blob: 4d10cbdd2204e7476992ea09d6fa26b97df93192 [file] [log] [blame]
Mark Dickinsond058cd22008-02-10 21:29:51 +00001:mod:`fractions` --- Rational numbers
Raymond Hettinger2ddbd802008-02-11 23:34:56 +00002=====================================
Jeffrey Yasskind7b00332008-01-15 07:46:24 +00003
Mark Dickinsond058cd22008-02-10 21:29:51 +00004.. module:: fractions
Jeffrey Yasskind7b00332008-01-15 07:46:24 +00005 :synopsis: Rational numbers.
6.. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
7.. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
8.. versionadded:: 2.6
9
Éric Araujo29a0b572011-08-19 02:14:03 +020010**Source code:** :source:`Lib/fractions.py`
11
12--------------
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000013
Mark Dickinsondf90ee62008-06-27 16:49:27 +000014The :mod:`fractions` module provides support for rational number arithmetic.
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000015
16
Mark Dickinsondf90ee62008-06-27 16:49:27 +000017A Fraction instance can be constructed from a pair of integers, from
18another rational number, or from a string.
19
Mark Dickinsond058cd22008-02-10 21:29:51 +000020.. class:: Fraction(numerator=0, denominator=1)
21 Fraction(other_fraction)
Mark Dickinson7c63eee2010-04-02 22:27:36 +000022 Fraction(float)
23 Fraction(decimal)
Mark Dickinsond058cd22008-02-10 21:29:51 +000024 Fraction(string)
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000025
Mark Dickinson7c63eee2010-04-02 22:27:36 +000026 The first version requires that *numerator* and *denominator* are instances
27 of :class:`numbers.Rational` and returns a new :class:`Fraction` instance
28 with value ``numerator/denominator``. If *denominator* is :const:`0`, it
29 raises a :exc:`ZeroDivisionError`. The second version requires that
30 *other_fraction* is an instance of :class:`numbers.Rational` and returns a
31 :class:`Fraction` instance with the same value. The next two versions accept
32 either a :class:`float` or a :class:`decimal.Decimal` instance, and return a
33 :class:`Fraction` instance with exactly the same value. Note that due to the
34 usual issues with binary floating-point (see :ref:`tut-fp-issues`), the
35 argument to ``Fraction(1.1)`` is not exactly equal to 11/10, and so
36 ``Fraction(1.1)`` does *not* return ``Fraction(11, 10)`` as one might expect.
37 (But see the documentation for the :meth:`limit_denominator` method below.)
38 The last version of the constructor expects a string or unicode instance.
39 The usual form for this instance is::
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000040
Mark Dickinsondf90ee62008-06-27 16:49:27 +000041 [sign] numerator ['/' denominator]
42
43 where the optional ``sign`` may be either '+' or '-' and
44 ``numerator`` and ``denominator`` (if present) are strings of
Mark Dickinson8100bd82009-04-22 18:15:25 +000045 decimal digits. In addition, any string that represents a finite
46 value and is accepted by the :class:`float` constructor is also
47 accepted by the :class:`Fraction` constructor. In either form the
48 input string may also have leading and/or trailing whitespace.
49 Here are some examples::
Mark Dickinsondf90ee62008-06-27 16:49:27 +000050
51 >>> from fractions import Fraction
52 >>> Fraction(16, -10)
53 Fraction(-8, 5)
54 >>> Fraction(123)
55 Fraction(123, 1)
56 >>> Fraction()
57 Fraction(0, 1)
58 >>> Fraction('3/7')
59 Fraction(3, 7)
60 [40794 refs]
61 >>> Fraction(' -3/7 ')
62 Fraction(-3, 7)
63 >>> Fraction('1.414213 \t\n')
64 Fraction(1414213, 1000000)
65 >>> Fraction('-.125')
66 Fraction(-1, 8)
Mark Dickinson8100bd82009-04-22 18:15:25 +000067 >>> Fraction('7e-6')
68 Fraction(7, 1000000)
Mark Dickinson7c63eee2010-04-02 22:27:36 +000069 >>> Fraction(2.25)
70 Fraction(9, 4)
71 >>> Fraction(1.1)
72 Fraction(2476979795053773, 2251799813685248)
73 >>> from decimal import Decimal
74 >>> Fraction(Decimal('1.1'))
75 Fraction(11, 10)
Mark Dickinsondf90ee62008-06-27 16:49:27 +000076
77
78 The :class:`Fraction` class inherits from the abstract base class
79 :class:`numbers.Rational`, and implements all of the methods and
80 operations from that class. :class:`Fraction` instances are hashable,
81 and should be treated as immutable. In addition,
82 :class:`Fraction` has the following methods:
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000083
Mark Dickinson7c63eee2010-04-02 22:27:36 +000084 .. versionchanged:: 2.7
85 The :class:`Fraction` constructor now accepts :class:`float` and
86 :class:`decimal.Decimal` instances.
87
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000088
Benjamin Petersonc7b05922008-04-25 01:29:10 +000089 .. method:: from_float(flt)
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000090
Mark Dickinsondf90ee62008-06-27 16:49:27 +000091 This class method constructs a :class:`Fraction` representing the exact
Benjamin Petersonc7b05922008-04-25 01:29:10 +000092 value of *flt*, which must be a :class:`float`. Beware that
93 ``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)``
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000094
Mark Dickinson7c63eee2010-04-02 22:27:36 +000095 .. note:: From Python 2.7 onwards, you can also construct a
96 :class:`Fraction` instance directly from a :class:`float`.
97
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000098
Benjamin Petersonc7b05922008-04-25 01:29:10 +000099 .. method:: from_decimal(dec)
Jeffrey Yasskin45169fb2008-01-19 09:56:06 +0000100
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000101 This class method constructs a :class:`Fraction` representing the exact
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000102 value of *dec*, which must be a :class:`decimal.Decimal`.
Jeffrey Yasskin45169fb2008-01-19 09:56:06 +0000103
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000104 .. note:: From Python 2.7 onwards, you can also construct a
105 :class:`Fraction` instance directly from a :class:`decimal.Decimal`
106 instance.
107
Jeffrey Yasskin45169fb2008-01-19 09:56:06 +0000108
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000109 .. method:: limit_denominator(max_denominator=1000000)
Mark Dickinsone1b82472008-02-12 21:31:59 +0000110
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000111 Finds and returns the closest :class:`Fraction` to ``self`` that has
112 denominator at most max_denominator. This method is useful for finding
113 rational approximations to a given floating-point number:
Mark Dickinsone1b82472008-02-12 21:31:59 +0000114
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000115 >>> from fractions import Fraction
116 >>> Fraction('3.1415926535897932').limit_denominator(1000)
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000117 Fraction(355, 113)
Mark Dickinsone1b82472008-02-12 21:31:59 +0000118
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000119 or for recovering a rational number that's represented as a float:
Mark Dickinsone1b82472008-02-12 21:31:59 +0000120
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000121 >>> from math import pi, cos
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000122 >>> Fraction(cos(pi/3))
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000123 Fraction(4503599627370497, 9007199254740992)
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000124 >>> Fraction(cos(pi/3)).limit_denominator()
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000125 Fraction(1, 2)
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000126 >>> Fraction(1.1).limit_denominator()
127 Fraction(11, 10)
Mark Dickinsone1b82472008-02-12 21:31:59 +0000128
129
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000130.. function:: gcd(a, b)
Jeffrey Yasskind7b00332008-01-15 07:46:24 +0000131
Georg Brandle92818f2009-01-03 20:47:01 +0000132 Return the greatest common divisor of the integers *a* and *b*. If either
133 *a* or *b* is nonzero, then the absolute value of ``gcd(a, b)`` is the
134 largest integer that divides both *a* and *b*. ``gcd(a,b)`` has the same
135 sign as *b* if *b* is nonzero; otherwise it takes the sign of *a*. ``gcd(0,
136 0)`` returns ``0``.
Jeffrey Yasskind7b00332008-01-15 07:46:24 +0000137
138
139.. seealso::
140
141 Module :mod:`numbers`
142 The abstract base classes making up the numeric tower.