Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 1 | #include "Python.h" |
| 2 | |
Mark Dickinson | c97c909 | 2009-02-09 14:18:43 +0000 | [diff] [blame] | 3 | #ifdef X87_DOUBLE_ROUNDING |
| 4 | /* On x86 platforms using an x87 FPU, this function is called from the |
| 5 | Py_FORCE_DOUBLE macro (defined in pymath.h) to force a floating-point |
| 6 | number out of an 80-bit x87 FPU register and into a 64-bit memory location, |
| 7 | thus rounding from extended precision to double precision. */ |
| 8 | double _Py_force_double(double x) |
| 9 | { |
| 10 | volatile double y; |
| 11 | y = x; |
| 12 | return y; |
| 13 | } |
| 14 | #endif |
| 15 | |
Mark Dickinson | 1d6e2e1 | 2009-10-24 13:28:38 +0000 | [diff] [blame] | 16 | #ifdef HAVE_GCC_ASM_FOR_X87 |
| 17 | |
| 18 | /* inline assembly for getting and setting the 387 FPU control word on |
| 19 | gcc/x86 */ |
| 20 | |
| 21 | unsigned short _Py_get_387controlword(void) { |
| 22 | unsigned short cw; |
| 23 | __asm__ __volatile__ ("fnstcw %0" : "=m" (cw)); |
| 24 | return cw; |
| 25 | } |
| 26 | |
| 27 | void _Py_set_387controlword(unsigned short cw) { |
| 28 | __asm__ __volatile__ ("fldcw %0" : : "m" (cw)); |
| 29 | } |
| 30 | |
| 31 | #endif |
| 32 | |
| 33 | |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 34 | #ifndef HAVE_HYPOT |
| 35 | double hypot(double x, double y) |
| 36 | { |
| 37 | double yx; |
| 38 | |
| 39 | x = fabs(x); |
| 40 | y = fabs(y); |
| 41 | if (x < y) { |
| 42 | double temp = x; |
| 43 | x = y; |
| 44 | y = temp; |
| 45 | } |
| 46 | if (x == 0.) |
| 47 | return 0.; |
| 48 | else { |
| 49 | yx = y/x; |
| 50 | return x*sqrt(1.+yx*yx); |
| 51 | } |
| 52 | } |
| 53 | #endif /* HAVE_HYPOT */ |
| 54 | |
| 55 | #ifndef HAVE_COPYSIGN |
Mark Dickinson | 4beb89b | 2009-04-18 14:13:43 +0000 | [diff] [blame] | 56 | double |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 57 | copysign(double x, double y) |
| 58 | { |
| 59 | /* use atan2 to distinguish -0. from 0. */ |
| 60 | if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) { |
| 61 | return fabs(x); |
| 62 | } else { |
| 63 | return -fabs(x); |
| 64 | } |
| 65 | } |
| 66 | #endif /* HAVE_COPYSIGN */ |
| 67 | |
Mark Dickinson | 8e5446f | 2009-04-18 14:41:37 +0000 | [diff] [blame] | 68 | #ifndef HAVE_ROUND |
| 69 | double |
| 70 | round(double x) |
| 71 | { |
| 72 | double absx, y; |
| 73 | absx = fabs(x); |
| 74 | y = floor(absx); |
| 75 | if (absx - y >= 0.5) |
| 76 | y += 1.0; |
| 77 | return copysign(y, x); |
| 78 | } |
| 79 | #endif /* HAVE_ROUND */ |
| 80 | |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 81 | #ifndef HAVE_LOG1P |
Andrew MacIntyre | f8db822 | 2008-09-22 14:11:41 +0000 | [diff] [blame] | 82 | #include <float.h> |
| 83 | |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 84 | double |
| 85 | log1p(double x) |
| 86 | { |
| 87 | /* For x small, we use the following approach. Let y be the nearest |
| 88 | float to 1+x, then |
| 89 | |
| 90 | 1+x = y * (1 - (y-1-x)/y) |
| 91 | |
| 92 | so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, |
| 93 | the second term is well approximated by (y-1-x)/y. If abs(x) >= |
| 94 | DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest |
| 95 | then y-1-x will be exactly representable, and is computed exactly |
| 96 | by (y-1)-x. |
| 97 | |
| 98 | If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be |
| 99 | round-to-nearest then this method is slightly dangerous: 1+x could |
| 100 | be rounded up to 1+DBL_EPSILON instead of down to 1, and in that |
| 101 | case y-1-x will not be exactly representable any more and the |
| 102 | result can be off by many ulps. But this is easily fixed: for a |
| 103 | floating-point number |x| < DBL_EPSILON/2., the closest |
| 104 | floating-point number to log(1+x) is exactly x. |
| 105 | */ |
| 106 | |
| 107 | double y; |
| 108 | if (fabs(x) < DBL_EPSILON/2.) { |
| 109 | return x; |
| 110 | } else if (-0.5 <= x && x <= 1.) { |
| 111 | /* WARNING: it's possible than an overeager compiler |
| 112 | will incorrectly optimize the following two lines |
| 113 | to the equivalent of "return log(1.+x)". If this |
| 114 | happens, then results from log1p will be inaccurate |
| 115 | for small x. */ |
| 116 | y = 1.+x; |
| 117 | return log(y)-((y-1.)-x)/y; |
| 118 | } else { |
| 119 | /* NaNs and infinities should end up here */ |
| 120 | return log(1.+x); |
| 121 | } |
| 122 | } |
| 123 | #endif /* HAVE_LOG1P */ |
| 124 | |
| 125 | /* |
| 126 | * ==================================================== |
| 127 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 128 | * |
| 129 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 130 | * Permission to use, copy, modify, and distribute this |
| 131 | * software is freely granted, provided that this notice |
| 132 | * is preserved. |
| 133 | * ==================================================== |
| 134 | */ |
| 135 | |
| 136 | static const double ln2 = 6.93147180559945286227E-01; |
| 137 | static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */ |
| 138 | static const double two_pow_p28 = 268435456.0; /* 2**28 */ |
| 139 | static const double zero = 0.0; |
| 140 | |
| 141 | /* asinh(x) |
| 142 | * Method : |
| 143 | * Based on |
| 144 | * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] |
| 145 | * we have |
| 146 | * asinh(x) := x if 1+x*x=1, |
| 147 | * := sign(x)*(log(x)+ln2)) for large |x|, else |
| 148 | * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else |
| 149 | * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) |
| 150 | */ |
| 151 | |
| 152 | #ifndef HAVE_ASINH |
| 153 | double |
| 154 | asinh(double x) |
| 155 | { |
| 156 | double w; |
| 157 | double absx = fabs(x); |
| 158 | |
| 159 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { |
| 160 | return x+x; |
| 161 | } |
| 162 | if (absx < two_pow_m28) { /* |x| < 2**-28 */ |
| 163 | return x; /* return x inexact except 0 */ |
| 164 | } |
| 165 | if (absx > two_pow_p28) { /* |x| > 2**28 */ |
| 166 | w = log(absx)+ln2; |
| 167 | } |
| 168 | else if (absx > 2.0) { /* 2 < |x| < 2**28 */ |
| 169 | w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx)); |
| 170 | } |
| 171 | else { /* 2**-28 <= |x| < 2= */ |
| 172 | double t = x*x; |
| 173 | w = log1p(absx + t / (1.0 + sqrt(1.0 + t))); |
| 174 | } |
| 175 | return copysign(w, x); |
| 176 | |
| 177 | } |
| 178 | #endif /* HAVE_ASINH */ |
| 179 | |
| 180 | /* acosh(x) |
| 181 | * Method : |
| 182 | * Based on |
| 183 | * acosh(x) = log [ x + sqrt(x*x-1) ] |
| 184 | * we have |
| 185 | * acosh(x) := log(x)+ln2, if x is large; else |
| 186 | * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else |
| 187 | * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. |
| 188 | * |
| 189 | * Special cases: |
| 190 | * acosh(x) is NaN with signal if x<1. |
| 191 | * acosh(NaN) is NaN without signal. |
| 192 | */ |
| 193 | |
| 194 | #ifndef HAVE_ACOSH |
| 195 | double |
| 196 | acosh(double x) |
| 197 | { |
| 198 | if (Py_IS_NAN(x)) { |
| 199 | return x+x; |
| 200 | } |
| 201 | if (x < 1.) { /* x < 1; return a signaling NaN */ |
| 202 | errno = EDOM; |
| 203 | #ifdef Py_NAN |
| 204 | return Py_NAN; |
| 205 | #else |
| 206 | return (x-x)/(x-x); |
| 207 | #endif |
| 208 | } |
| 209 | else if (x >= two_pow_p28) { /* x > 2**28 */ |
| 210 | if (Py_IS_INFINITY(x)) { |
| 211 | return x+x; |
| 212 | } else { |
| 213 | return log(x)+ln2; /* acosh(huge)=log(2x) */ |
| 214 | } |
| 215 | } |
| 216 | else if (x == 1.) { |
| 217 | return 0.0; /* acosh(1) = 0 */ |
| 218 | } |
| 219 | else if (x > 2.) { /* 2 < x < 2**28 */ |
| 220 | double t = x*x; |
| 221 | return log(2.0*x - 1.0 / (x + sqrt(t - 1.0))); |
| 222 | } |
| 223 | else { /* 1 < x <= 2 */ |
| 224 | double t = x - 1.0; |
| 225 | return log1p(t + sqrt(2.0*t + t*t)); |
| 226 | } |
| 227 | } |
| 228 | #endif /* HAVE_ACOSH */ |
| 229 | |
| 230 | /* atanh(x) |
| 231 | * Method : |
| 232 | * 1.Reduced x to positive by atanh(-x) = -atanh(x) |
| 233 | * 2.For x>=0.5 |
| 234 | * 1 2x x |
| 235 | * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) |
| 236 | * 2 1 - x 1 - x |
| 237 | * |
| 238 | * For x<0.5 |
| 239 | * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) |
| 240 | * |
| 241 | * Special cases: |
| 242 | * atanh(x) is NaN if |x| >= 1 with signal; |
| 243 | * atanh(NaN) is that NaN with no signal; |
| 244 | * |
| 245 | */ |
| 246 | |
| 247 | #ifndef HAVE_ATANH |
| 248 | double |
| 249 | atanh(double x) |
| 250 | { |
| 251 | double absx; |
| 252 | double t; |
| 253 | |
| 254 | if (Py_IS_NAN(x)) { |
| 255 | return x+x; |
| 256 | } |
| 257 | absx = fabs(x); |
| 258 | if (absx >= 1.) { /* |x| >= 1 */ |
| 259 | errno = EDOM; |
| 260 | #ifdef Py_NAN |
| 261 | return Py_NAN; |
| 262 | #else |
| 263 | return x/zero; |
| 264 | #endif |
| 265 | } |
| 266 | if (absx < two_pow_m28) { /* |x| < 2**-28 */ |
| 267 | return x; |
| 268 | } |
| 269 | if (absx < 0.5) { /* |x| < 0.5 */ |
| 270 | t = absx+absx; |
| 271 | t = 0.5 * log1p(t + t*absx / (1.0 - absx)); |
| 272 | } |
| 273 | else { /* 0.5 <= |x| <= 1.0 */ |
| 274 | t = 0.5 * log1p((absx + absx) / (1.0 - absx)); |
| 275 | } |
| 276 | return copysign(t, x); |
| 277 | } |
| 278 | #endif /* HAVE_ATANH */ |