blob: 919ebe4387ba09618baaf93d080404c2a37b11b9 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Georg Brandl116aa622007-08-15 14:28:22 +000012.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
13
Christian Heimesfe337bf2008-03-23 21:54:12 +000014.. import modules for testing inline doctests with the Sphinx doctest builder
15.. testsetup:: *
16
17 import decimal
18 import math
19 from decimal import *
20 # make sure each group gets a fresh context
21 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000022
Georg Brandl116aa622007-08-15 14:28:22 +000023The :mod:`decimal` module provides support for decimal floating point
Thomas Wouters1b7f8912007-09-19 03:06:30 +000024arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000025
Christian Heimes3feef612008-02-11 06:19:17 +000026* Decimal "is based on a floating-point model which was designed with people
27 in mind, and necessarily has a paramount guiding principle -- computers must
28 provide an arithmetic that works in the same way as the arithmetic that
29 people learn at school." -- excerpt from the decimal arithmetic specification.
30
Georg Brandl116aa622007-08-15 14:28:22 +000031* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050032 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000033 floating point. End users typically would not expect ``1.1 + 2.2`` to display
34 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000037 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000038 is :const:`5.5511151231257827e-017`. While near to zero, the differences
39 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000040 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000041 equality invariants.
42
43* The decimal module incorporates a notion of significant places so that ``1.30
44 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
45 This is the customary presentation for monetary applications. For
46 multiplication, the "schoolbook" approach uses all the figures in the
47 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
48 1.20`` gives :const:`1.5600`.
49
50* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000051 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000052 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000053
Mark Dickinson43ef32a2010-11-07 11:24:44 +000054 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000055 >>> getcontext().prec = 6
56 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000057 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000058 >>> getcontext().prec = 28
59 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000060 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000061
62* Both binary and decimal floating point are implemented in terms of published
63 standards. While the built-in float type exposes only a modest portion of its
64 capabilities, the decimal module exposes all required parts of the standard.
65 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000066 This includes an option to enforce exact arithmetic by using exceptions
67 to block any inexact operations.
68
69* The decimal module was designed to support "without prejudice, both exact
70 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
71 and rounded floating-point arithmetic." -- excerpt from the decimal
72 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000073
74The module design is centered around three concepts: the decimal number, the
75context for arithmetic, and signals.
76
77A decimal number is immutable. It has a sign, coefficient digits, and an
78exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000079trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000080:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
81differentiates :const:`-0` from :const:`+0`.
82
83The context for arithmetic is an environment specifying precision, rounding
84rules, limits on exponents, flags indicating the results of operations, and trap
85enablers which determine whether signals are treated as exceptions. Rounding
86options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
87:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000088:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000089
90Signals are groups of exceptional conditions arising during the course of
91computation. Depending on the needs of the application, signals may be ignored,
92considered as informational, or treated as exceptions. The signals in the
93decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
94:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
95:const:`Overflow`, and :const:`Underflow`.
96
97For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +000098encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +000099set to one, an exception is raised. Flags are sticky, so the user needs to
100reset them before monitoring a calculation.
101
102
103.. seealso::
104
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000105 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000106 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000107
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000108 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000109 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000110
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000111.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000112
113
114.. _decimal-tutorial:
115
116Quick-start Tutorial
117--------------------
118
119The usual start to using decimals is importing the module, viewing the current
120context with :func:`getcontext` and, if necessary, setting new values for
121precision, rounding, or enabled traps::
122
123 >>> from decimal import *
124 >>> getcontext()
125 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000126 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000127 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000128
129 >>> getcontext().prec = 7 # Set a new precision
130
Mark Dickinsone534a072010-04-04 22:13:14 +0000131Decimal instances can be constructed from integers, strings, floats, or tuples.
132Construction from an integer or a float performs an exact conversion of the
133value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000134:const:`NaN` which stands for "Not a number", positive and negative
Christian Heimesfe337bf2008-03-23 21:54:12 +0000135:const:`Infinity`, and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000136
Facundo Batista789bdf02008-06-21 17:29:41 +0000137 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000138 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000139 Decimal('10')
140 >>> Decimal('3.14')
141 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000142 >>> Decimal(3.14)
143 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000144 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000145 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000146 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000147 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000148 >>> Decimal(2) ** Decimal('0.5')
149 Decimal('1.414213562373095048801688724')
150 >>> Decimal('NaN')
151 Decimal('NaN')
152 >>> Decimal('-Infinity')
153 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000154
155The significance of a new Decimal is determined solely by the number of digits
156input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000157operations.
158
159.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000160
161 >>> getcontext().prec = 6
162 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000163 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000164 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000165 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000166 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000167 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000168 >>> getcontext().rounding = ROUND_UP
169 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000170 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000171
172Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000173floating point flying circus:
174
175.. doctest::
176 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000177
Facundo Batista789bdf02008-06-21 17:29:41 +0000178 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000179 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000180 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000181 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000182 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000183 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000184 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
185 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000186 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000187 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000188 >>> a,b,c = data[:3]
189 >>> str(a)
190 '1.34'
191 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000192 1.34
193 >>> round(a, 1)
194 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000195 >>> int(a)
196 1
197 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000198 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000199 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000200 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000201 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000202 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000203
Christian Heimesfe337bf2008-03-23 21:54:12 +0000204And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000205
Facundo Batista789bdf02008-06-21 17:29:41 +0000206 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000207 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000208 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000209 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000210 Decimal('2.718281828459045235360287471')
211 >>> Decimal('10').ln()
212 Decimal('2.302585092994045684017991455')
213 >>> Decimal('10').log10()
214 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000215
Georg Brandl116aa622007-08-15 14:28:22 +0000216The :meth:`quantize` method rounds a number to a fixed exponent. This method is
217useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000218places:
Georg Brandl116aa622007-08-15 14:28:22 +0000219
220 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000221 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000222 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000223 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000224
225As shown above, the :func:`getcontext` function accesses the current context and
226allows the settings to be changed. This approach meets the needs of most
227applications.
228
229For more advanced work, it may be useful to create alternate contexts using the
230Context() constructor. To make an alternate active, use the :func:`setcontext`
231function.
232
233In accordance with the standard, the :mod:`Decimal` module provides two ready to
234use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
235former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000236enabled:
237
238.. doctest:: newcontext
239 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000240
241 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
242 >>> setcontext(myothercontext)
243 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000244 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000245
246 >>> ExtendedContext
247 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000248 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000249 >>> setcontext(ExtendedContext)
250 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000251 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000252 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000253 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000254
255 >>> setcontext(BasicContext)
256 >>> Decimal(42) / Decimal(0)
257 Traceback (most recent call last):
258 File "<pyshell#143>", line 1, in -toplevel-
259 Decimal(42) / Decimal(0)
260 DivisionByZero: x / 0
261
262Contexts also have signal flags for monitoring exceptional conditions
263encountered during computations. The flags remain set until explicitly cleared,
264so it is best to clear the flags before each set of monitored computations by
265using the :meth:`clear_flags` method. ::
266
267 >>> setcontext(ExtendedContext)
268 >>> getcontext().clear_flags()
269 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000270 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000271 >>> getcontext()
272 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000273 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000274
275The *flags* entry shows that the rational approximation to :const:`Pi` was
276rounded (digits beyond the context precision were thrown away) and that the
277result is inexact (some of the discarded digits were non-zero).
278
279Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000280context:
Georg Brandl116aa622007-08-15 14:28:22 +0000281
Christian Heimesfe337bf2008-03-23 21:54:12 +0000282.. doctest:: newcontext
283
284 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000285 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000286 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000287 >>> getcontext().traps[DivisionByZero] = 1
288 >>> Decimal(1) / Decimal(0)
289 Traceback (most recent call last):
290 File "<pyshell#112>", line 1, in -toplevel-
291 Decimal(1) / Decimal(0)
292 DivisionByZero: x / 0
293
294Most programs adjust the current context only once, at the beginning of the
295program. And, in many applications, data is converted to :class:`Decimal` with
296a single cast inside a loop. With context set and decimals created, the bulk of
297the program manipulates the data no differently than with other Python numeric
298types.
299
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000300.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000301
302
303.. _decimal-decimal:
304
305Decimal objects
306---------------
307
308
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000309.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000310
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000311 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000312
Raymond Hettinger96798592010-04-02 16:58:27 +0000313 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000314 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000315 string, it should conform to the decimal numeric string syntax after leading
316 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000317
318 sign ::= '+' | '-'
319 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
320 indicator ::= 'e' | 'E'
321 digits ::= digit [digit]...
322 decimal-part ::= digits '.' [digits] | ['.'] digits
323 exponent-part ::= indicator [sign] digits
324 infinity ::= 'Infinity' | 'Inf'
325 nan ::= 'NaN' [digits] | 'sNaN' [digits]
326 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000327 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000328
Mark Dickinson345adc42009-08-02 10:14:23 +0000329 Other Unicode decimal digits are also permitted where ``digit``
330 appears above. These include decimal digits from various other
331 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
332 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
333
Georg Brandl116aa622007-08-15 14:28:22 +0000334 If *value* is a :class:`tuple`, it should have three components, a sign
335 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
336 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000337 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000338
Raymond Hettinger96798592010-04-02 16:58:27 +0000339 If *value* is a :class:`float`, the binary floating point value is losslessly
340 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000341 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
342 converts to
343 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000344
Georg Brandl116aa622007-08-15 14:28:22 +0000345 The *context* precision does not affect how many digits are stored. That is
346 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000347 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000348 only three.
349
350 The purpose of the *context* argument is determining what to do if *value* is a
351 malformed string. If the context traps :const:`InvalidOperation`, an exception
352 is raised; otherwise, the constructor returns a new Decimal with the value of
353 :const:`NaN`.
354
355 Once constructed, :class:`Decimal` objects are immutable.
356
Mark Dickinsone534a072010-04-04 22:13:14 +0000357 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000358 The argument to the constructor is now permitted to be a :class:`float`
359 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000360
Benjamin Petersone41251e2008-04-25 01:59:09 +0000361 Decimal floating point objects share many properties with the other built-in
362 numeric types such as :class:`float` and :class:`int`. All of the usual math
363 operations and special methods apply. Likewise, decimal objects can be
364 copied, pickled, printed, used as dictionary keys, used as set elements,
365 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000366 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000367
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000368 Decimal objects cannot generally be combined with floats or
369 instances of :class:`fractions.Fraction` in arithmetic operations:
370 an attempt to add a :class:`Decimal` to a :class:`float`, for
371 example, will raise a :exc:`TypeError`. However, it is possible to
372 use Python's comparison operators to compare a :class:`Decimal`
373 instance ``x`` with another number ``y``. This avoids confusing results
374 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000375
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000376 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000377 Mixed-type comparisons between :class:`Decimal` instances and other
378 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000379
Benjamin Petersone41251e2008-04-25 01:59:09 +0000380 In addition to the standard numeric properties, decimal floating point
381 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000382
Georg Brandl116aa622007-08-15 14:28:22 +0000383
Benjamin Petersone41251e2008-04-25 01:59:09 +0000384 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000385
Benjamin Petersone41251e2008-04-25 01:59:09 +0000386 Return the adjusted exponent after shifting out the coefficient's
387 rightmost digits until only the lead digit remains:
388 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
389 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000390
Georg Brandl116aa622007-08-15 14:28:22 +0000391
Benjamin Petersone41251e2008-04-25 01:59:09 +0000392 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000393
Benjamin Petersone41251e2008-04-25 01:59:09 +0000394 Return a :term:`named tuple` representation of the number:
395 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000396
Christian Heimes25bb7832008-01-11 16:17:00 +0000397
Benjamin Petersone41251e2008-04-25 01:59:09 +0000398 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000399
Benjamin Petersone41251e2008-04-25 01:59:09 +0000400 Return the canonical encoding of the argument. Currently, the encoding of
401 a :class:`Decimal` instance is always canonical, so this operation returns
402 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000403
Benjamin Petersone41251e2008-04-25 01:59:09 +0000404 .. method:: compare(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000405
Georg Brandl05f5ab72008-09-24 09:11:47 +0000406 Compare the values of two Decimal instances. :meth:`compare` returns a
407 Decimal instance, and if either operand is a NaN then the result is a
408 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000409
Georg Brandl05f5ab72008-09-24 09:11:47 +0000410 a or b is a NaN ==> Decimal('NaN')
411 a < b ==> Decimal('-1')
412 a == b ==> Decimal('0')
413 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000414
Benjamin Petersone41251e2008-04-25 01:59:09 +0000415 .. method:: compare_signal(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000416
Benjamin Petersone41251e2008-04-25 01:59:09 +0000417 This operation is identical to the :meth:`compare` method, except that all
418 NaNs signal. That is, if neither operand is a signaling NaN then any
419 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000420
Benjamin Petersone41251e2008-04-25 01:59:09 +0000421 .. method:: compare_total(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000422
Benjamin Petersone41251e2008-04-25 01:59:09 +0000423 Compare two operands using their abstract representation rather than their
424 numerical value. Similar to the :meth:`compare` method, but the result
425 gives a total ordering on :class:`Decimal` instances. Two
426 :class:`Decimal` instances with the same numeric value but different
427 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000428
Benjamin Petersone41251e2008-04-25 01:59:09 +0000429 >>> Decimal('12.0').compare_total(Decimal('12'))
430 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000431
Benjamin Petersone41251e2008-04-25 01:59:09 +0000432 Quiet and signaling NaNs are also included in the total ordering. The
433 result of this function is ``Decimal('0')`` if both operands have the same
434 representation, ``Decimal('-1')`` if the first operand is lower in the
435 total order than the second, and ``Decimal('1')`` if the first operand is
436 higher in the total order than the second operand. See the specification
437 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000438
Benjamin Petersone41251e2008-04-25 01:59:09 +0000439 .. method:: compare_total_mag(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000440
Benjamin Petersone41251e2008-04-25 01:59:09 +0000441 Compare two operands using their abstract representation rather than their
442 value as in :meth:`compare_total`, but ignoring the sign of each operand.
443 ``x.compare_total_mag(y)`` is equivalent to
444 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000445
Facundo Batista789bdf02008-06-21 17:29:41 +0000446 .. method:: conjugate()
447
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000448 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000449 Specification.
450
Benjamin Petersone41251e2008-04-25 01:59:09 +0000451 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000452
Benjamin Petersone41251e2008-04-25 01:59:09 +0000453 Return the absolute value of the argument. This operation is unaffected
454 by the context and is quiet: no flags are changed and no rounding is
455 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000456
Benjamin Petersone41251e2008-04-25 01:59:09 +0000457 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000458
Benjamin Petersone41251e2008-04-25 01:59:09 +0000459 Return the negation of the argument. This operation is unaffected by the
460 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000461
Benjamin Petersone41251e2008-04-25 01:59:09 +0000462 .. method:: copy_sign(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000463
Benjamin Petersone41251e2008-04-25 01:59:09 +0000464 Return a copy of the first operand with the sign set to be the same as the
465 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000466
Benjamin Petersone41251e2008-04-25 01:59:09 +0000467 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
468 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000469
Benjamin Petersone41251e2008-04-25 01:59:09 +0000470 This operation is unaffected by the context and is quiet: no flags are
471 changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000472
Benjamin Petersone41251e2008-04-25 01:59:09 +0000473 .. method:: exp([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000474
Benjamin Petersone41251e2008-04-25 01:59:09 +0000475 Return the value of the (natural) exponential function ``e**x`` at the
476 given number. The result is correctly rounded using the
477 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000478
Benjamin Petersone41251e2008-04-25 01:59:09 +0000479 >>> Decimal(1).exp()
480 Decimal('2.718281828459045235360287471')
481 >>> Decimal(321).exp()
482 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000483
Raymond Hettinger771ed762009-01-03 19:20:32 +0000484 .. method:: from_float(f)
485
486 Classmethod that converts a float to a decimal number, exactly.
487
488 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
489 Since 0.1 is not exactly representable in binary floating point, the
490 value is stored as the nearest representable value which is
491 `0x1.999999999999ap-4`. That equivalent value in decimal is
492 `0.1000000000000000055511151231257827021181583404541015625`.
493
Mark Dickinsone534a072010-04-04 22:13:14 +0000494 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
495 can also be constructed directly from a :class:`float`.
496
Raymond Hettinger771ed762009-01-03 19:20:32 +0000497 .. doctest::
498
499 >>> Decimal.from_float(0.1)
500 Decimal('0.1000000000000000055511151231257827021181583404541015625')
501 >>> Decimal.from_float(float('nan'))
502 Decimal('NaN')
503 >>> Decimal.from_float(float('inf'))
504 Decimal('Infinity')
505 >>> Decimal.from_float(float('-inf'))
506 Decimal('-Infinity')
507
Georg Brandl45f53372009-01-03 21:15:20 +0000508 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000509
Benjamin Petersone41251e2008-04-25 01:59:09 +0000510 .. method:: fma(other, third[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000511
Benjamin Petersone41251e2008-04-25 01:59:09 +0000512 Fused multiply-add. Return self*other+third with no rounding of the
513 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000514
Benjamin Petersone41251e2008-04-25 01:59:09 +0000515 >>> Decimal(2).fma(3, 5)
516 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000517
Benjamin Petersone41251e2008-04-25 01:59:09 +0000518 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000519
Benjamin Petersone41251e2008-04-25 01:59:09 +0000520 Return :const:`True` if the argument is canonical and :const:`False`
521 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
522 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000523
Benjamin Petersone41251e2008-04-25 01:59:09 +0000524 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000525
Benjamin Petersone41251e2008-04-25 01:59:09 +0000526 Return :const:`True` if the argument is a finite number, and
527 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000528
Benjamin Petersone41251e2008-04-25 01:59:09 +0000529 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000530
Benjamin Petersone41251e2008-04-25 01:59:09 +0000531 Return :const:`True` if the argument is either positive or negative
532 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000533
Benjamin Petersone41251e2008-04-25 01:59:09 +0000534 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000535
Benjamin Petersone41251e2008-04-25 01:59:09 +0000536 Return :const:`True` if the argument is a (quiet or signaling) NaN and
537 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000538
Benjamin Petersone41251e2008-04-25 01:59:09 +0000539 .. method:: is_normal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000540
Benjamin Petersone41251e2008-04-25 01:59:09 +0000541 Return :const:`True` if the argument is a *normal* finite number. Return
542 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000543
Benjamin Petersone41251e2008-04-25 01:59:09 +0000544 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000545
Benjamin Petersone41251e2008-04-25 01:59:09 +0000546 Return :const:`True` if the argument is a quiet NaN, and
547 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000548
Benjamin Petersone41251e2008-04-25 01:59:09 +0000549 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000550
Benjamin Petersone41251e2008-04-25 01:59:09 +0000551 Return :const:`True` if the argument has a negative sign and
552 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000553
Benjamin Petersone41251e2008-04-25 01:59:09 +0000554 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000555
Benjamin Petersone41251e2008-04-25 01:59:09 +0000556 Return :const:`True` if the argument is a signaling NaN and :const:`False`
557 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000558
Benjamin Petersone41251e2008-04-25 01:59:09 +0000559 .. method:: is_subnormal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000560
Benjamin Petersone41251e2008-04-25 01:59:09 +0000561 Return :const:`True` if the argument is subnormal, and :const:`False`
562 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000563
Benjamin Petersone41251e2008-04-25 01:59:09 +0000564 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000565
Benjamin Petersone41251e2008-04-25 01:59:09 +0000566 Return :const:`True` if the argument is a (positive or negative) zero and
567 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000568
Benjamin Petersone41251e2008-04-25 01:59:09 +0000569 .. method:: ln([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000570
Benjamin Petersone41251e2008-04-25 01:59:09 +0000571 Return the natural (base e) logarithm of the operand. The result is
572 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000573
Benjamin Petersone41251e2008-04-25 01:59:09 +0000574 .. method:: log10([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000575
Benjamin Petersone41251e2008-04-25 01:59:09 +0000576 Return the base ten logarithm of the operand. The result is correctly
577 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000578
Benjamin Petersone41251e2008-04-25 01:59:09 +0000579 .. method:: logb([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000580
Benjamin Petersone41251e2008-04-25 01:59:09 +0000581 For a nonzero number, return the adjusted exponent of its operand as a
582 :class:`Decimal` instance. If the operand is a zero then
583 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
584 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
585 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000586
Benjamin Petersone41251e2008-04-25 01:59:09 +0000587 .. method:: logical_and(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000588
Benjamin Petersone41251e2008-04-25 01:59:09 +0000589 :meth:`logical_and` is a logical operation which takes two *logical
590 operands* (see :ref:`logical_operands_label`). The result is the
591 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000592
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000593 .. method:: logical_invert([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000594
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000595 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000596 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000597
Benjamin Petersone41251e2008-04-25 01:59:09 +0000598 .. method:: logical_or(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000599
Benjamin Petersone41251e2008-04-25 01:59:09 +0000600 :meth:`logical_or` is a logical operation which takes two *logical
601 operands* (see :ref:`logical_operands_label`). The result is the
602 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000603
Benjamin Petersone41251e2008-04-25 01:59:09 +0000604 .. method:: logical_xor(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000605
Benjamin Petersone41251e2008-04-25 01:59:09 +0000606 :meth:`logical_xor` is a logical operation which takes two *logical
607 operands* (see :ref:`logical_operands_label`). The result is the
608 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000609
Benjamin Petersone41251e2008-04-25 01:59:09 +0000610 .. method:: max(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000611
Benjamin Petersone41251e2008-04-25 01:59:09 +0000612 Like ``max(self, other)`` except that the context rounding rule is applied
613 before returning and that :const:`NaN` values are either signaled or
614 ignored (depending on the context and whether they are signaling or
615 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000616
Benjamin Petersone41251e2008-04-25 01:59:09 +0000617 .. method:: max_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000618
Georg Brandl502d9a52009-07-26 15:02:41 +0000619 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000620 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000621
Benjamin Petersone41251e2008-04-25 01:59:09 +0000622 .. method:: min(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000623
Benjamin Petersone41251e2008-04-25 01:59:09 +0000624 Like ``min(self, other)`` except that the context rounding rule is applied
625 before returning and that :const:`NaN` values are either signaled or
626 ignored (depending on the context and whether they are signaling or
627 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000628
Benjamin Petersone41251e2008-04-25 01:59:09 +0000629 .. method:: min_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000630
Georg Brandl502d9a52009-07-26 15:02:41 +0000631 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000632 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000633
Benjamin Petersone41251e2008-04-25 01:59:09 +0000634 .. method:: next_minus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000635
Benjamin Petersone41251e2008-04-25 01:59:09 +0000636 Return the largest number representable in the given context (or in the
637 current thread's context if no context is given) that is smaller than the
638 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000639
Benjamin Petersone41251e2008-04-25 01:59:09 +0000640 .. method:: next_plus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000641
Benjamin Petersone41251e2008-04-25 01:59:09 +0000642 Return the smallest number representable in the given context (or in the
643 current thread's context if no context is given) that is larger than the
644 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000645
Benjamin Petersone41251e2008-04-25 01:59:09 +0000646 .. method:: next_toward(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000647
Benjamin Petersone41251e2008-04-25 01:59:09 +0000648 If the two operands are unequal, return the number closest to the first
649 operand in the direction of the second operand. If both operands are
650 numerically equal, return a copy of the first operand with the sign set to
651 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000652
Benjamin Petersone41251e2008-04-25 01:59:09 +0000653 .. method:: normalize([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000654
Benjamin Petersone41251e2008-04-25 01:59:09 +0000655 Normalize the number by stripping the rightmost trailing zeros and
656 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700657 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000658 of an equivalence class. For example, ``Decimal('32.100')`` and
659 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
660 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000661
Benjamin Petersone41251e2008-04-25 01:59:09 +0000662 .. method:: number_class([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000663
Benjamin Petersone41251e2008-04-25 01:59:09 +0000664 Return a string describing the *class* of the operand. The returned value
665 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000666
Benjamin Petersone41251e2008-04-25 01:59:09 +0000667 * ``"-Infinity"``, indicating that the operand is negative infinity.
668 * ``"-Normal"``, indicating that the operand is a negative normal number.
669 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
670 * ``"-Zero"``, indicating that the operand is a negative zero.
671 * ``"+Zero"``, indicating that the operand is a positive zero.
672 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
673 * ``"+Normal"``, indicating that the operand is a positive normal number.
674 * ``"+Infinity"``, indicating that the operand is positive infinity.
675 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
676 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000677
Benjamin Petersone41251e2008-04-25 01:59:09 +0000678 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000679
Benjamin Petersone41251e2008-04-25 01:59:09 +0000680 Return a value equal to the first operand after rounding and having the
681 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000682
Benjamin Petersone41251e2008-04-25 01:59:09 +0000683 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
684 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000685
Benjamin Petersone41251e2008-04-25 01:59:09 +0000686 Unlike other operations, if the length of the coefficient after the
687 quantize operation would be greater than precision, then an
688 :const:`InvalidOperation` is signaled. This guarantees that, unless there
689 is an error condition, the quantized exponent is always equal to that of
690 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000691
Benjamin Petersone41251e2008-04-25 01:59:09 +0000692 Also unlike other operations, quantize never signals Underflow, even if
693 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000694
Benjamin Petersone41251e2008-04-25 01:59:09 +0000695 If the exponent of the second operand is larger than that of the first
696 then rounding may be necessary. In this case, the rounding mode is
697 determined by the ``rounding`` argument if given, else by the given
698 ``context`` argument; if neither argument is given the rounding mode of
699 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000700
Benjamin Petersone41251e2008-04-25 01:59:09 +0000701 If *watchexp* is set (default), then an error is returned whenever the
702 resulting exponent is greater than :attr:`Emax` or less than
703 :attr:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000704
Benjamin Petersone41251e2008-04-25 01:59:09 +0000705 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000706
Benjamin Petersone41251e2008-04-25 01:59:09 +0000707 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
708 class does all its arithmetic. Included for compatibility with the
709 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000710
Benjamin Petersone41251e2008-04-25 01:59:09 +0000711 .. method:: remainder_near(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000712
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000713 Return the remainder from dividing *self* by *other*. This differs from
714 ``self % other`` in that the sign of the remainder is chosen so as to
715 minimize its absolute value. More precisely, the return value is
716 ``self - n * other`` where ``n`` is the integer nearest to the exact
717 value of ``self / other``, and if two integers are equally near then the
718 even one is chosen.
Georg Brandl116aa622007-08-15 14:28:22 +0000719
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000720 If the result is zero then its sign will be the sign of *self*.
721
722 >>> Decimal(18).remainder_near(Decimal(10))
723 Decimal('-2')
724 >>> Decimal(25).remainder_near(Decimal(10))
725 Decimal('5')
726 >>> Decimal(35).remainder_near(Decimal(10))
727 Decimal('-5')
Georg Brandl116aa622007-08-15 14:28:22 +0000728
Benjamin Petersone41251e2008-04-25 01:59:09 +0000729 .. method:: rotate(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000730
Benjamin Petersone41251e2008-04-25 01:59:09 +0000731 Return the result of rotating the digits of the first operand by an amount
732 specified by the second operand. The second operand must be an integer in
733 the range -precision through precision. The absolute value of the second
734 operand gives the number of places to rotate. If the second operand is
735 positive then rotation is to the left; otherwise rotation is to the right.
736 The coefficient of the first operand is padded on the left with zeros to
737 length precision if necessary. The sign and exponent of the first operand
738 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000739
Benjamin Petersone41251e2008-04-25 01:59:09 +0000740 .. method:: same_quantum(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000741
Benjamin Petersone41251e2008-04-25 01:59:09 +0000742 Test whether self and other have the same exponent or whether both are
743 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000744
Benjamin Petersone41251e2008-04-25 01:59:09 +0000745 .. method:: scaleb(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000746
Benjamin Petersone41251e2008-04-25 01:59:09 +0000747 Return the first operand with exponent adjusted by the second.
748 Equivalently, return the first operand multiplied by ``10**other``. The
749 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000750
Benjamin Petersone41251e2008-04-25 01:59:09 +0000751 .. method:: shift(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000752
Benjamin Petersone41251e2008-04-25 01:59:09 +0000753 Return the result of shifting the digits of the first operand by an amount
754 specified by the second operand. The second operand must be an integer in
755 the range -precision through precision. The absolute value of the second
756 operand gives the number of places to shift. If the second operand is
757 positive then the shift is to the left; otherwise the shift is to the
758 right. Digits shifted into the coefficient are zeros. The sign and
759 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000760
Benjamin Petersone41251e2008-04-25 01:59:09 +0000761 .. method:: sqrt([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000762
Benjamin Petersone41251e2008-04-25 01:59:09 +0000763 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000764
Georg Brandl116aa622007-08-15 14:28:22 +0000765
Benjamin Petersone41251e2008-04-25 01:59:09 +0000766 .. method:: to_eng_string([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000767
Benjamin Petersone41251e2008-04-25 01:59:09 +0000768 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000769
Benjamin Petersone41251e2008-04-25 01:59:09 +0000770 Engineering notation has an exponent which is a multiple of 3, so there
771 are up to 3 digits left of the decimal place. For example, converts
772 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000773
Benjamin Petersone41251e2008-04-25 01:59:09 +0000774 .. method:: to_integral([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000775
Benjamin Petersone41251e2008-04-25 01:59:09 +0000776 Identical to the :meth:`to_integral_value` method. The ``to_integral``
777 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000778
Benjamin Petersone41251e2008-04-25 01:59:09 +0000779 .. method:: to_integral_exact([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000780
Benjamin Petersone41251e2008-04-25 01:59:09 +0000781 Round to the nearest integer, signaling :const:`Inexact` or
782 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
783 determined by the ``rounding`` parameter if given, else by the given
784 ``context``. If neither parameter is given then the rounding mode of the
785 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000786
Benjamin Petersone41251e2008-04-25 01:59:09 +0000787 .. method:: to_integral_value([rounding[, context]])
Georg Brandl116aa622007-08-15 14:28:22 +0000788
Benjamin Petersone41251e2008-04-25 01:59:09 +0000789 Round to the nearest integer without signaling :const:`Inexact` or
790 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
791 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000792
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000793
794.. _logical_operands_label:
795
796Logical operands
797^^^^^^^^^^^^^^^^
798
799The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
800and :meth:`logical_xor` methods expect their arguments to be *logical
801operands*. A *logical operand* is a :class:`Decimal` instance whose
802exponent and sign are both zero, and whose digits are all either
803:const:`0` or :const:`1`.
804
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000805.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000806
807
808.. _decimal-context:
809
810Context objects
811---------------
812
813Contexts are environments for arithmetic operations. They govern precision, set
814rules for rounding, determine which signals are treated as exceptions, and limit
815the range for exponents.
816
817Each thread has its own current context which is accessed or changed using the
818:func:`getcontext` and :func:`setcontext` functions:
819
820
821.. function:: getcontext()
822
823 Return the current context for the active thread.
824
825
826.. function:: setcontext(c)
827
828 Set the current context for the active thread to *c*.
829
Georg Brandle6bcc912008-05-12 18:05:20 +0000830You can also use the :keyword:`with` statement and the :func:`localcontext`
831function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000832
833.. function:: localcontext([c])
834
835 Return a context manager that will set the current context for the active thread
836 to a copy of *c* on entry to the with-statement and restore the previous context
837 when exiting the with-statement. If no context is specified, a copy of the
838 current context is used.
839
Georg Brandl116aa622007-08-15 14:28:22 +0000840 For example, the following code sets the current decimal precision to 42 places,
841 performs a calculation, and then automatically restores the previous context::
842
Georg Brandl116aa622007-08-15 14:28:22 +0000843 from decimal import localcontext
844
845 with localcontext() as ctx:
846 ctx.prec = 42 # Perform a high precision calculation
847 s = calculate_something()
848 s = +s # Round the final result back to the default precision
849
850New contexts can also be created using the :class:`Context` constructor
851described below. In addition, the module provides three pre-made contexts:
852
853
854.. class:: BasicContext
855
856 This is a standard context defined by the General Decimal Arithmetic
857 Specification. Precision is set to nine. Rounding is set to
858 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
859 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
860 :const:`Subnormal`.
861
862 Because many of the traps are enabled, this context is useful for debugging.
863
864
865.. class:: ExtendedContext
866
867 This is a standard context defined by the General Decimal Arithmetic
868 Specification. Precision is set to nine. Rounding is set to
869 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
870 exceptions are not raised during computations).
871
Christian Heimes3feef612008-02-11 06:19:17 +0000872 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000873 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
874 raising exceptions. This allows an application to complete a run in the
875 presence of conditions that would otherwise halt the program.
876
877
878.. class:: DefaultContext
879
880 This context is used by the :class:`Context` constructor as a prototype for new
881 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000882 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000883
884 This context is most useful in multi-threaded environments. Changing one of the
885 fields before threads are started has the effect of setting system-wide
886 defaults. Changing the fields after threads have started is not recommended as
887 it would require thread synchronization to prevent race conditions.
888
889 In single threaded environments, it is preferable to not use this context at
890 all. Instead, simply create contexts explicitly as described below.
891
892 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
893 for Overflow, InvalidOperation, and DivisionByZero.
894
895In addition to the three supplied contexts, new contexts can be created with the
896:class:`Context` constructor.
897
898
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000899.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=None, clamp=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000900
901 Creates a new context. If a field is not specified or is :const:`None`, the
902 default values are copied from the :const:`DefaultContext`. If the *flags*
903 field is not specified or is :const:`None`, all flags are cleared.
904
905 The *prec* field is a positive integer that sets the precision for arithmetic
906 operations in the context.
907
908 The *rounding* option is one of:
909
910 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
911 * :const:`ROUND_DOWN` (towards zero),
912 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
913 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
914 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
915 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
916 * :const:`ROUND_UP` (away from zero).
Georg Brandl48310cd2009-01-03 21:18:54 +0000917 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000918 would have been 0 or 5; otherwise towards zero)
Georg Brandl116aa622007-08-15 14:28:22 +0000919
920 The *traps* and *flags* fields list any signals to be set. Generally, new
921 contexts should only set traps and leave the flags clear.
922
923 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
924 for exponents.
925
926 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
927 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
928 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
929
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000930 The *clamp* field is either :const:`0` (the default) or :const:`1`.
931 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
932 instance representable in this context is strictly limited to the
933 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
934 :const:`0` then a weaker condition holds: the adjusted exponent of
935 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
936 :const:`1`, a large normal number will, where possible, have its
937 exponent reduced and a corresponding number of zeros added to its
938 coefficient, in order to fit the exponent constraints; this
939 preserves the value of the number but loses information about
940 significant trailing zeros. For example::
941
942 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
943 Decimal('1.23000E+999')
944
945 A *clamp* value of :const:`1` allows compatibility with the
946 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +0000947
Benjamin Petersone41251e2008-04-25 01:59:09 +0000948 The :class:`Context` class defines several general purpose methods as well as
949 a large number of methods for doing arithmetic directly in a given context.
950 In addition, for each of the :class:`Decimal` methods described above (with
951 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +0000952 a corresponding :class:`Context` method. For example, for a :class:`Context`
953 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
954 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000955 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +0000956 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +0000957
958
Benjamin Petersone41251e2008-04-25 01:59:09 +0000959 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +0000960
Benjamin Petersone41251e2008-04-25 01:59:09 +0000961 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000962
Benjamin Petersone41251e2008-04-25 01:59:09 +0000963 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000964
Benjamin Petersone41251e2008-04-25 01:59:09 +0000965 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000966
Benjamin Petersone41251e2008-04-25 01:59:09 +0000967 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +0000968
Benjamin Petersone41251e2008-04-25 01:59:09 +0000969 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +0000970
Benjamin Petersone41251e2008-04-25 01:59:09 +0000971 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000972
Benjamin Petersone41251e2008-04-25 01:59:09 +0000973 Creates a new Decimal instance from *num* but using *self* as
974 context. Unlike the :class:`Decimal` constructor, the context precision,
975 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +0000976
Benjamin Petersone41251e2008-04-25 01:59:09 +0000977 This is useful because constants are often given to a greater precision
978 than is needed by the application. Another benefit is that rounding
979 immediately eliminates unintended effects from digits beyond the current
980 precision. In the following example, using unrounded inputs means that
981 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +0000982
Benjamin Petersone41251e2008-04-25 01:59:09 +0000983 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000984
Benjamin Petersone41251e2008-04-25 01:59:09 +0000985 >>> getcontext().prec = 3
986 >>> Decimal('3.4445') + Decimal('1.0023')
987 Decimal('4.45')
988 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
989 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +0000990
Benjamin Petersone41251e2008-04-25 01:59:09 +0000991 This method implements the to-number operation of the IBM specification.
992 If the argument is a string, no leading or trailing whitespace is
993 permitted.
994
Georg Brandl45f53372009-01-03 21:15:20 +0000995 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +0000996
997 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +0000998 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +0000999 the context precision, rounding method, flags, and traps are applied to
1000 the conversion.
1001
1002 .. doctest::
1003
Georg Brandl45f53372009-01-03 21:15:20 +00001004 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1005 >>> context.create_decimal_from_float(math.pi)
1006 Decimal('3.1415')
1007 >>> context = Context(prec=5, traps=[Inexact])
1008 >>> context.create_decimal_from_float(math.pi)
1009 Traceback (most recent call last):
1010 ...
1011 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001012
Georg Brandl45f53372009-01-03 21:15:20 +00001013 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001014
Benjamin Petersone41251e2008-04-25 01:59:09 +00001015 .. method:: Etiny()
1016
1017 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1018 value for subnormal results. When underflow occurs, the exponent is set
1019 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001020
Benjamin Petersone41251e2008-04-25 01:59:09 +00001021 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001022
Benjamin Petersone41251e2008-04-25 01:59:09 +00001023 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001024
Benjamin Petersone41251e2008-04-25 01:59:09 +00001025 The usual approach to working with decimals is to create :class:`Decimal`
1026 instances and then apply arithmetic operations which take place within the
1027 current context for the active thread. An alternative approach is to use
1028 context methods for calculating within a specific context. The methods are
1029 similar to those for the :class:`Decimal` class and are only briefly
1030 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001031
1032
Benjamin Petersone41251e2008-04-25 01:59:09 +00001033 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001034
Benjamin Petersone41251e2008-04-25 01:59:09 +00001035 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001036
1037
Benjamin Petersone41251e2008-04-25 01:59:09 +00001038 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001039
Benjamin Petersone41251e2008-04-25 01:59:09 +00001040 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001041
1042
Facundo Batista789bdf02008-06-21 17:29:41 +00001043 .. method:: canonical(x)
1044
1045 Returns the same Decimal object *x*.
1046
1047
1048 .. method:: compare(x, y)
1049
1050 Compares *x* and *y* numerically.
1051
1052
1053 .. method:: compare_signal(x, y)
1054
1055 Compares the values of the two operands numerically.
1056
1057
1058 .. method:: compare_total(x, y)
1059
1060 Compares two operands using their abstract representation.
1061
1062
1063 .. method:: compare_total_mag(x, y)
1064
1065 Compares two operands using their abstract representation, ignoring sign.
1066
1067
1068 .. method:: copy_abs(x)
1069
1070 Returns a copy of *x* with the sign set to 0.
1071
1072
1073 .. method:: copy_negate(x)
1074
1075 Returns a copy of *x* with the sign inverted.
1076
1077
1078 .. method:: copy_sign(x, y)
1079
1080 Copies the sign from *y* to *x*.
1081
1082
Benjamin Petersone41251e2008-04-25 01:59:09 +00001083 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001084
Benjamin Petersone41251e2008-04-25 01:59:09 +00001085 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001086
1087
Benjamin Petersone41251e2008-04-25 01:59:09 +00001088 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001089
Benjamin Petersone41251e2008-04-25 01:59:09 +00001090 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001091
1092
Benjamin Petersone41251e2008-04-25 01:59:09 +00001093 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001094
Benjamin Petersone41251e2008-04-25 01:59:09 +00001095 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001096
1097
Facundo Batista789bdf02008-06-21 17:29:41 +00001098 .. method:: exp(x)
1099
1100 Returns `e ** x`.
1101
1102
1103 .. method:: fma(x, y, z)
1104
1105 Returns *x* multiplied by *y*, plus *z*.
1106
1107
1108 .. method:: is_canonical(x)
1109
1110 Returns True if *x* is canonical; otherwise returns False.
1111
1112
1113 .. method:: is_finite(x)
1114
1115 Returns True if *x* is finite; otherwise returns False.
1116
1117
1118 .. method:: is_infinite(x)
1119
1120 Returns True if *x* is infinite; otherwise returns False.
1121
1122
1123 .. method:: is_nan(x)
1124
1125 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1126
1127
1128 .. method:: is_normal(x)
1129
1130 Returns True if *x* is a normal number; otherwise returns False.
1131
1132
1133 .. method:: is_qnan(x)
1134
1135 Returns True if *x* is a quiet NaN; otherwise returns False.
1136
1137
1138 .. method:: is_signed(x)
1139
1140 Returns True if *x* is negative; otherwise returns False.
1141
1142
1143 .. method:: is_snan(x)
1144
1145 Returns True if *x* is a signaling NaN; otherwise returns False.
1146
1147
1148 .. method:: is_subnormal(x)
1149
1150 Returns True if *x* is subnormal; otherwise returns False.
1151
1152
1153 .. method:: is_zero(x)
1154
1155 Returns True if *x* is a zero; otherwise returns False.
1156
1157
1158 .. method:: ln(x)
1159
1160 Returns the natural (base e) logarithm of *x*.
1161
1162
1163 .. method:: log10(x)
1164
1165 Returns the base 10 logarithm of *x*.
1166
1167
1168 .. method:: logb(x)
1169
1170 Returns the exponent of the magnitude of the operand's MSD.
1171
1172
1173 .. method:: logical_and(x, y)
1174
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001175 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001176
1177
1178 .. method:: logical_invert(x)
1179
1180 Invert all the digits in *x*.
1181
1182
1183 .. method:: logical_or(x, y)
1184
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001185 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001186
1187
1188 .. method:: logical_xor(x, y)
1189
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001190 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001191
1192
1193 .. method:: max(x, y)
1194
1195 Compares two values numerically and returns the maximum.
1196
1197
1198 .. method:: max_mag(x, y)
1199
1200 Compares the values numerically with their sign ignored.
1201
1202
1203 .. method:: min(x, y)
1204
1205 Compares two values numerically and returns the minimum.
1206
1207
1208 .. method:: min_mag(x, y)
1209
1210 Compares the values numerically with their sign ignored.
1211
1212
Benjamin Petersone41251e2008-04-25 01:59:09 +00001213 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001214
Benjamin Petersone41251e2008-04-25 01:59:09 +00001215 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001216
1217
Benjamin Petersone41251e2008-04-25 01:59:09 +00001218 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001219
Benjamin Petersone41251e2008-04-25 01:59:09 +00001220 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001221
1222
Facundo Batista789bdf02008-06-21 17:29:41 +00001223 .. method:: next_minus(x)
1224
1225 Returns the largest representable number smaller than *x*.
1226
1227
1228 .. method:: next_plus(x)
1229
1230 Returns the smallest representable number larger than *x*.
1231
1232
1233 .. method:: next_toward(x, y)
1234
1235 Returns the number closest to *x*, in direction towards *y*.
1236
1237
1238 .. method:: normalize(x)
1239
1240 Reduces *x* to its simplest form.
1241
1242
1243 .. method:: number_class(x)
1244
1245 Returns an indication of the class of *x*.
1246
1247
Benjamin Petersone41251e2008-04-25 01:59:09 +00001248 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001249
Benjamin Petersone41251e2008-04-25 01:59:09 +00001250 Plus corresponds to the unary prefix plus operator in Python. This
1251 operation applies the context precision and rounding, so it is *not* an
1252 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001253
1254
Benjamin Petersone41251e2008-04-25 01:59:09 +00001255 .. method:: power(x, y[, modulo])
Georg Brandl116aa622007-08-15 14:28:22 +00001256
Benjamin Petersone41251e2008-04-25 01:59:09 +00001257 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001258
Benjamin Petersone41251e2008-04-25 01:59:09 +00001259 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1260 must be integral. The result will be inexact unless ``y`` is integral and
1261 the result is finite and can be expressed exactly in 'precision' digits.
1262 The result should always be correctly rounded, using the rounding mode of
1263 the current thread's context.
Georg Brandl116aa622007-08-15 14:28:22 +00001264
Benjamin Petersone41251e2008-04-25 01:59:09 +00001265 With three arguments, compute ``(x**y) % modulo``. For the three argument
1266 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001267
Benjamin Petersone41251e2008-04-25 01:59:09 +00001268 - all three arguments must be integral
1269 - ``y`` must be nonnegative
1270 - at least one of ``x`` or ``y`` must be nonzero
1271 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001272
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001273 The value resulting from ``Context.power(x, y, modulo)`` is
1274 equal to the value that would be obtained by computing ``(x**y)
1275 % modulo`` with unbounded precision, but is computed more
1276 efficiently. The exponent of the result is zero, regardless of
1277 the exponents of ``x``, ``y`` and ``modulo``. The result is
1278 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001279
Facundo Batista789bdf02008-06-21 17:29:41 +00001280
1281 .. method:: quantize(x, y)
1282
1283 Returns a value equal to *x* (rounded), having the exponent of *y*.
1284
1285
1286 .. method:: radix()
1287
1288 Just returns 10, as this is Decimal, :)
1289
1290
Benjamin Petersone41251e2008-04-25 01:59:09 +00001291 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001292
Benjamin Petersone41251e2008-04-25 01:59:09 +00001293 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001294
Benjamin Petersone41251e2008-04-25 01:59:09 +00001295 The sign of the result, if non-zero, is the same as that of the original
1296 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001297
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001298
Facundo Batista789bdf02008-06-21 17:29:41 +00001299 .. method:: remainder_near(x, y)
1300
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001301 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1302 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001303
1304
1305 .. method:: rotate(x, y)
1306
1307 Returns a rotated copy of *x*, *y* times.
1308
1309
1310 .. method:: same_quantum(x, y)
1311
1312 Returns True if the two operands have the same exponent.
1313
1314
1315 .. method:: scaleb (x, y)
1316
1317 Returns the first operand after adding the second value its exp.
1318
1319
1320 .. method:: shift(x, y)
1321
1322 Returns a shifted copy of *x*, *y* times.
1323
1324
1325 .. method:: sqrt(x)
1326
1327 Square root of a non-negative number to context precision.
1328
1329
Benjamin Petersone41251e2008-04-25 01:59:09 +00001330 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001331
Benjamin Petersone41251e2008-04-25 01:59:09 +00001332 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001333
Facundo Batista789bdf02008-06-21 17:29:41 +00001334
1335 .. method:: to_eng_string(x)
1336
1337 Converts a number to a string, using scientific notation.
1338
1339
1340 .. method:: to_integral_exact(x)
1341
1342 Rounds to an integer.
1343
1344
Benjamin Petersone41251e2008-04-25 01:59:09 +00001345 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001346
Benjamin Petersone41251e2008-04-25 01:59:09 +00001347 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001348
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001349.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001350
1351
1352.. _decimal-signals:
1353
1354Signals
1355-------
1356
1357Signals represent conditions that arise during computation. Each corresponds to
1358one context flag and one context trap enabler.
1359
Raymond Hettinger86173da2008-02-01 20:38:12 +00001360The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001361computation, flags may be checked for informational purposes (for instance, to
1362determine whether a computation was exact). After checking the flags, be sure to
1363clear all flags before starting the next computation.
1364
1365If the context's trap enabler is set for the signal, then the condition causes a
1366Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1367is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1368condition.
1369
1370
1371.. class:: Clamped
1372
1373 Altered an exponent to fit representation constraints.
1374
1375 Typically, clamping occurs when an exponent falls outside the context's
1376 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001377 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001378
1379
1380.. class:: DecimalException
1381
1382 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1383
1384
1385.. class:: DivisionByZero
1386
1387 Signals the division of a non-infinite number by zero.
1388
1389 Can occur with division, modulo division, or when raising a number to a negative
1390 power. If this signal is not trapped, returns :const:`Infinity` or
1391 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1392
1393
1394.. class:: Inexact
1395
1396 Indicates that rounding occurred and the result is not exact.
1397
1398 Signals when non-zero digits were discarded during rounding. The rounded result
1399 is returned. The signal flag or trap is used to detect when results are
1400 inexact.
1401
1402
1403.. class:: InvalidOperation
1404
1405 An invalid operation was performed.
1406
1407 Indicates that an operation was requested that does not make sense. If not
1408 trapped, returns :const:`NaN`. Possible causes include::
1409
1410 Infinity - Infinity
1411 0 * Infinity
1412 Infinity / Infinity
1413 x % 0
1414 Infinity % x
1415 x._rescale( non-integer )
1416 sqrt(-x) and x > 0
1417 0 ** 0
1418 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001419 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001420
1421
1422.. class:: Overflow
1423
1424 Numerical overflow.
1425
Benjamin Petersone41251e2008-04-25 01:59:09 +00001426 Indicates the exponent is larger than :attr:`Emax` after rounding has
1427 occurred. If not trapped, the result depends on the rounding mode, either
1428 pulling inward to the largest representable finite number or rounding outward
1429 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1430 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001431
1432
1433.. class:: Rounded
1434
1435 Rounding occurred though possibly no information was lost.
1436
Benjamin Petersone41251e2008-04-25 01:59:09 +00001437 Signaled whenever rounding discards digits; even if those digits are zero
1438 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1439 the result unchanged. This signal is used to detect loss of significant
1440 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001441
1442
1443.. class:: Subnormal
1444
1445 Exponent was lower than :attr:`Emin` prior to rounding.
1446
Benjamin Petersone41251e2008-04-25 01:59:09 +00001447 Occurs when an operation result is subnormal (the exponent is too small). If
1448 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001449
1450
1451.. class:: Underflow
1452
1453 Numerical underflow with result rounded to zero.
1454
1455 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1456 and :class:`Subnormal` are also signaled.
1457
1458The following table summarizes the hierarchy of signals::
1459
1460 exceptions.ArithmeticError(exceptions.Exception)
1461 DecimalException
1462 Clamped
1463 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1464 Inexact
1465 Overflow(Inexact, Rounded)
1466 Underflow(Inexact, Rounded, Subnormal)
1467 InvalidOperation
1468 Rounded
1469 Subnormal
1470
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001471.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001472
1473
1474.. _decimal-notes:
1475
1476Floating Point Notes
1477--------------------
1478
1479
1480Mitigating round-off error with increased precision
1481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1482
1483The use of decimal floating point eliminates decimal representation error
1484(making it possible to represent :const:`0.1` exactly); however, some operations
1485can still incur round-off error when non-zero digits exceed the fixed precision.
1486
1487The effects of round-off error can be amplified by the addition or subtraction
1488of nearly offsetting quantities resulting in loss of significance. Knuth
1489provides two instructive examples where rounded floating point arithmetic with
1490insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001491properties of addition:
1492
1493.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001494
1495 # Examples from Seminumerical Algorithms, Section 4.2.2.
1496 >>> from decimal import Decimal, getcontext
1497 >>> getcontext().prec = 8
1498
1499 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1500 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001501 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001502 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001503 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001504
1505 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1506 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001507 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001508 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001509 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001510
1511The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001512expanding the precision sufficiently to avoid loss of significance:
1513
1514.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001515
1516 >>> getcontext().prec = 20
1517 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1518 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001519 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001520 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001521 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001522 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001523 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1524 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001525 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001526 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001527 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001528
1529
1530Special values
1531^^^^^^^^^^^^^^
1532
1533The number system for the :mod:`decimal` module provides special values
1534including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001535and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001536
1537Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1538they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1539not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1540can result from rounding beyond the limits of the largest representable number.
1541
1542The infinities are signed (affine) and can be used in arithmetic operations
1543where they get treated as very large, indeterminate numbers. For instance,
1544adding a constant to infinity gives another infinite result.
1545
1546Some operations are indeterminate and return :const:`NaN`, or if the
1547:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1548``0/0`` returns :const:`NaN` which means "not a number". This variety of
1549:const:`NaN` is quiet and, once created, will flow through other computations
1550always resulting in another :const:`NaN`. This behavior can be useful for a
1551series of computations that occasionally have missing inputs --- it allows the
1552calculation to proceed while flagging specific results as invalid.
1553
1554A variant is :const:`sNaN` which signals rather than remaining quiet after every
1555operation. This is a useful return value when an invalid result needs to
1556interrupt a calculation for special handling.
1557
Christian Heimes77c02eb2008-02-09 02:18:51 +00001558The behavior of Python's comparison operators can be a little surprising where a
1559:const:`NaN` is involved. A test for equality where one of the operands is a
1560quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1561``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1562:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1563``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1564if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001565not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001566specify the behavior of direct comparisons; these rules for comparisons
1567involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1568section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1569and :meth:`compare-signal` methods instead.
1570
Georg Brandl116aa622007-08-15 14:28:22 +00001571The signed zeros can result from calculations that underflow. They keep the sign
1572that would have resulted if the calculation had been carried out to greater
1573precision. Since their magnitude is zero, both positive and negative zeros are
1574treated as equal and their sign is informational.
1575
1576In addition to the two signed zeros which are distinct yet equal, there are
1577various representations of zero with differing precisions yet equivalent in
1578value. This takes a bit of getting used to. For an eye accustomed to
1579normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001580the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001581
1582 >>> 1 / Decimal('Infinity')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001583 Decimal('0E-1000000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001584
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001585.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001586
1587
1588.. _decimal-threads:
1589
1590Working with threads
1591--------------------
1592
1593The :func:`getcontext` function accesses a different :class:`Context` object for
1594each thread. Having separate thread contexts means that threads may make
1595changes (such as ``getcontext.prec=10``) without interfering with other threads.
1596
1597Likewise, the :func:`setcontext` function automatically assigns its target to
1598the current thread.
1599
1600If :func:`setcontext` has not been called before :func:`getcontext`, then
1601:func:`getcontext` will automatically create a new context for use in the
1602current thread.
1603
1604The new context is copied from a prototype context called *DefaultContext*. To
1605control the defaults so that each thread will use the same values throughout the
1606application, directly modify the *DefaultContext* object. This should be done
1607*before* any threads are started so that there won't be a race condition between
1608threads calling :func:`getcontext`. For example::
1609
1610 # Set applicationwide defaults for all threads about to be launched
1611 DefaultContext.prec = 12
1612 DefaultContext.rounding = ROUND_DOWN
1613 DefaultContext.traps = ExtendedContext.traps.copy()
1614 DefaultContext.traps[InvalidOperation] = 1
1615 setcontext(DefaultContext)
1616
1617 # Afterwards, the threads can be started
1618 t1.start()
1619 t2.start()
1620 t3.start()
1621 . . .
1622
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001623.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001624
1625
1626.. _decimal-recipes:
1627
1628Recipes
1629-------
1630
1631Here are a few recipes that serve as utility functions and that demonstrate ways
1632to work with the :class:`Decimal` class::
1633
1634 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1635 pos='', neg='-', trailneg=''):
1636 """Convert Decimal to a money formatted string.
1637
1638 places: required number of places after the decimal point
1639 curr: optional currency symbol before the sign (may be blank)
1640 sep: optional grouping separator (comma, period, space, or blank)
1641 dp: decimal point indicator (comma or period)
1642 only specify as blank when places is zero
1643 pos: optional sign for positive numbers: '+', space or blank
1644 neg: optional sign for negative numbers: '-', '(', space or blank
1645 trailneg:optional trailing minus indicator: '-', ')', space or blank
1646
1647 >>> d = Decimal('-1234567.8901')
1648 >>> moneyfmt(d, curr='$')
1649 '-$1,234,567.89'
1650 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1651 '1.234.568-'
1652 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1653 '($1,234,567.89)'
1654 >>> moneyfmt(Decimal(123456789), sep=' ')
1655 '123 456 789.00'
1656 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001657 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001658
1659 """
Christian Heimesa156e092008-02-16 07:38:31 +00001660 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001661 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001662 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001663 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001664 build, next = result.append, digits.pop
1665 if sign:
1666 build(trailneg)
1667 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001668 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001669 if places:
1670 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001671 if not digits:
1672 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001673 i = 0
1674 while digits:
1675 build(next())
1676 i += 1
1677 if i == 3 and digits:
1678 i = 0
1679 build(sep)
1680 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001681 build(neg if sign else pos)
1682 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001683
1684 def pi():
1685 """Compute Pi to the current precision.
1686
Georg Brandl6911e3c2007-09-04 07:15:32 +00001687 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001688 3.141592653589793238462643383
1689
1690 """
1691 getcontext().prec += 2 # extra digits for intermediate steps
1692 three = Decimal(3) # substitute "three=3.0" for regular floats
1693 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1694 while s != lasts:
1695 lasts = s
1696 n, na = n+na, na+8
1697 d, da = d+da, da+32
1698 t = (t * n) / d
1699 s += t
1700 getcontext().prec -= 2
1701 return +s # unary plus applies the new precision
1702
1703 def exp(x):
1704 """Return e raised to the power of x. Result type matches input type.
1705
Georg Brandl6911e3c2007-09-04 07:15:32 +00001706 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001707 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001708 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001709 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001710 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001711 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001712 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001713 (7.38905609893+0j)
1714
1715 """
1716 getcontext().prec += 2
1717 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1718 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001719 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001720 i += 1
1721 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001722 num *= x
1723 s += num / fact
1724 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001725 return +s
1726
1727 def cos(x):
1728 """Return the cosine of x as measured in radians.
1729
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001730 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001731 For larger values, first compute x = x % (2 * pi).
1732
Georg Brandl6911e3c2007-09-04 07:15:32 +00001733 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001734 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001735 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001736 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001737 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001738 (0.87758256189+0j)
1739
1740 """
1741 getcontext().prec += 2
1742 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1743 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001744 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001745 i += 2
1746 fact *= i * (i-1)
1747 num *= x * x
1748 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001749 s += num / fact * sign
1750 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001751 return +s
1752
1753 def sin(x):
1754 """Return the sine of x as measured in radians.
1755
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001756 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001757 For larger values, first compute x = x % (2 * pi).
1758
Georg Brandl6911e3c2007-09-04 07:15:32 +00001759 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001760 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001761 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001762 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001763 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001764 (0.479425538604+0j)
1765
1766 """
1767 getcontext().prec += 2
1768 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1769 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001770 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001771 i += 2
1772 fact *= i * (i-1)
1773 num *= x * x
1774 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001775 s += num / fact * sign
1776 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001777 return +s
1778
1779
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001780.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001781
1782
1783.. _decimal-faq:
1784
1785Decimal FAQ
1786-----------
1787
1788Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1789minimize typing when using the interactive interpreter?
1790
Christian Heimesfe337bf2008-03-23 21:54:12 +00001791A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001792
1793 >>> D = decimal.Decimal
1794 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001795 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001796
1797Q. In a fixed-point application with two decimal places, some inputs have many
1798places and need to be rounded. Others are not supposed to have excess digits
1799and need to be validated. What methods should be used?
1800
1801A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001802the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001803
1804 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1805
1806 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001807 >>> Decimal('3.214').quantize(TWOPLACES)
1808 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001809
Georg Brandl48310cd2009-01-03 21:18:54 +00001810 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001811 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1812 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001813
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001814 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001815 Traceback (most recent call last):
1816 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001817 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001818
1819Q. Once I have valid two place inputs, how do I maintain that invariant
1820throughout an application?
1821
Christian Heimesa156e092008-02-16 07:38:31 +00001822A. Some operations like addition, subtraction, and multiplication by an integer
1823will automatically preserve fixed point. Others operations, like division and
1824non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001825be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001826
1827 >>> a = Decimal('102.72') # Initial fixed-point values
1828 >>> b = Decimal('3.17')
1829 >>> a + b # Addition preserves fixed-point
1830 Decimal('105.89')
1831 >>> a - b
1832 Decimal('99.55')
1833 >>> a * 42 # So does integer multiplication
1834 Decimal('4314.24')
1835 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1836 Decimal('325.62')
1837 >>> (b / a).quantize(TWOPLACES) # And quantize division
1838 Decimal('0.03')
1839
1840In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001841to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001842
1843 >>> def mul(x, y, fp=TWOPLACES):
1844 ... return (x * y).quantize(fp)
1845 >>> def div(x, y, fp=TWOPLACES):
1846 ... return (x / y).quantize(fp)
1847
1848 >>> mul(a, b) # Automatically preserve fixed-point
1849 Decimal('325.62')
1850 >>> div(b, a)
1851 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00001852
1853Q. There are many ways to express the same value. The numbers :const:`200`,
1854:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1855various precisions. Is there a way to transform them to a single recognizable
1856canonical value?
1857
1858A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00001859representative:
Georg Brandl116aa622007-08-15 14:28:22 +00001860
1861 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1862 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001863 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00001864
1865Q. Some decimal values always print with exponential notation. Is there a way
1866to get a non-exponential representation?
1867
1868A. For some values, exponential notation is the only way to express the number
1869of significant places in the coefficient. For example, expressing
1870:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1871original's two-place significance.
1872
Christian Heimesa156e092008-02-16 07:38:31 +00001873If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00001874remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001875value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00001876
1877 >>> def remove_exponent(d):
1878 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1879
1880 >>> remove_exponent(Decimal('5E+3'))
1881 Decimal('5000')
1882
Georg Brandl116aa622007-08-15 14:28:22 +00001883Q. Is there a way to convert a regular float to a :class:`Decimal`?
1884
Mark Dickinsone534a072010-04-04 22:13:14 +00001885A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00001886Decimal though an exact conversion may take more precision than intuition would
1887suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00001888
Christian Heimesfe337bf2008-03-23 21:54:12 +00001889.. doctest::
1890
Raymond Hettinger96798592010-04-02 16:58:27 +00001891 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001892 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00001893
Georg Brandl116aa622007-08-15 14:28:22 +00001894Q. Within a complex calculation, how can I make sure that I haven't gotten a
1895spurious result because of insufficient precision or rounding anomalies.
1896
1897A. The decimal module makes it easy to test results. A best practice is to
1898re-run calculations using greater precision and with various rounding modes.
1899Widely differing results indicate insufficient precision, rounding mode issues,
1900ill-conditioned inputs, or a numerically unstable algorithm.
1901
1902Q. I noticed that context precision is applied to the results of operations but
1903not to the inputs. Is there anything to watch out for when mixing values of
1904different precisions?
1905
1906A. Yes. The principle is that all values are considered to be exact and so is
1907the arithmetic on those values. Only the results are rounded. The advantage
1908for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001909results can look odd if you forget that the inputs haven't been rounded:
1910
1911.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001912
1913 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00001914 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001915 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00001916 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001917 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00001918
1919The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00001920using the unary plus operation:
1921
1922.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001923
1924 >>> getcontext().prec = 3
1925 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001926 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00001927
1928Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001929:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00001930
1931 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001932 Decimal('1.2345')
Georg Brandl116aa622007-08-15 14:28:22 +00001933