blob: 1fa13773c9278e5adcb39854ab2ed6747ea2b1f9 [file] [log] [blame]
Guido van Rossumff03b1a1994-03-09 12:55:02 +00001# R A N D O M V A R I A B L E G E N E R A T O R S
2#
3# distributions on the real line:
4# ------------------------------
5# normal (Gaussian)
6# lognormal
7# negative exponential
8# gamma
Guido van Rossum95bfcda1994-03-09 14:21:05 +00009# beta
Guido van Rossumff03b1a1994-03-09 12:55:02 +000010#
11# distributions on the circle (angles 0 to 2pi)
12# ---------------------------------------------
13# circular uniform
14# von Mises
15
16# Translated from anonymously contributed C/C++ source.
17
18from whrandom import random, uniform, randint, choice # Also for export!
Guido van Rossum95bfcda1994-03-09 14:21:05 +000019from math import log, exp, pi, e, sqrt, acos, cos, sin
Guido van Rossumff03b1a1994-03-09 12:55:02 +000020
21# Housekeeping function to verify that magic constants have been
22# computed correctly
23
24def verify(name, expected):
25 computed = eval(name)
26 if abs(computed - expected) > 1e-7:
27 raise ValueError, \
28 'computed value for %s deviates too much (computed %g, expected %g)' % \
29 (name, computed, expected)
30
31# -------------------- normal distribution --------------------
32
33NV_MAGICCONST = 4*exp(-0.5)/sqrt(2)
34verify('NV_MAGICCONST', 1.71552776992141)
35def normalvariate(mu, sigma):
36 # mu = mean, sigma = standard deviation
37
38 # Uses Kinderman and Monahan method. Reference: Kinderman,
39 # A.J. and Monahan, J.F., "Computer generation of random
40 # variables using the ratio of uniform deviates", ACM Trans
41 # Math Software, 3, (1977), pp257-260.
42
43 while 1:
44 u1 = random()
45 u2 = random()
46 z = NV_MAGICCONST*(u1-0.5)/u2
47 zz = z*z/4
48 if zz <= -log(u2):
49 break
50 return mu+z*sigma
51
52# -------------------- lognormal distribution --------------------
53
54def lognormvariate(mu, sigma):
55 return exp(normalvariate(mu, sigma))
56
57# -------------------- circular uniform --------------------
58
59def cunifvariate(mean, arc):
60 # mean: mean angle (in radians between 0 and pi)
61 # arc: range of distribution (in radians between 0 and pi)
62
63 return (mean + arc * (random() - 0.5)) % pi
64
65# -------------------- exponential distribution --------------------
66
67def expovariate(lambd):
68 # lambd: rate lambd = 1/mean
69 # ('lambda' is a Python reserved word)
70
71 u = random()
72 while u <= 1e-7:
73 u = random()
74 return -log(u)/lambd
75
76# -------------------- von Mises distribution --------------------
77
78TWOPI = 2*pi
79verify('TWOPI', 6.28318530718)
80
81def vonmisesvariate(mu, kappa):
82 # mu: mean angle (in radians between 0 and 180 degrees)
83 # kappa: concentration parameter kappa (>= 0)
84
85 # if kappa = 0 generate uniform random angle
86 if kappa <= 1e-6:
87 return TWOPI * random()
88
89 a = 1.0 + sqrt(1 + 4 * kappa * kappa)
90 b = (a - sqrt(2 * a))/(2 * kappa)
91 r = (1 + b * b)/(2 * b)
92
93 while 1:
94 u1 = random()
95
96 z = cos(pi * u1)
97 f = (1 + r * z)/(r + z)
98 c = kappa * (r - f)
99
100 u2 = random()
101
102 if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
103 break
104
105 u3 = random()
106 if u3 > 0.5:
107 theta = mu + 0.5*acos(f)
108 else:
109 theta = mu - 0.5*acos(f)
110
111 return theta % pi
112
113# -------------------- gamma distribution --------------------
114
115LOG4 = log(4)
116verify('LOG4', 1.38629436111989)
117
118def gammavariate(alpha, beta):
119 # beta times standard gamma
120 ainv = sqrt(2 * alpha - 1)
121 return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
122
123SG_MAGICCONST = 1+log(4.5)
124verify('SG_MAGICCONST', 2.50407739677627)
125
126def stdgamma(alpha, ainv, bbb, ccc):
127 # ainv = sqrt(2 * alpha - 1)
128 # bbb = alpha - log(4)
129 # ccc = alpha + ainv
130
131 if alpha <= 0.0:
132 raise ValueError, 'stdgamma: alpha must be > 0.0'
133
134 if alpha > 1.0:
135
136 # Uses R.C.H. Cheng, "The generation of Gamma
137 # variables with non-integral shape parameters",
138 # Applied Statistics, (1977), 26, No. 1, p71-74
139
140 while 1:
141 u1 = random()
142 u2 = random()
143 v = log(u1/(1-u1))/ainv
144 x = alpha*exp(v)
145 z = u1*u1*u2
146 r = bbb+ccc*v-x
147 if r + SG_MAGICCONST - 4.5*z >= 0 or r >= log(z):
148 return x
149
150 elif alpha == 1.0:
151 # expovariate(1)
152 u = random()
153 while u <= 1e-7:
154 u = random()
155 return -log(u)
156
157 else: # alpha is between 0 and 1 (exclusive)
158
159 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
160
161 while 1:
162 u = random()
163 b = (e + alpha)/e
164 p = b*u
165 if p <= 1.0:
166 x = pow(p, 1.0/alpha)
167 else:
168 # p > 1
169 x = -log((b-p)/alpha)
170 u1 = random()
171 if not (((p <= 1.0) and (u1 > exp(-x))) or
172 ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
173 break
174 return x
175
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000176
177# -------------------- Gauss (faster alternative) --------------------
178
179# When x and y are two variables from [0, 1), uniformly distributed, then
180#
181# cos(2*pi*x)*log(1-y)
182# sin(2*pi*x)*log(1-y)
183#
184# are two *independent* variables with normal distribution (mu = 0, sigma = 1).
185# (Lambert Meertens)
186
187gauss_next = None
188def gauss(mu, sigma):
189 global gauss_next
190 if gauss_next != None:
191 z = gauss_next
192 gauss_next = None
193 else:
194 x2pi = random() * TWOPI
195 log1_y = log(1.0 - random())
196 z = cos(x2pi) * log1_y
197 gauss_next = sin(x2pi) * log1_y
198 return mu + z*sigma
199
200# -------------------- beta --------------------
201
202def betavariate(alpha, beta):
203 y = expovariate(alpha)
204 z = expovariate(1.0/beta)
205 return z/(y+z)
206
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000207# -------------------- test program --------------------
208
209def test():
210 print 'TWOPI =', TWOPI
211 print 'LOG4 =', LOG4
212 print 'NV_MAGICCONST =', NV_MAGICCONST
213 print 'SG_MAGICCONST =', SG_MAGICCONST
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000214 N = 200
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000215 test_generator(N, 'random()')
216 test_generator(N, 'normalvariate(0.0, 1.0)')
217 test_generator(N, 'lognormvariate(0.0, 1.0)')
218 test_generator(N, 'cunifvariate(0.0, 1.0)')
219 test_generator(N, 'expovariate(1.0)')
220 test_generator(N, 'vonmisesvariate(0.0, 1.0)')
221 test_generator(N, 'gammavariate(0.5, 1.0)')
222 test_generator(N, 'gammavariate(0.9, 1.0)')
223 test_generator(N, 'gammavariate(1.0, 1.0)')
224 test_generator(N, 'gammavariate(2.0, 1.0)')
225 test_generator(N, 'gammavariate(20.0, 1.0)')
226 test_generator(N, 'gammavariate(200.0, 1.0)')
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000227 test_generator(N, 'gauss(0.0, 1.0)')
228 test_generator(N, 'betavariate(3.0, 3.0)')
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000229
230def test_generator(n, funccall):
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000231 import time
232 print n, 'times', funccall
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000233 code = compile(funccall, funccall, 'eval')
234 sum = 0.0
235 sqsum = 0.0
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000236 smallest = 1e10
237 largest = 1e-10
238 t0 = time.time()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000239 for i in range(n):
240 x = eval(code)
241 sum = sum + x
242 sqsum = sqsum + x*x
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000243 smallest = min(x, smallest)
244 largest = max(x, largest)
245 t1 = time.time()
246 print round(t1-t0, 3), 'sec,',
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000247 avg = sum/n
248 stddev = sqrt(sqsum/n - avg*avg)
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000249 print 'avg %g, stddev %g, min %g, max %g' % \
250 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000251
252if __name__ == '__main__':
253 test()