blob: 81b419ea36e482c2d42876939a288a38e840b1c8 [file] [log] [blame]
Mark Dickinsond058cd22008-02-10 21:29:51 +00001:mod:`fractions` --- Rational numbers
Raymond Hettinger2ddbd802008-02-11 23:34:56 +00002=====================================
Jeffrey Yasskind7b00332008-01-15 07:46:24 +00003
Mark Dickinsond058cd22008-02-10 21:29:51 +00004.. module:: fractions
Jeffrey Yasskind7b00332008-01-15 07:46:24 +00005 :synopsis: Rational numbers.
6.. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
7.. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
8.. versionadded:: 2.6
9
Éric Araujo29a0b572011-08-19 02:14:03 +020010**Source code:** :source:`Lib/fractions.py`
11
12--------------
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000013
Mark Dickinsondf90ee62008-06-27 16:49:27 +000014The :mod:`fractions` module provides support for rational number arithmetic.
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000015
16
Mark Dickinsondf90ee62008-06-27 16:49:27 +000017A Fraction instance can be constructed from a pair of integers, from
18another rational number, or from a string.
19
Mark Dickinsond058cd22008-02-10 21:29:51 +000020.. class:: Fraction(numerator=0, denominator=1)
21 Fraction(other_fraction)
Mark Dickinson7c63eee2010-04-02 22:27:36 +000022 Fraction(float)
23 Fraction(decimal)
Mark Dickinsond058cd22008-02-10 21:29:51 +000024 Fraction(string)
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000025
Mark Dickinson7c63eee2010-04-02 22:27:36 +000026 The first version requires that *numerator* and *denominator* are instances
27 of :class:`numbers.Rational` and returns a new :class:`Fraction` instance
28 with value ``numerator/denominator``. If *denominator* is :const:`0`, it
29 raises a :exc:`ZeroDivisionError`. The second version requires that
30 *other_fraction* is an instance of :class:`numbers.Rational` and returns a
31 :class:`Fraction` instance with the same value. The next two versions accept
32 either a :class:`float` or a :class:`decimal.Decimal` instance, and return a
33 :class:`Fraction` instance with exactly the same value. Note that due to the
34 usual issues with binary floating-point (see :ref:`tut-fp-issues`), the
35 argument to ``Fraction(1.1)`` is not exactly equal to 11/10, and so
36 ``Fraction(1.1)`` does *not* return ``Fraction(11, 10)`` as one might expect.
37 (But see the documentation for the :meth:`limit_denominator` method below.)
38 The last version of the constructor expects a string or unicode instance.
39 The usual form for this instance is::
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000040
Mark Dickinsondf90ee62008-06-27 16:49:27 +000041 [sign] numerator ['/' denominator]
42
43 where the optional ``sign`` may be either '+' or '-' and
44 ``numerator`` and ``denominator`` (if present) are strings of
Mark Dickinson8100bd82009-04-22 18:15:25 +000045 decimal digits. In addition, any string that represents a finite
46 value and is accepted by the :class:`float` constructor is also
47 accepted by the :class:`Fraction` constructor. In either form the
48 input string may also have leading and/or trailing whitespace.
49 Here are some examples::
Mark Dickinsondf90ee62008-06-27 16:49:27 +000050
51 >>> from fractions import Fraction
52 >>> Fraction(16, -10)
53 Fraction(-8, 5)
54 >>> Fraction(123)
55 Fraction(123, 1)
56 >>> Fraction()
57 Fraction(0, 1)
58 >>> Fraction('3/7')
59 Fraction(3, 7)
Mark Dickinsondf90ee62008-06-27 16:49:27 +000060 >>> Fraction(' -3/7 ')
61 Fraction(-3, 7)
62 >>> Fraction('1.414213 \t\n')
63 Fraction(1414213, 1000000)
64 >>> Fraction('-.125')
65 Fraction(-1, 8)
Mark Dickinson8100bd82009-04-22 18:15:25 +000066 >>> Fraction('7e-6')
67 Fraction(7, 1000000)
Mark Dickinson7c63eee2010-04-02 22:27:36 +000068 >>> Fraction(2.25)
69 Fraction(9, 4)
70 >>> Fraction(1.1)
71 Fraction(2476979795053773, 2251799813685248)
72 >>> from decimal import Decimal
73 >>> Fraction(Decimal('1.1'))
74 Fraction(11, 10)
Mark Dickinsondf90ee62008-06-27 16:49:27 +000075
76
77 The :class:`Fraction` class inherits from the abstract base class
78 :class:`numbers.Rational`, and implements all of the methods and
79 operations from that class. :class:`Fraction` instances are hashable,
80 and should be treated as immutable. In addition,
81 :class:`Fraction` has the following methods:
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000082
Mark Dickinson7c63eee2010-04-02 22:27:36 +000083 .. versionchanged:: 2.7
84 The :class:`Fraction` constructor now accepts :class:`float` and
85 :class:`decimal.Decimal` instances.
86
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000087
Benjamin Petersonc7b05922008-04-25 01:29:10 +000088 .. method:: from_float(flt)
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000089
Mark Dickinsondf90ee62008-06-27 16:49:27 +000090 This class method constructs a :class:`Fraction` representing the exact
Benjamin Petersonc7b05922008-04-25 01:29:10 +000091 value of *flt*, which must be a :class:`float`. Beware that
92 ``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)``
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000093
Mark Dickinson7c63eee2010-04-02 22:27:36 +000094 .. note:: From Python 2.7 onwards, you can also construct a
95 :class:`Fraction` instance directly from a :class:`float`.
96
Jeffrey Yasskind7b00332008-01-15 07:46:24 +000097
Benjamin Petersonc7b05922008-04-25 01:29:10 +000098 .. method:: from_decimal(dec)
Jeffrey Yasskin45169fb2008-01-19 09:56:06 +000099
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000100 This class method constructs a :class:`Fraction` representing the exact
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000101 value of *dec*, which must be a :class:`decimal.Decimal`.
Jeffrey Yasskin45169fb2008-01-19 09:56:06 +0000102
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000103 .. note:: From Python 2.7 onwards, you can also construct a
104 :class:`Fraction` instance directly from a :class:`decimal.Decimal`
105 instance.
106
Jeffrey Yasskin45169fb2008-01-19 09:56:06 +0000107
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000108 .. method:: limit_denominator(max_denominator=1000000)
Mark Dickinsone1b82472008-02-12 21:31:59 +0000109
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000110 Finds and returns the closest :class:`Fraction` to ``self`` that has
111 denominator at most max_denominator. This method is useful for finding
112 rational approximations to a given floating-point number:
Mark Dickinsone1b82472008-02-12 21:31:59 +0000113
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000114 >>> from fractions import Fraction
115 >>> Fraction('3.1415926535897932').limit_denominator(1000)
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000116 Fraction(355, 113)
Mark Dickinsone1b82472008-02-12 21:31:59 +0000117
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000118 or for recovering a rational number that's represented as a float:
Mark Dickinsone1b82472008-02-12 21:31:59 +0000119
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000120 >>> from math import pi, cos
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000121 >>> Fraction(cos(pi/3))
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000122 Fraction(4503599627370497, 9007199254740992)
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000123 >>> Fraction(cos(pi/3)).limit_denominator()
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000124 Fraction(1, 2)
Mark Dickinson7c63eee2010-04-02 22:27:36 +0000125 >>> Fraction(1.1).limit_denominator()
126 Fraction(11, 10)
Mark Dickinsone1b82472008-02-12 21:31:59 +0000127
128
Mark Dickinsondf90ee62008-06-27 16:49:27 +0000129.. function:: gcd(a, b)
Jeffrey Yasskind7b00332008-01-15 07:46:24 +0000130
Georg Brandle92818f2009-01-03 20:47:01 +0000131 Return the greatest common divisor of the integers *a* and *b*. If either
132 *a* or *b* is nonzero, then the absolute value of ``gcd(a, b)`` is the
133 largest integer that divides both *a* and *b*. ``gcd(a,b)`` has the same
134 sign as *b* if *b* is nonzero; otherwise it takes the sign of *a*. ``gcd(0,
135 0)`` returns ``0``.
Jeffrey Yasskind7b00332008-01-15 07:46:24 +0000136
137
138.. seealso::
139
140 Module :mod:`numbers`
141 The abstract base classes making up the numeric tower.