Guido van Rossum | 762c39e | 1991-01-01 18:11:14 +0000 | [diff] [blame] | 1 | # module 'zmod' |
| 2 | |
| 3 | # Compute properties of mathematical "fields" formed by taking |
| 4 | # Z/n (the whole numbers modulo some whole number n) and an |
| 5 | # irreducible polynomial (i.e., a polynomial with only complex zeros), |
| 6 | # e.g., Z/5 and X**2 + 2. |
| 7 | # |
| 8 | # The field is formed by taking all possible linear combinations of |
| 9 | # a set of d base vectors (where d is the degree of the polynomial). |
| 10 | # |
| 11 | # Note that this procedure doesn't yield a field for all combinations |
| 12 | # of n and p: it may well be that some numbers have more than one |
| 13 | # inverse and others have none. This is what we check. |
| 14 | # |
| 15 | # Remember that a field is a ring where each element has an inverse. |
| 16 | # A ring has commutative addition and multiplication, a zero and a one: |
| 17 | # 0*x = x*0 = 0, 0+x = x+0 = x, 1*x = x*1 = x. Also, the distributive |
| 18 | # property holds: a*(b+c) = a*b + b*c. |
| 19 | # (XXX I forget if this is an axiom or follows from the rules.) |
| 20 | |
| 21 | import poly |
| 22 | |
| 23 | |
| 24 | # Example N and polynomial |
| 25 | |
| 26 | N = 5 |
| 27 | P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2 |
| 28 | |
| 29 | |
| 30 | # Return x modulo y. Returns >= 0 even if x < 0. |
| 31 | |
| 32 | def mod(x, y): |
| 33 | return divmod(x, y)[1] |
| 34 | |
| 35 | |
| 36 | # Normalize a polynomial modulo n and modulo p. |
| 37 | |
| 38 | def norm(a, n, p): |
| 39 | a = poly.modulo(a, p) |
| 40 | a = a[:] |
| 41 | for i in range(len(a)): a[i] = mod(a[i], n) |
| 42 | a = poly.normalize(a) |
| 43 | return a |
| 44 | |
| 45 | |
| 46 | # Make a list of all n^d elements of the proposed field. |
| 47 | |
| 48 | def make_all(mat): |
| 49 | all = [] |
| 50 | for row in mat: |
| 51 | for a in row: |
| 52 | all.append(a) |
| 53 | return all |
| 54 | |
| 55 | def make_elements(n, d): |
Guido van Rossum | bdfcfcc | 1992-01-01 19:35:13 +0000 | [diff] [blame] | 56 | if d == 0: return [poly.one(0, 0)] |
Guido van Rossum | 762c39e | 1991-01-01 18:11:14 +0000 | [diff] [blame] | 57 | sub = make_elements(n, d-1) |
| 58 | all = [] |
| 59 | for a in sub: |
| 60 | for i in range(n): |
| 61 | all.append(poly.plus(a, poly.one(d-1, i))) |
| 62 | return all |
| 63 | |
| 64 | def make_inv(all, n, p): |
| 65 | x = poly.one(1, 1) |
| 66 | inv = [] |
| 67 | for a in all: |
| 68 | inv.append(norm(poly.times(a, x), n, p)) |
| 69 | return inv |
| 70 | |
| 71 | def checkfield(n, p): |
| 72 | all = make_elements(n, len(p)-1) |
| 73 | inv = make_inv(all, n, p) |
| 74 | all1 = all[:] |
| 75 | inv1 = inv[:] |
| 76 | all1.sort() |
| 77 | inv1.sort() |
Guido van Rossum | bdfcfcc | 1992-01-01 19:35:13 +0000 | [diff] [blame] | 78 | if all1 == inv1: print 'BINGO!' |
Guido van Rossum | 762c39e | 1991-01-01 18:11:14 +0000 | [diff] [blame] | 79 | else: |
| 80 | print 'Sorry:', n, p |
| 81 | print all |
| 82 | print inv |
| 83 | |
| 84 | def rj(s, width): |
| 85 | if type(s) <> type(''): s = `s` |
| 86 | n = len(s) |
| 87 | if n >= width: return s |
| 88 | return ' '*(width - n) + s |
| 89 | |
| 90 | def lj(s, width): |
| 91 | if type(s) <> type(''): s = `s` |
| 92 | n = len(s) |
| 93 | if n >= width: return s |
| 94 | return s + ' '*(width - n) |