module, name) |
| 1448 | is used to get a class object. |
| 1449 | |
| 1450 | In addition, all the objects on the stack following the topmost |
| 1451 | markobject are gathered into a tuple and popped (along with the |
| 1452 | topmost markobject), just as for the TUPLE opcode. |
| 1453 | |
| 1454 | Now it gets complicated. If all of these are true: |
| 1455 | |
| 1456 | + The argtuple is empty (markobject was at the top of the stack |
| 1457 | at the start). |
| 1458 | |
| 1459 | + It's an old-style class object (the type of the class object is |
| 1460 | ClassType). |
| 1461 | |
| 1462 | + The class object does not have a __getinitargs__ attribute. |
| 1463 | |
| 1464 | then we want to create an old-style class instance without invoking |
| 1465 | its __init__() method (pickle has waffled on this over the years; not |
| 1466 | calling __init__() is current wisdom). In this case, an instance of |
| 1467 | an old-style dummy class is created, and then we try to rebind its |
| 1468 | __class__ attribute to the desired class object. If this succeeds, |
| 1469 | the new instance object is pushed on the stack, and we're done. In |
| 1470 | restricted execution mode it can fail (assignment to __class__ is |
| 1471 | disallowed), and I'm not really sure what happens then -- it looks |
| 1472 | like the code ends up calling the class object's __init__ anyway, |
| 1473 | via falling into the next case. |
| 1474 | |
| 1475 | Else (the argtuple is not empty, it's not an old-style class object, |
| 1476 | or the class object does have a __getinitargs__ attribute), the code |
| 1477 | first insists that the class object have a __safe_for_unpickling__ |
| 1478 | attribute. Unlike as for the __safe_for_unpickling__ check in REDUCE, |
| 1479 | it doesn't matter whether this attribute has a true or false value, it |
| 1480 | only matters whether it exists (XXX this smells like a bug). If |
| 1481 | __safe_for_unpickling__ dosn't exist, UnpicklingError is raised. |
| 1482 | |
| 1483 | Else (the class object does have a __safe_for_unpickling__ attr), |
| 1484 | the class object obtained from INST's arguments is applied to the |
| 1485 | argtuple obtained from the stack, and the resulting instance object |
| 1486 | is pushed on the stack. |
| 1487 | """), |
| 1488 | |
| 1489 | I(name='OBJ', |
| 1490 | code='o', |
| 1491 | arg=None, |
| 1492 | stack_before=[markobject, anyobject, stackslice], |
| 1493 | stack_after=[anyobject], |
| 1494 | proto=1, |
| 1495 | doc="""Build a class instance. |
| 1496 | |
| 1497 | This is the protocol 1 version of protocol 0's INST opcode, and is |
| 1498 | very much like it. The major difference is that the class object |
| 1499 | is taken off the stack, allowing it to be retrieved from the memo |
| 1500 | repeatedly if several instances of the same class are created. This |
| 1501 | can be much more efficient (in both time and space) than repeatedly |
| 1502 | embedding the module and class names in INST opcodes. |
| 1503 | |
| 1504 | Unlike INST, OBJ takes no arguments from the opcode stream. Instead |
| 1505 | the class object is taken off the stack, immediately above the |
| 1506 | topmost markobject: |
| 1507 | |
| 1508 | Stack before: ... markobject classobject stackslice |
| 1509 | Stack after: ... new_instance_object |
| 1510 | |
| 1511 | As for INST, the remainder of the stack above the markobject is |
| 1512 | gathered into an argument tuple, and then the logic seems identical, |
| 1513 | except that no __safe_for_unpickling__ check is done (XXX this smells |
| 1514 | like a bug). See INST for the gory details. |
| 1515 | """), |
| 1516 | |
| 1517 | # Machine control. |
| 1518 | |
| 1519 | I(name='STOP', |
| 1520 | code='.', |
| 1521 | arg=None, |
| 1522 | stack_before=[anyobject], |
| 1523 | stack_after=[], |
| 1524 | proto=0, |
| 1525 | doc="""Stop the unpickling machine. |
| 1526 | |
| 1527 | Every pickle ends with this opcode. The object at the top of the stack |
| 1528 | is popped, and that's the result of unpickling. The stack should be |
| 1529 | empty then. |
| 1530 | """), |
| 1531 | |
| 1532 | # Ways to deal with persistent IDs. |
| 1533 | |
| 1534 | I(name='PERSID', |
| 1535 | code='P', |
| 1536 | arg=stringnl_noescape, |
| 1537 | stack_before=[], |
| 1538 | stack_after=[anyobject], |
| 1539 | proto=0, |
| 1540 | doc="""Push an object identified by a persistent ID. |
| 1541 | |
| 1542 | The pickle module doesn't define what a persistent ID means. PERSID's |
| 1543 | argument is a newline-terminated str-style (no embedded escapes, no |
| 1544 | bracketing quote characters) string, which *is* "the persistent ID". |
| 1545 | The unpickler passes this string to self.persistent_load(). Whatever |
| 1546 | object that returns is pushed on the stack. There is no implementation |
| 1547 | of persistent_load() in Python's unpickler: it must be supplied by an |
| 1548 | unpickler subclass. |
| 1549 | """), |
| 1550 | |
| 1551 | I(name='BINPERSID', |
| 1552 | code='Q', |
| 1553 | arg=None, |
| 1554 | stack_before=[anyobject], |
| 1555 | stack_after=[anyobject], |
| 1556 | proto=1, |
| 1557 | doc="""Push an object identified by a persistent ID. |
| 1558 | |
| 1559 | Like PERSID, except the persistent ID is popped off the stack (instead |
| 1560 | of being a string embedded in the opcode bytestream). The persistent |
| 1561 | ID is passed to self.persistent_load(), and whatever object that |
| 1562 | returns is pushed on the stack. See PERSID for more detail. |
| 1563 | """), |
Guido van Rossum | 5a2d8f5 | 2003-01-27 21:44:25 +0000 | [diff] [blame] | 1564 | |
| 1565 | # Protocol 2 opcodes |
| 1566 | |
| 1567 | I(name='PROTO', |
| 1568 | code='\x80', |
| 1569 | arg=uint1, |
| 1570 | stack_before=[], |
| 1571 | stack_after=[], |
| 1572 | proto=2, |
| 1573 | doc="""Protocol version indicator. |
| 1574 | |
| 1575 | For protocol 2 and above, a pickle must start with this opcode. |
| 1576 | The argument is the protocol version, an int in range(2, 256). |
| 1577 | """), |
| 1578 | |
| 1579 | I(name='NEWOBJ', |
| 1580 | code='\x81', |
| 1581 | arg=None, |
| 1582 | stack_before=[anyobject, anyobject], |
| 1583 | stack_after=[anyobject], |
| 1584 | proto=2, |
| 1585 | doc="""Build an object instance. |
| 1586 | |
| 1587 | The stack before should be thought of as containing a class |
| 1588 | object followed by an argument tuple (the tuple being the stack |
| 1589 | top). Call these cls and args. They are popped off the stack, |
| 1590 | and the value returned by cls.__new__(cls, *args) is pushed back |
| 1591 | onto the stack. |
| 1592 | """), |
| 1593 | |
| 1594 | I(name='EXT1', |
| 1595 | code='\x82', |
| 1596 | arg=uint1, |
| 1597 | stack_before=[], |
| 1598 | stack_after=[anyobject], |
| 1599 | proto=2, |
| 1600 | doc="""Extension code. |
| 1601 | |
| 1602 | This code and the similar EXT2 and EXT4 allow using a registry |
| 1603 | of popular objects that are pickled by name, typically classes. |
| 1604 | It is envisioned that through a global negotiation and |
| 1605 | registration process, third parties can set up a mapping between |
| 1606 | ints and object names. |
| 1607 | |
| 1608 | In order to guarantee pickle interchangeability, the extension |
| 1609 | code registry ought to be global, although a range of codes may |
| 1610 | be reserved for private use. |
| 1611 | """), |
| 1612 | |
| 1613 | I(name='EXT2', |
| 1614 | code='\x83', |
| 1615 | arg=uint2, |
| 1616 | stack_before=[], |
| 1617 | stack_after=[anyobject], |
| 1618 | proto=2, |
| 1619 | doc="""Extension code. |
| 1620 | |
| 1621 | See EXT1. |
| 1622 | """), |
| 1623 | |
| 1624 | I(name='EXT4', |
| 1625 | code='\x84', |
| 1626 | arg=int4, |
| 1627 | stack_before=[], |
| 1628 | stack_after=[anyobject], |
| 1629 | proto=2, |
| 1630 | doc="""Extension code. |
| 1631 | |
| 1632 | See EXT1. |
| 1633 | """), |
| 1634 | |
| 1635 | I(name='TUPLE1', |
| 1636 | code='\x85', |
| 1637 | arg=None, |
| 1638 | stack_before=[anyobject], |
| 1639 | stack_after=[pytuple], |
| 1640 | proto=2, |
| 1641 | doc="""One-tuple. |
| 1642 | |
| 1643 | This code pops one value off the stack and pushes a tuple of |
| 1644 | length 1 whose one item is that value back onto it. IOW: |
| 1645 | |
| 1646 | stack[-1] = tuple(stack[-1:]) |
| 1647 | """), |
| 1648 | |
| 1649 | I(name='TUPLE2', |
| 1650 | code='\x86', |
| 1651 | arg=None, |
| 1652 | stack_before=[anyobject, anyobject], |
| 1653 | stack_after=[pytuple], |
| 1654 | proto=2, |
| 1655 | doc="""One-tuple. |
| 1656 | |
| 1657 | This code pops two values off the stack and pushes a tuple |
| 1658 | of length 2 whose items are those values back onto it. IOW: |
| 1659 | |
| 1660 | stack[-2:] = [tuple(stack[-2:])] |
| 1661 | """), |
| 1662 | |
| 1663 | I(name='TUPLE3', |
| 1664 | code='\x87', |
| 1665 | arg=None, |
| 1666 | stack_before=[anyobject, anyobject, anyobject], |
| 1667 | stack_after=[pytuple], |
| 1668 | proto=2, |
| 1669 | doc="""One-tuple. |
| 1670 | |
| 1671 | This code pops three values off the stack and pushes a tuple |
| 1672 | of length 3 whose items are those values back onto it. IOW: |
| 1673 | |
| 1674 | stack[-3:] = [tuple(stack[-3:])] |
| 1675 | """), |
| 1676 | |
| 1677 | I(name='NEWTRUE', |
| 1678 | code='\x88', |
| 1679 | arg=None, |
| 1680 | stack_before=[], |
| 1681 | stack_after=[pybool], |
| 1682 | proto=2, |
| 1683 | doc="""True. |
| 1684 | |
| 1685 | Push True onto the stack."""), |
| 1686 | |
| 1687 | I(name='NEWFALSE', |
| 1688 | code='\x89', |
| 1689 | arg=None, |
| 1690 | stack_before=[], |
| 1691 | stack_after=[pybool], |
| 1692 | proto=2, |
| 1693 | doc="""True. |
| 1694 | |
| 1695 | Push False onto the stack."""), |
| 1696 | |
| 1697 | I(name="LONG1", |
| 1698 | code='\x8a', |
| 1699 | arg=long1, |
| 1700 | stack_before=[], |
| 1701 | stack_after=[pylong], |
| 1702 | proto=2, |
| 1703 | doc="""Long integer using one-byte length. |
| 1704 | |
| 1705 | A more efficient encoding of a Python long; the long1 encoding |
| 1706 | says it all."""), |
| 1707 | |
| 1708 | I(name="LONG2", |
| 1709 | code='\x8b', |
| 1710 | arg=long2, |
| 1711 | stack_before=[], |
| 1712 | stack_after=[pylong], |
| 1713 | proto=2, |
| 1714 | doc="""Long integer using two-byte length. |
| 1715 | |
| 1716 | A more efficient encoding of a Python long; the long2 encoding |
| 1717 | says it all."""), |
| 1718 | |
| 1719 | I(name="LONG4", |
| 1720 | code='\x8c', |
| 1721 | arg=long4, |
| 1722 | stack_before=[], |
| 1723 | stack_after=[pylong], |
| 1724 | proto=2, |
| 1725 | doc="""Long integer using found-byte length. |
| 1726 | |
| 1727 | A more efficient encoding of a Python long; the long4 encoding |
| 1728 | says it all."""), |
| 1729 | |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1730 | ] |
| 1731 | del I |
| 1732 | |
| 1733 | # Verify uniqueness of .name and .code members. |
| 1734 | name2i = {} |
| 1735 | code2i = {} |
| 1736 | |
| 1737 | for i, d in enumerate(opcodes): |
| 1738 | if d.name in name2i: |
| 1739 | raise ValueError("repeated name %r at indices %d and %d" % |
| 1740 | (d.name, name2i[d.name], i)) |
| 1741 | if d.code in code2i: |
| 1742 | raise ValueError("repeated code %r at indices %d and %d" % |
| 1743 | (d.code, code2i[d.code], i)) |
| 1744 | |
| 1745 | name2i[d.name] = i |
| 1746 | code2i[d.code] = i |
| 1747 | |
| 1748 | del name2i, code2i, i, d |
| 1749 | |
| 1750 | ############################################################################## |
| 1751 | # Build a code2op dict, mapping opcode characters to OpcodeInfo records. |
| 1752 | # Also ensure we've got the same stuff as pickle.py, although the |
| 1753 | # introspection here is dicey. |
| 1754 | |
| 1755 | code2op = {} |
| 1756 | for d in opcodes: |
| 1757 | code2op[d.code] = d |
| 1758 | del d |
| 1759 | |
| 1760 | def assure_pickle_consistency(verbose=False): |
| 1761 | import pickle, re |
| 1762 | |
| 1763 | copy = code2op.copy() |
| 1764 | for name in pickle.__all__: |
| 1765 | if not re.match("[A-Z][A-Z0-9_]+$", name): |
| 1766 | if verbose: |
| 1767 | print "skipping %r: it doesn't look like an opcode name" % name |
| 1768 | continue |
| 1769 | picklecode = getattr(pickle, name) |
| 1770 | if not isinstance(picklecode, str) or len(picklecode) != 1: |
| 1771 | if verbose: |
| 1772 | print ("skipping %r: value %r doesn't look like a pickle " |
| 1773 | "code" % (name, picklecode)) |
| 1774 | continue |
| 1775 | if picklecode in copy: |
| 1776 | if verbose: |
| 1777 | print "checking name %r w/ code %r for consistency" % ( |
| 1778 | name, picklecode) |
| 1779 | d = copy[picklecode] |
| 1780 | if d.name != name: |
| 1781 | raise ValueError("for pickle code %r, pickle.py uses name %r " |
| 1782 | "but we're using name %r" % (picklecode, |
| 1783 | name, |
| 1784 | d.name)) |
| 1785 | # Forget this one. Any left over in copy at the end are a problem |
| 1786 | # of a different kind. |
| 1787 | del copy[picklecode] |
| 1788 | else: |
| 1789 | raise ValueError("pickle.py appears to have a pickle opcode with " |
| 1790 | "name %r and code %r, but we don't" % |
| 1791 | (name, picklecode)) |
| 1792 | if copy: |
| 1793 | msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"] |
| 1794 | for code, d in copy.items(): |
| 1795 | msg.append(" name %r with code %r" % (d.name, code)) |
| 1796 | raise ValueError("\n".join(msg)) |
| 1797 | |
| 1798 | assure_pickle_consistency() |
| 1799 | |
| 1800 | ############################################################################## |
| 1801 | # A pickle opcode generator. |
| 1802 | |
| 1803 | def genops(pickle): |
Guido van Rossum | a72ded9 | 2003-01-27 19:40:47 +0000 | [diff] [blame] | 1804 | """Generate all the opcodes in a pickle. |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1805 | |
| 1806 | 'pickle' is a file-like object, or string, containing the pickle. |
| 1807 | |
| 1808 | Each opcode in the pickle is generated, from the current pickle position, |
| 1809 | stopping after a STOP opcode is delivered. A triple is generated for |
| 1810 | each opcode: |
| 1811 | |
| 1812 | opcode, arg, pos |
| 1813 | |
| 1814 | opcode is an OpcodeInfo record, describing the current opcode. |
| 1815 | |
| 1816 | If the opcode has an argument embedded in the pickle, arg is its decoded |
| 1817 | value, as a Python object. If the opcode doesn't have an argument, arg |
| 1818 | is None. |
| 1819 | |
| 1820 | If the pickle has a tell() method, pos was the value of pickle.tell() |
| 1821 | before reading the current opcode. If the pickle is a string object, |
| 1822 | it's wrapped in a StringIO object, and the latter's tell() result is |
| 1823 | used. Else (the pickle doesn't have a tell(), and it's not obvious how |
| 1824 | to query its current position) pos is None. |
| 1825 | """ |
| 1826 | |
| 1827 | import cStringIO as StringIO |
| 1828 | |
| 1829 | if isinstance(pickle, str): |
| 1830 | pickle = StringIO.StringIO(pickle) |
| 1831 | |
| 1832 | if hasattr(pickle, "tell"): |
| 1833 | getpos = pickle.tell |
| 1834 | else: |
| 1835 | getpos = lambda: None |
| 1836 | |
| 1837 | while True: |
| 1838 | pos = getpos() |
| 1839 | code = pickle.read(1) |
| 1840 | opcode = code2op.get(code) |
| 1841 | if opcode is None: |
| 1842 | if code == "": |
| 1843 | raise ValueError("pickle exhausted before seeing STOP") |
| 1844 | else: |
| 1845 | raise ValueError("at position %s, opcode %r unknown" % ( |
| 1846 | pos is None and "<unknown>" or pos, |
| 1847 | code)) |
| 1848 | if opcode.arg is None: |
| 1849 | arg = None |
| 1850 | else: |
| 1851 | arg = opcode.arg.reader(pickle) |
| 1852 | yield opcode, arg, pos |
| 1853 | if code == '.': |
| 1854 | assert opcode.name == 'STOP' |
| 1855 | break |
| 1856 | |
| 1857 | ############################################################################## |
| 1858 | # A symbolic pickle disassembler. |
| 1859 | |
| 1860 | def dis(pickle, out=None, indentlevel=4): |
| 1861 | """Produce a symbolic disassembly of a pickle. |
| 1862 | |
| 1863 | 'pickle' is a file-like object, or string, containing a (at least one) |
| 1864 | pickle. The pickle is disassembled from the current position, through |
| 1865 | the first STOP opcode encountered. |
| 1866 | |
| 1867 | Optional arg 'out' is a file-like object to which the disassembly is |
| 1868 | printed. It defaults to sys.stdout. |
| 1869 | |
| 1870 | Optional arg indentlevel is the number of blanks by which to indent |
| 1871 | a new MARK level. It defaults to 4. |
| 1872 | """ |
| 1873 | |
| 1874 | markstack = [] |
| 1875 | indentchunk = ' ' * indentlevel |
| 1876 | for opcode, arg, pos in genops(pickle): |
| 1877 | if pos is not None: |
| 1878 | print >> out, "%5d:" % pos, |
| 1879 | |
| 1880 | line = "%s %s%s" % (opcode.code, |
| 1881 | indentchunk * len(markstack), |
| 1882 | opcode.name) |
| 1883 | |
| 1884 | markmsg = None |
| 1885 | if markstack and markobject in opcode.stack_before: |
| 1886 | assert markobject not in opcode.stack_after |
| 1887 | markpos = markstack.pop() |
| 1888 | if markpos is not None: |
| 1889 | markmsg = "(MARK at %d)" % markpos |
| 1890 | |
| 1891 | if arg is not None or markmsg: |
| 1892 | # make a mild effort to align arguments |
| 1893 | line += ' ' * (10 - len(opcode.name)) |
| 1894 | if arg is not None: |
| 1895 | line += ' ' + repr(arg) |
| 1896 | if markmsg: |
| 1897 | line += ' ' + markmsg |
| 1898 | print >> out, line |
| 1899 | |
| 1900 | if markobject in opcode.stack_after: |
| 1901 | assert markobject not in opcode.stack_before |
| 1902 | markstack.append(pos) |
| 1903 | |
| 1904 | |
| 1905 | _dis_test = """ |
| 1906 | >>> import pickle |
| 1907 | >>> x = [1, 2, (3, 4), {'abc': u"def"}] |
Guido van Rossum | f29d3d6 | 2003-01-27 22:47:53 +0000 | [diff] [blame] | 1908 | >>> pik = pickle.dumps(x, 0) |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1909 | >>> dis(pik) |
| 1910 | 0: ( MARK |
| 1911 | 1: l LIST (MARK at 0) |
| 1912 | 2: p PUT 0 |
| 1913 | 5: I INT 1 |
| 1914 | 8: a APPEND |
| 1915 | 9: I INT 2 |
| 1916 | 12: a APPEND |
| 1917 | 13: ( MARK |
| 1918 | 14: I INT 3 |
| 1919 | 17: I INT 4 |
| 1920 | 20: t TUPLE (MARK at 13) |
| 1921 | 21: p PUT 1 |
| 1922 | 24: a APPEND |
| 1923 | 25: ( MARK |
| 1924 | 26: d DICT (MARK at 25) |
| 1925 | 27: p PUT 2 |
| 1926 | 30: S STRING 'abc' |
| 1927 | 37: p PUT 3 |
| 1928 | 40: V UNICODE u'def' |
| 1929 | 45: p PUT 4 |
| 1930 | 48: s SETITEM |
| 1931 | 49: a APPEND |
| 1932 | 50: . STOP |
| 1933 | |
| 1934 | Try again with a "binary" pickle. |
| 1935 | |
| 1936 | >>> pik = pickle.dumps(x, 1) |
| 1937 | >>> dis(pik) |
| 1938 | 0: ] EMPTY_LIST |
| 1939 | 1: q BINPUT 0 |
| 1940 | 3: ( MARK |
| 1941 | 4: K BININT1 1 |
| 1942 | 6: K BININT1 2 |
| 1943 | 8: ( MARK |
| 1944 | 9: K BININT1 3 |
| 1945 | 11: K BININT1 4 |
| 1946 | 13: t TUPLE (MARK at 8) |
| 1947 | 14: q BINPUT 1 |
| 1948 | 16: } EMPTY_DICT |
| 1949 | 17: q BINPUT 2 |
| 1950 | 19: U SHORT_BINSTRING 'abc' |
| 1951 | 24: q BINPUT 3 |
| 1952 | 26: X BINUNICODE u'def' |
| 1953 | 34: q BINPUT 4 |
| 1954 | 36: s SETITEM |
| 1955 | 37: e APPENDS (MARK at 3) |
| 1956 | 38: . STOP |
| 1957 | |
| 1958 | Exercise the INST/OBJ/BUILD family. |
| 1959 | |
| 1960 | >>> import random |
Guido van Rossum | f29d3d6 | 2003-01-27 22:47:53 +0000 | [diff] [blame] | 1961 | >>> dis(pickle.dumps(random.random, 0)) |
Tim Peters | d916cf4 | 2003-01-27 19:01:47 +0000 | [diff] [blame] | 1962 | 0: c GLOBAL 'random random' |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1963 | 15: p PUT 0 |
| 1964 | 18: . STOP |
| 1965 | |
| 1966 | >>> x = [pickle.PicklingError()] * 2 |
Guido van Rossum | f29d3d6 | 2003-01-27 22:47:53 +0000 | [diff] [blame] | 1967 | >>> dis(pickle.dumps(x, 0)) |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1968 | 0: ( MARK |
| 1969 | 1: l LIST (MARK at 0) |
| 1970 | 2: p PUT 0 |
| 1971 | 5: ( MARK |
Tim Peters | d916cf4 | 2003-01-27 19:01:47 +0000 | [diff] [blame] | 1972 | 6: i INST 'pickle PicklingError' (MARK at 5) |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1973 | 28: p PUT 1 |
| 1974 | 31: ( MARK |
| 1975 | 32: d DICT (MARK at 31) |
| 1976 | 33: p PUT 2 |
| 1977 | 36: S STRING 'args' |
| 1978 | 44: p PUT 3 |
| 1979 | 47: ( MARK |
| 1980 | 48: t TUPLE (MARK at 47) |
| 1981 | 49: p PUT 4 |
| 1982 | 52: s SETITEM |
| 1983 | 53: b BUILD |
| 1984 | 54: a APPEND |
| 1985 | 55: g GET 1 |
| 1986 | 58: a APPEND |
| 1987 | 59: . STOP |
| 1988 | |
| 1989 | >>> dis(pickle.dumps(x, 1)) |
| 1990 | 0: ] EMPTY_LIST |
| 1991 | 1: q BINPUT 0 |
| 1992 | 3: ( MARK |
| 1993 | 4: ( MARK |
Tim Peters | d916cf4 | 2003-01-27 19:01:47 +0000 | [diff] [blame] | 1994 | 5: c GLOBAL 'pickle PicklingError' |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 1995 | 27: q BINPUT 1 |
| 1996 | 29: o OBJ (MARK at 4) |
| 1997 | 30: q BINPUT 2 |
| 1998 | 32: } EMPTY_DICT |
| 1999 | 33: q BINPUT 3 |
| 2000 | 35: U SHORT_BINSTRING 'args' |
| 2001 | 41: q BINPUT 4 |
| 2002 | 43: ) EMPTY_TUPLE |
| 2003 | 44: s SETITEM |
| 2004 | 45: b BUILD |
| 2005 | 46: h BINGET 2 |
| 2006 | 48: e APPENDS (MARK at 3) |
| 2007 | 49: . STOP |
| 2008 | |
| 2009 | Try "the canonical" recursive-object test. |
| 2010 | |
| 2011 | >>> L = [] |
| 2012 | >>> T = L, |
| 2013 | >>> L.append(T) |
| 2014 | >>> L[0] is T |
| 2015 | True |
| 2016 | >>> T[0] is L |
| 2017 | True |
| 2018 | >>> L[0][0] is L |
| 2019 | True |
| 2020 | >>> T[0][0] is T |
| 2021 | True |
Guido van Rossum | f29d3d6 | 2003-01-27 22:47:53 +0000 | [diff] [blame] | 2022 | >>> dis(pickle.dumps(L, 0)) |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 2023 | 0: ( MARK |
| 2024 | 1: l LIST (MARK at 0) |
| 2025 | 2: p PUT 0 |
| 2026 | 5: ( MARK |
| 2027 | 6: g GET 0 |
| 2028 | 9: t TUPLE (MARK at 5) |
| 2029 | 10: p PUT 1 |
| 2030 | 13: a APPEND |
| 2031 | 14: . STOP |
| 2032 | >>> dis(pickle.dumps(L, 1)) |
| 2033 | 0: ] EMPTY_LIST |
| 2034 | 1: q BINPUT 0 |
| 2035 | 3: ( MARK |
| 2036 | 4: h BINGET 0 |
| 2037 | 6: t TUPLE (MARK at 3) |
| 2038 | 7: q BINPUT 1 |
| 2039 | 9: a APPEND |
| 2040 | 10: . STOP |
| 2041 | |
| 2042 | The protocol 0 pickle of the tuple causes the disassembly to get confused, |
| 2043 | as it doesn't realize that the POP opcode at 16 gets rid of the MARK at 0 |
| 2044 | (so the output remains indented until the end). The protocol 1 pickle |
| 2045 | doesn't trigger this glitch, because the disassembler realizes that |
| 2046 | POP_MARK gets rid of the MARK. Doing a better job on the protocol 0 |
| 2047 | pickle would require the disassembler to emulate the stack. |
| 2048 | |
Guido van Rossum | f29d3d6 | 2003-01-27 22:47:53 +0000 | [diff] [blame] | 2049 | >>> dis(pickle.dumps(T, 0)) |
Tim Peters | 8ecfc8e | 2003-01-27 18:51:48 +0000 | [diff] [blame] | 2050 | 0: ( MARK |
| 2051 | 1: ( MARK |
| 2052 | 2: l LIST (MARK at 1) |
| 2053 | 3: p PUT 0 |
| 2054 | 6: ( MARK |
| 2055 | 7: g GET 0 |
| 2056 | 10: t TUPLE (MARK at 6) |
| 2057 | 11: p PUT 1 |
| 2058 | 14: a APPEND |
| 2059 | 15: 0 POP |
| 2060 | 16: 0 POP |
| 2061 | 17: g GET 1 |
| 2062 | 20: . STOP |
| 2063 | >>> dis(pickle.dumps(T, 1)) |
| 2064 | 0: ( MARK |
| 2065 | 1: ] EMPTY_LIST |
| 2066 | 2: q BINPUT 0 |
| 2067 | 4: ( MARK |
| 2068 | 5: h BINGET 0 |
| 2069 | 7: t TUPLE (MARK at 4) |
| 2070 | 8: q BINPUT 1 |
| 2071 | 10: a APPEND |
| 2072 | 11: 1 POP_MARK (MARK at 0) |
| 2073 | 12: h BINGET 1 |
| 2074 | 14: . STOP |
| 2075 | """ |
| 2076 | |
| 2077 | __test__ = {'dissassembler_test': _dis_test, |
| 2078 | } |
| 2079 | |
| 2080 | def _test(): |
| 2081 | import doctest |
| 2082 | return doctest.testmod() |
| 2083 | |
| 2084 | if __name__ == "__main__": |
| 2085 | _test() |