blob: 4a2b2d0a9bf276de100b737dba9e8399abe992a6 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Stefan Krah1919b7e2012-03-21 18:25:23 +010012.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
Georg Brandl116aa622007-08-15 14:28:22 +000013.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
14
Christian Heimesfe337bf2008-03-23 21:54:12 +000015.. import modules for testing inline doctests with the Sphinx doctest builder
16.. testsetup:: *
17
18 import decimal
19 import math
20 from decimal import *
21 # make sure each group gets a fresh context
22 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000023
Stefan Krah1919b7e2012-03-21 18:25:23 +010024The :mod:`decimal` module provides support for fast correctly-rounded
25decimal floating point arithmetic. It offers several advantages over the
26:class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000027
Christian Heimes3feef612008-02-11 06:19:17 +000028* Decimal "is based on a floating-point model which was designed with people
29 in mind, and necessarily has a paramount guiding principle -- computers must
30 provide an arithmetic that works in the same way as the arithmetic that
31 people learn at school." -- excerpt from the decimal arithmetic specification.
32
Georg Brandl116aa622007-08-15 14:28:22 +000033* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050034 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000035 floating point. End users typically would not expect ``1.1 + 2.2`` to display
36 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000037
38* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000039 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000040 is :const:`5.5511151231257827e-017`. While near to zero, the differences
41 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000042 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000043 equality invariants.
44
45* The decimal module incorporates a notion of significant places so that ``1.30
46 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
47 This is the customary presentation for monetary applications. For
48 multiplication, the "schoolbook" approach uses all the figures in the
49 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
50 1.20`` gives :const:`1.5600`.
51
52* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000053 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000054 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000055
Mark Dickinson43ef32a2010-11-07 11:24:44 +000056 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000057 >>> getcontext().prec = 6
58 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000059 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000060 >>> getcontext().prec = 28
61 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000062 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000063
64* Both binary and decimal floating point are implemented in terms of published
65 standards. While the built-in float type exposes only a modest portion of its
66 capabilities, the decimal module exposes all required parts of the standard.
67 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000068 This includes an option to enforce exact arithmetic by using exceptions
69 to block any inexact operations.
70
71* The decimal module was designed to support "without prejudice, both exact
72 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
73 and rounded floating-point arithmetic." -- excerpt from the decimal
74 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000075
76The module design is centered around three concepts: the decimal number, the
77context for arithmetic, and signals.
78
79A decimal number is immutable. It has a sign, coefficient digits, and an
80exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000081trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000082:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
83differentiates :const:`-0` from :const:`+0`.
84
85The context for arithmetic is an environment specifying precision, rounding
86rules, limits on exponents, flags indicating the results of operations, and trap
87enablers which determine whether signals are treated as exceptions. Rounding
88options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
89:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000090:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000091
92Signals are groups of exceptional conditions arising during the course of
93computation. Depending on the needs of the application, signals may be ignored,
94considered as informational, or treated as exceptions. The signals in the
95decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
96:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
Stefan Krah1919b7e2012-03-21 18:25:23 +010097:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
Georg Brandl116aa622007-08-15 14:28:22 +000098
99For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +0000100encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +0000101set to one, an exception is raised. Flags are sticky, so the user needs to
102reset them before monitoring a calculation.
103
104
105.. seealso::
106
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000107 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000108 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000109
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000110 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000111 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000112
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000113.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000114
115
116.. _decimal-tutorial:
117
118Quick-start Tutorial
119--------------------
120
121The usual start to using decimals is importing the module, viewing the current
122context with :func:`getcontext` and, if necessary, setting new values for
123precision, rounding, or enabled traps::
124
125 >>> from decimal import *
126 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100127 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000128 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000129 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000130
131 >>> getcontext().prec = 7 # Set a new precision
132
Mark Dickinsone534a072010-04-04 22:13:14 +0000133Decimal instances can be constructed from integers, strings, floats, or tuples.
134Construction from an integer or a float performs an exact conversion of the
135value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000136:const:`NaN` which stands for "Not a number", positive and negative
Stefan Krah1919b7e2012-03-21 18:25:23 +0100137:const:`Infinity`, and :const:`-0`::
Georg Brandl116aa622007-08-15 14:28:22 +0000138
Facundo Batista789bdf02008-06-21 17:29:41 +0000139 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000140 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000141 Decimal('10')
142 >>> Decimal('3.14')
143 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000144 >>> Decimal(3.14)
145 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000146 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000147 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000148 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000149 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000150 >>> Decimal(2) ** Decimal('0.5')
151 Decimal('1.414213562373095048801688724')
152 >>> Decimal('NaN')
153 Decimal('NaN')
154 >>> Decimal('-Infinity')
155 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000156
Stefan Krah1919b7e2012-03-21 18:25:23 +0100157If the :exc:`FloatOperation` signal is trapped, accidental mixing of
158decimals and floats in constructors or ordering comparisons raises
159an exception::
160
161 >>> c = getcontext()
162 >>> c.traps[FloatOperation] = True
163 >>> Decimal(3.14)
164 Traceback (most recent call last):
165 File "<stdin>", line 1, in <module>
166 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
167 >>> Decimal('3.5') < 3.7
168 Traceback (most recent call last):
169 File "<stdin>", line 1, in <module>
170 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
171 >>> Decimal('3.5') == 3.5
172 True
173
174.. versionadded:: 3.3
175
Georg Brandl116aa622007-08-15 14:28:22 +0000176The significance of a new Decimal is determined solely by the number of digits
177input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000178operations.
179
180.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000181
182 >>> getcontext().prec = 6
183 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000184 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000185 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000186 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000187 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000188 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000189 >>> getcontext().rounding = ROUND_UP
190 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000191 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000192
Stefan Krah1919b7e2012-03-21 18:25:23 +0100193If the internal limits of the C version are exceeded, constructing
194a decimal raises :class:`InvalidOperation`::
195
196 >>> Decimal("1e9999999999999999999")
197 Traceback (most recent call last):
198 File "<stdin>", line 1, in <module>
199 decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
200
201.. versionchanged:: 3.3
202
Georg Brandl116aa622007-08-15 14:28:22 +0000203Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000204floating point flying circus:
205
206.. doctest::
207 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000208
Facundo Batista789bdf02008-06-21 17:29:41 +0000209 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000210 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000211 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000212 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000213 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000214 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000215 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
216 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000217 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000218 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000219 >>> a,b,c = data[:3]
220 >>> str(a)
221 '1.34'
222 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000223 1.34
224 >>> round(a, 1)
225 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000226 >>> int(a)
227 1
228 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000229 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000230 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000231 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000232 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000233 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000234
Christian Heimesfe337bf2008-03-23 21:54:12 +0000235And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000236
Facundo Batista789bdf02008-06-21 17:29:41 +0000237 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000238 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000239 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000240 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000241 Decimal('2.718281828459045235360287471')
242 >>> Decimal('10').ln()
243 Decimal('2.302585092994045684017991455')
244 >>> Decimal('10').log10()
245 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000246
Georg Brandl116aa622007-08-15 14:28:22 +0000247The :meth:`quantize` method rounds a number to a fixed exponent. This method is
248useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000249places:
Georg Brandl116aa622007-08-15 14:28:22 +0000250
251 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000252 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000253 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000254 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000255
256As shown above, the :func:`getcontext` function accesses the current context and
257allows the settings to be changed. This approach meets the needs of most
258applications.
259
260For more advanced work, it may be useful to create alternate contexts using the
261Context() constructor. To make an alternate active, use the :func:`setcontext`
262function.
263
264In accordance with the standard, the :mod:`Decimal` module provides two ready to
265use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
266former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000267enabled:
268
269.. doctest:: newcontext
270 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000271
272 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
273 >>> setcontext(myothercontext)
274 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000275 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000276
277 >>> ExtendedContext
Stefan Krah1919b7e2012-03-21 18:25:23 +0100278 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000279 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000280 >>> setcontext(ExtendedContext)
281 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000282 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000283 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000284 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000285
286 >>> setcontext(BasicContext)
287 >>> Decimal(42) / Decimal(0)
288 Traceback (most recent call last):
289 File "<pyshell#143>", line 1, in -toplevel-
290 Decimal(42) / Decimal(0)
291 DivisionByZero: x / 0
292
293Contexts also have signal flags for monitoring exceptional conditions
294encountered during computations. The flags remain set until explicitly cleared,
295so it is best to clear the flags before each set of monitored computations by
296using the :meth:`clear_flags` method. ::
297
298 >>> setcontext(ExtendedContext)
299 >>> getcontext().clear_flags()
300 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000301 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000302 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100303 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000304 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000305
306The *flags* entry shows that the rational approximation to :const:`Pi` was
307rounded (digits beyond the context precision were thrown away) and that the
308result is inexact (some of the discarded digits were non-zero).
309
310Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000311context:
Georg Brandl116aa622007-08-15 14:28:22 +0000312
Christian Heimesfe337bf2008-03-23 21:54:12 +0000313.. doctest:: newcontext
314
315 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000316 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000317 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000318 >>> getcontext().traps[DivisionByZero] = 1
319 >>> Decimal(1) / Decimal(0)
320 Traceback (most recent call last):
321 File "<pyshell#112>", line 1, in -toplevel-
322 Decimal(1) / Decimal(0)
323 DivisionByZero: x / 0
324
325Most programs adjust the current context only once, at the beginning of the
326program. And, in many applications, data is converted to :class:`Decimal` with
327a single cast inside a loop. With context set and decimals created, the bulk of
328the program manipulates the data no differently than with other Python numeric
329types.
330
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000331.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000332
333
334.. _decimal-decimal:
335
336Decimal objects
337---------------
338
339
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000340.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000341
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000342 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000343
Raymond Hettinger96798592010-04-02 16:58:27 +0000344 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000345 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000346 string, it should conform to the decimal numeric string syntax after leading
347 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000348
349 sign ::= '+' | '-'
350 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
351 indicator ::= 'e' | 'E'
352 digits ::= digit [digit]...
353 decimal-part ::= digits '.' [digits] | ['.'] digits
354 exponent-part ::= indicator [sign] digits
355 infinity ::= 'Infinity' | 'Inf'
356 nan ::= 'NaN' [digits] | 'sNaN' [digits]
357 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000358 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000359
Mark Dickinson345adc42009-08-02 10:14:23 +0000360 Other Unicode decimal digits are also permitted where ``digit``
361 appears above. These include decimal digits from various other
362 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
363 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
364
Georg Brandl116aa622007-08-15 14:28:22 +0000365 If *value* is a :class:`tuple`, it should have three components, a sign
366 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
367 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000368 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000369
Raymond Hettinger96798592010-04-02 16:58:27 +0000370 If *value* is a :class:`float`, the binary floating point value is losslessly
371 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000372 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
373 converts to
374 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000375
Georg Brandl116aa622007-08-15 14:28:22 +0000376 The *context* precision does not affect how many digits are stored. That is
377 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000378 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000379 only three.
380
381 The purpose of the *context* argument is determining what to do if *value* is a
382 malformed string. If the context traps :const:`InvalidOperation`, an exception
383 is raised; otherwise, the constructor returns a new Decimal with the value of
384 :const:`NaN`.
385
386 Once constructed, :class:`Decimal` objects are immutable.
387
Mark Dickinsone534a072010-04-04 22:13:14 +0000388 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000389 The argument to the constructor is now permitted to be a :class:`float`
390 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000391
Stefan Krah1919b7e2012-03-21 18:25:23 +0100392 .. versionchanged:: 3.3
393 :class:`float` arguments raise an exception if the :exc:`FloatOperation`
394 trap is set. By default the trap is off.
395
Benjamin Petersone41251e2008-04-25 01:59:09 +0000396 Decimal floating point objects share many properties with the other built-in
397 numeric types such as :class:`float` and :class:`int`. All of the usual math
398 operations and special methods apply. Likewise, decimal objects can be
399 copied, pickled, printed, used as dictionary keys, used as set elements,
400 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000401 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000402
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000403 Decimal objects cannot generally be combined with floats or
404 instances of :class:`fractions.Fraction` in arithmetic operations:
405 an attempt to add a :class:`Decimal` to a :class:`float`, for
406 example, will raise a :exc:`TypeError`. However, it is possible to
407 use Python's comparison operators to compare a :class:`Decimal`
408 instance ``x`` with another number ``y``. This avoids confusing results
409 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000410
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000411 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000412 Mixed-type comparisons between :class:`Decimal` instances and other
413 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000414
Benjamin Petersone41251e2008-04-25 01:59:09 +0000415 In addition to the standard numeric properties, decimal floating point
416 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000417
Georg Brandl116aa622007-08-15 14:28:22 +0000418
Benjamin Petersone41251e2008-04-25 01:59:09 +0000419 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000420
Benjamin Petersone41251e2008-04-25 01:59:09 +0000421 Return the adjusted exponent after shifting out the coefficient's
422 rightmost digits until only the lead digit remains:
423 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
424 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000425
Georg Brandl116aa622007-08-15 14:28:22 +0000426
Benjamin Petersone41251e2008-04-25 01:59:09 +0000427 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000428
Benjamin Petersone41251e2008-04-25 01:59:09 +0000429 Return a :term:`named tuple` representation of the number:
430 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000431
Christian Heimes25bb7832008-01-11 16:17:00 +0000432
Benjamin Petersone41251e2008-04-25 01:59:09 +0000433 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000434
Benjamin Petersone41251e2008-04-25 01:59:09 +0000435 Return the canonical encoding of the argument. Currently, the encoding of
436 a :class:`Decimal` instance is always canonical, so this operation returns
437 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000438
Benjamin Petersone41251e2008-04-25 01:59:09 +0000439 .. method:: compare(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000440
Georg Brandl05f5ab72008-09-24 09:11:47 +0000441 Compare the values of two Decimal instances. :meth:`compare` returns a
442 Decimal instance, and if either operand is a NaN then the result is a
443 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000444
Georg Brandl05f5ab72008-09-24 09:11:47 +0000445 a or b is a NaN ==> Decimal('NaN')
446 a < b ==> Decimal('-1')
447 a == b ==> Decimal('0')
448 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000449
Benjamin Petersone41251e2008-04-25 01:59:09 +0000450 .. method:: compare_signal(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000451
Benjamin Petersone41251e2008-04-25 01:59:09 +0000452 This operation is identical to the :meth:`compare` method, except that all
453 NaNs signal. That is, if neither operand is a signaling NaN then any
454 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000455
Benjamin Petersone41251e2008-04-25 01:59:09 +0000456 .. method:: compare_total(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000457
Benjamin Petersone41251e2008-04-25 01:59:09 +0000458 Compare two operands using their abstract representation rather than their
459 numerical value. Similar to the :meth:`compare` method, but the result
460 gives a total ordering on :class:`Decimal` instances. Two
461 :class:`Decimal` instances with the same numeric value but different
462 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000463
Benjamin Petersone41251e2008-04-25 01:59:09 +0000464 >>> Decimal('12.0').compare_total(Decimal('12'))
465 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000466
Benjamin Petersone41251e2008-04-25 01:59:09 +0000467 Quiet and signaling NaNs are also included in the total ordering. The
468 result of this function is ``Decimal('0')`` if both operands have the same
469 representation, ``Decimal('-1')`` if the first operand is lower in the
470 total order than the second, and ``Decimal('1')`` if the first operand is
471 higher in the total order than the second operand. See the specification
472 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000473
Benjamin Petersone41251e2008-04-25 01:59:09 +0000474 .. method:: compare_total_mag(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000475
Benjamin Petersone41251e2008-04-25 01:59:09 +0000476 Compare two operands using their abstract representation rather than their
477 value as in :meth:`compare_total`, but ignoring the sign of each operand.
478 ``x.compare_total_mag(y)`` is equivalent to
479 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000480
Facundo Batista789bdf02008-06-21 17:29:41 +0000481 .. method:: conjugate()
482
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000483 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000484 Specification.
485
Benjamin Petersone41251e2008-04-25 01:59:09 +0000486 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000487
Benjamin Petersone41251e2008-04-25 01:59:09 +0000488 Return the absolute value of the argument. This operation is unaffected
489 by the context and is quiet: no flags are changed and no rounding is
490 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000491
Benjamin Petersone41251e2008-04-25 01:59:09 +0000492 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000493
Benjamin Petersone41251e2008-04-25 01:59:09 +0000494 Return the negation of the argument. This operation is unaffected by the
495 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000496
Benjamin Petersone41251e2008-04-25 01:59:09 +0000497 .. method:: copy_sign(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000498
Benjamin Petersone41251e2008-04-25 01:59:09 +0000499 Return a copy of the first operand with the sign set to be the same as the
500 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000501
Benjamin Petersone41251e2008-04-25 01:59:09 +0000502 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
503 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000504
Benjamin Petersone41251e2008-04-25 01:59:09 +0000505 This operation is unaffected by the context and is quiet: no flags are
506 changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000507
Benjamin Petersone41251e2008-04-25 01:59:09 +0000508 .. method:: exp([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000509
Benjamin Petersone41251e2008-04-25 01:59:09 +0000510 Return the value of the (natural) exponential function ``e**x`` at the
511 given number. The result is correctly rounded using the
512 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000513
Benjamin Petersone41251e2008-04-25 01:59:09 +0000514 >>> Decimal(1).exp()
515 Decimal('2.718281828459045235360287471')
516 >>> Decimal(321).exp()
517 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000518
Raymond Hettinger771ed762009-01-03 19:20:32 +0000519 .. method:: from_float(f)
520
521 Classmethod that converts a float to a decimal number, exactly.
522
523 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
524 Since 0.1 is not exactly representable in binary floating point, the
525 value is stored as the nearest representable value which is
526 `0x1.999999999999ap-4`. That equivalent value in decimal is
527 `0.1000000000000000055511151231257827021181583404541015625`.
528
Mark Dickinsone534a072010-04-04 22:13:14 +0000529 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
530 can also be constructed directly from a :class:`float`.
531
Raymond Hettinger771ed762009-01-03 19:20:32 +0000532 .. doctest::
533
534 >>> Decimal.from_float(0.1)
535 Decimal('0.1000000000000000055511151231257827021181583404541015625')
536 >>> Decimal.from_float(float('nan'))
537 Decimal('NaN')
538 >>> Decimal.from_float(float('inf'))
539 Decimal('Infinity')
540 >>> Decimal.from_float(float('-inf'))
541 Decimal('-Infinity')
542
Georg Brandl45f53372009-01-03 21:15:20 +0000543 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000544
Benjamin Petersone41251e2008-04-25 01:59:09 +0000545 .. method:: fma(other, third[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000546
Benjamin Petersone41251e2008-04-25 01:59:09 +0000547 Fused multiply-add. Return self*other+third with no rounding of the
548 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000549
Benjamin Petersone41251e2008-04-25 01:59:09 +0000550 >>> Decimal(2).fma(3, 5)
551 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000552
Benjamin Petersone41251e2008-04-25 01:59:09 +0000553 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000554
Benjamin Petersone41251e2008-04-25 01:59:09 +0000555 Return :const:`True` if the argument is canonical and :const:`False`
556 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
557 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000558
Benjamin Petersone41251e2008-04-25 01:59:09 +0000559 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000560
Benjamin Petersone41251e2008-04-25 01:59:09 +0000561 Return :const:`True` if the argument is a finite number, and
562 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000563
Benjamin Petersone41251e2008-04-25 01:59:09 +0000564 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000565
Benjamin Petersone41251e2008-04-25 01:59:09 +0000566 Return :const:`True` if the argument is either positive or negative
567 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000568
Benjamin Petersone41251e2008-04-25 01:59:09 +0000569 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000570
Benjamin Petersone41251e2008-04-25 01:59:09 +0000571 Return :const:`True` if the argument is a (quiet or signaling) NaN and
572 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000573
Benjamin Petersone41251e2008-04-25 01:59:09 +0000574 .. method:: is_normal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000575
Benjamin Petersone41251e2008-04-25 01:59:09 +0000576 Return :const:`True` if the argument is a *normal* finite number. Return
577 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000578
Benjamin Petersone41251e2008-04-25 01:59:09 +0000579 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000580
Benjamin Petersone41251e2008-04-25 01:59:09 +0000581 Return :const:`True` if the argument is a quiet NaN, and
582 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000583
Benjamin Petersone41251e2008-04-25 01:59:09 +0000584 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000585
Benjamin Petersone41251e2008-04-25 01:59:09 +0000586 Return :const:`True` if the argument has a negative sign and
587 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000588
Benjamin Petersone41251e2008-04-25 01:59:09 +0000589 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000590
Benjamin Petersone41251e2008-04-25 01:59:09 +0000591 Return :const:`True` if the argument is a signaling NaN and :const:`False`
592 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000593
Benjamin Petersone41251e2008-04-25 01:59:09 +0000594 .. method:: is_subnormal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000595
Benjamin Petersone41251e2008-04-25 01:59:09 +0000596 Return :const:`True` if the argument is subnormal, and :const:`False`
597 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000598
Benjamin Petersone41251e2008-04-25 01:59:09 +0000599 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000600
Benjamin Petersone41251e2008-04-25 01:59:09 +0000601 Return :const:`True` if the argument is a (positive or negative) zero and
602 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000603
Benjamin Petersone41251e2008-04-25 01:59:09 +0000604 .. method:: ln([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000605
Benjamin Petersone41251e2008-04-25 01:59:09 +0000606 Return the natural (base e) logarithm of the operand. The result is
607 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000608
Benjamin Petersone41251e2008-04-25 01:59:09 +0000609 .. method:: log10([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000610
Benjamin Petersone41251e2008-04-25 01:59:09 +0000611 Return the base ten logarithm of the operand. The result is correctly
612 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000613
Benjamin Petersone41251e2008-04-25 01:59:09 +0000614 .. method:: logb([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000615
Benjamin Petersone41251e2008-04-25 01:59:09 +0000616 For a nonzero number, return the adjusted exponent of its operand as a
617 :class:`Decimal` instance. If the operand is a zero then
618 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
619 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
620 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000621
Benjamin Petersone41251e2008-04-25 01:59:09 +0000622 .. method:: logical_and(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000623
Benjamin Petersone41251e2008-04-25 01:59:09 +0000624 :meth:`logical_and` is a logical operation which takes two *logical
625 operands* (see :ref:`logical_operands_label`). The result is the
626 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000627
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000628 .. method:: logical_invert([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000629
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000630 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000631 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000632
Benjamin Petersone41251e2008-04-25 01:59:09 +0000633 .. method:: logical_or(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000634
Benjamin Petersone41251e2008-04-25 01:59:09 +0000635 :meth:`logical_or` is a logical operation which takes two *logical
636 operands* (see :ref:`logical_operands_label`). The result is the
637 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000638
Benjamin Petersone41251e2008-04-25 01:59:09 +0000639 .. method:: logical_xor(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000640
Benjamin Petersone41251e2008-04-25 01:59:09 +0000641 :meth:`logical_xor` is a logical operation which takes two *logical
642 operands* (see :ref:`logical_operands_label`). The result is the
643 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000644
Benjamin Petersone41251e2008-04-25 01:59:09 +0000645 .. method:: max(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000646
Benjamin Petersone41251e2008-04-25 01:59:09 +0000647 Like ``max(self, other)`` except that the context rounding rule is applied
648 before returning and that :const:`NaN` values are either signaled or
649 ignored (depending on the context and whether they are signaling or
650 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000651
Benjamin Petersone41251e2008-04-25 01:59:09 +0000652 .. method:: max_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000653
Georg Brandl502d9a52009-07-26 15:02:41 +0000654 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000655 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000656
Benjamin Petersone41251e2008-04-25 01:59:09 +0000657 .. method:: min(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000658
Benjamin Petersone41251e2008-04-25 01:59:09 +0000659 Like ``min(self, other)`` except that the context rounding rule is applied
660 before returning and that :const:`NaN` values are either signaled or
661 ignored (depending on the context and whether they are signaling or
662 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000663
Benjamin Petersone41251e2008-04-25 01:59:09 +0000664 .. method:: min_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000665
Georg Brandl502d9a52009-07-26 15:02:41 +0000666 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000667 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000668
Benjamin Petersone41251e2008-04-25 01:59:09 +0000669 .. method:: next_minus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000670
Benjamin Petersone41251e2008-04-25 01:59:09 +0000671 Return the largest number representable in the given context (or in the
672 current thread's context if no context is given) that is smaller than the
673 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000674
Benjamin Petersone41251e2008-04-25 01:59:09 +0000675 .. method:: next_plus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000676
Benjamin Petersone41251e2008-04-25 01:59:09 +0000677 Return the smallest number representable in the given context (or in the
678 current thread's context if no context is given) that is larger than the
679 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000680
Benjamin Petersone41251e2008-04-25 01:59:09 +0000681 .. method:: next_toward(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000682
Benjamin Petersone41251e2008-04-25 01:59:09 +0000683 If the two operands are unequal, return the number closest to the first
684 operand in the direction of the second operand. If both operands are
685 numerically equal, return a copy of the first operand with the sign set to
686 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000687
Benjamin Petersone41251e2008-04-25 01:59:09 +0000688 .. method:: normalize([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000689
Benjamin Petersone41251e2008-04-25 01:59:09 +0000690 Normalize the number by stripping the rightmost trailing zeros and
691 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700692 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000693 of an equivalence class. For example, ``Decimal('32.100')`` and
694 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
695 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000696
Benjamin Petersone41251e2008-04-25 01:59:09 +0000697 .. method:: number_class([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000698
Benjamin Petersone41251e2008-04-25 01:59:09 +0000699 Return a string describing the *class* of the operand. The returned value
700 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000701
Benjamin Petersone41251e2008-04-25 01:59:09 +0000702 * ``"-Infinity"``, indicating that the operand is negative infinity.
703 * ``"-Normal"``, indicating that the operand is a negative normal number.
704 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
705 * ``"-Zero"``, indicating that the operand is a negative zero.
706 * ``"+Zero"``, indicating that the operand is a positive zero.
707 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
708 * ``"+Normal"``, indicating that the operand is a positive normal number.
709 * ``"+Infinity"``, indicating that the operand is positive infinity.
710 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
711 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000712
Benjamin Petersone41251e2008-04-25 01:59:09 +0000713 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000714
Benjamin Petersone41251e2008-04-25 01:59:09 +0000715 Return a value equal to the first operand after rounding and having the
716 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000717
Benjamin Petersone41251e2008-04-25 01:59:09 +0000718 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
719 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000720
Benjamin Petersone41251e2008-04-25 01:59:09 +0000721 Unlike other operations, if the length of the coefficient after the
722 quantize operation would be greater than precision, then an
723 :const:`InvalidOperation` is signaled. This guarantees that, unless there
724 is an error condition, the quantized exponent is always equal to that of
725 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000726
Benjamin Petersone41251e2008-04-25 01:59:09 +0000727 Also unlike other operations, quantize never signals Underflow, even if
728 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000729
Benjamin Petersone41251e2008-04-25 01:59:09 +0000730 If the exponent of the second operand is larger than that of the first
731 then rounding may be necessary. In this case, the rounding mode is
732 determined by the ``rounding`` argument if given, else by the given
733 ``context`` argument; if neither argument is given the rounding mode of
734 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000735
Benjamin Petersone41251e2008-04-25 01:59:09 +0000736 If *watchexp* is set (default), then an error is returned whenever the
737 resulting exponent is greater than :attr:`Emax` or less than
738 :attr:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000739
Stefan Krahaf3f3a72012-08-30 12:33:55 +0200740 .. deprecated:: 3.3
741 *watchexp* is an implementation detail from the pure Python version
742 and is not present in the C version. It will be removed in version
743 3.4, where it defaults to ``True``.
744
Benjamin Petersone41251e2008-04-25 01:59:09 +0000745 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000746
Benjamin Petersone41251e2008-04-25 01:59:09 +0000747 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
748 class does all its arithmetic. Included for compatibility with the
749 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000750
Benjamin Petersone41251e2008-04-25 01:59:09 +0000751 .. method:: remainder_near(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000752
Benjamin Petersone41251e2008-04-25 01:59:09 +0000753 Compute the modulo as either a positive or negative value depending on
754 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
755 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000756
Benjamin Petersone41251e2008-04-25 01:59:09 +0000757 If both are equally close, the one chosen will have the same sign as
758 *self*.
Georg Brandl116aa622007-08-15 14:28:22 +0000759
Benjamin Petersone41251e2008-04-25 01:59:09 +0000760 .. method:: rotate(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000761
Benjamin Petersone41251e2008-04-25 01:59:09 +0000762 Return the result of rotating the digits of the first operand by an amount
763 specified by the second operand. The second operand must be an integer in
764 the range -precision through precision. The absolute value of the second
765 operand gives the number of places to rotate. If the second operand is
766 positive then rotation is to the left; otherwise rotation is to the right.
767 The coefficient of the first operand is padded on the left with zeros to
768 length precision if necessary. The sign and exponent of the first operand
769 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000770
Benjamin Petersone41251e2008-04-25 01:59:09 +0000771 .. method:: same_quantum(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000772
Benjamin Petersone41251e2008-04-25 01:59:09 +0000773 Test whether self and other have the same exponent or whether both are
774 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000775
Benjamin Petersone41251e2008-04-25 01:59:09 +0000776 .. method:: scaleb(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000777
Benjamin Petersone41251e2008-04-25 01:59:09 +0000778 Return the first operand with exponent adjusted by the second.
779 Equivalently, return the first operand multiplied by ``10**other``. The
780 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000781
Benjamin Petersone41251e2008-04-25 01:59:09 +0000782 .. method:: shift(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000783
Benjamin Petersone41251e2008-04-25 01:59:09 +0000784 Return the result of shifting the digits of the first operand by an amount
785 specified by the second operand. The second operand must be an integer in
786 the range -precision through precision. The absolute value of the second
787 operand gives the number of places to shift. If the second operand is
788 positive then the shift is to the left; otherwise the shift is to the
789 right. Digits shifted into the coefficient are zeros. The sign and
790 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000791
Benjamin Petersone41251e2008-04-25 01:59:09 +0000792 .. method:: sqrt([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000793
Benjamin Petersone41251e2008-04-25 01:59:09 +0000794 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000795
Georg Brandl116aa622007-08-15 14:28:22 +0000796
Benjamin Petersone41251e2008-04-25 01:59:09 +0000797 .. method:: to_eng_string([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000798
Benjamin Petersone41251e2008-04-25 01:59:09 +0000799 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000800
Benjamin Petersone41251e2008-04-25 01:59:09 +0000801 Engineering notation has an exponent which is a multiple of 3, so there
802 are up to 3 digits left of the decimal place. For example, converts
803 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000804
Benjamin Petersone41251e2008-04-25 01:59:09 +0000805 .. method:: to_integral([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000806
Benjamin Petersone41251e2008-04-25 01:59:09 +0000807 Identical to the :meth:`to_integral_value` method. The ``to_integral``
808 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000809
Benjamin Petersone41251e2008-04-25 01:59:09 +0000810 .. method:: to_integral_exact([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000811
Benjamin Petersone41251e2008-04-25 01:59:09 +0000812 Round to the nearest integer, signaling :const:`Inexact` or
813 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
814 determined by the ``rounding`` parameter if given, else by the given
815 ``context``. If neither parameter is given then the rounding mode of the
816 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000817
Benjamin Petersone41251e2008-04-25 01:59:09 +0000818 .. method:: to_integral_value([rounding[, context]])
Georg Brandl116aa622007-08-15 14:28:22 +0000819
Benjamin Petersone41251e2008-04-25 01:59:09 +0000820 Round to the nearest integer without signaling :const:`Inexact` or
821 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
822 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000823
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000824
825.. _logical_operands_label:
826
827Logical operands
828^^^^^^^^^^^^^^^^
829
830The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
831and :meth:`logical_xor` methods expect their arguments to be *logical
832operands*. A *logical operand* is a :class:`Decimal` instance whose
833exponent and sign are both zero, and whose digits are all either
834:const:`0` or :const:`1`.
835
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000836.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000837
838
839.. _decimal-context:
840
841Context objects
842---------------
843
844Contexts are environments for arithmetic operations. They govern precision, set
845rules for rounding, determine which signals are treated as exceptions, and limit
846the range for exponents.
847
848Each thread has its own current context which is accessed or changed using the
849:func:`getcontext` and :func:`setcontext` functions:
850
851
852.. function:: getcontext()
853
854 Return the current context for the active thread.
855
856
857.. function:: setcontext(c)
858
859 Set the current context for the active thread to *c*.
860
Georg Brandle6bcc912008-05-12 18:05:20 +0000861You can also use the :keyword:`with` statement and the :func:`localcontext`
862function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000863
864.. function:: localcontext([c])
865
866 Return a context manager that will set the current context for the active thread
867 to a copy of *c* on entry to the with-statement and restore the previous context
868 when exiting the with-statement. If no context is specified, a copy of the
869 current context is used.
870
Georg Brandl116aa622007-08-15 14:28:22 +0000871 For example, the following code sets the current decimal precision to 42 places,
872 performs a calculation, and then automatically restores the previous context::
873
Georg Brandl116aa622007-08-15 14:28:22 +0000874 from decimal import localcontext
875
876 with localcontext() as ctx:
877 ctx.prec = 42 # Perform a high precision calculation
878 s = calculate_something()
879 s = +s # Round the final result back to the default precision
880
881New contexts can also be created using the :class:`Context` constructor
882described below. In addition, the module provides three pre-made contexts:
883
884
885.. class:: BasicContext
886
887 This is a standard context defined by the General Decimal Arithmetic
888 Specification. Precision is set to nine. Rounding is set to
889 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
890 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
891 :const:`Subnormal`.
892
893 Because many of the traps are enabled, this context is useful for debugging.
894
895
896.. class:: ExtendedContext
897
898 This is a standard context defined by the General Decimal Arithmetic
899 Specification. Precision is set to nine. Rounding is set to
900 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
901 exceptions are not raised during computations).
902
Christian Heimes3feef612008-02-11 06:19:17 +0000903 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000904 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
905 raising exceptions. This allows an application to complete a run in the
906 presence of conditions that would otherwise halt the program.
907
908
909.. class:: DefaultContext
910
911 This context is used by the :class:`Context` constructor as a prototype for new
912 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000913 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000914
915 This context is most useful in multi-threaded environments. Changing one of the
916 fields before threads are started has the effect of setting system-wide
917 defaults. Changing the fields after threads have started is not recommended as
918 it would require thread synchronization to prevent race conditions.
919
920 In single threaded environments, it is preferable to not use this context at
921 all. Instead, simply create contexts explicitly as described below.
922
Stefan Krah1919b7e2012-03-21 18:25:23 +0100923 The default values are :attr:`prec`\ =\ :const:`28`,
924 :attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
925 and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
926 :class:`DivisionByZero`.
Georg Brandl116aa622007-08-15 14:28:22 +0000927
928In addition to the three supplied contexts, new contexts can be created with the
929:class:`Context` constructor.
930
931
Stefan Krah1919b7e2012-03-21 18:25:23 +0100932.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000933
934 Creates a new context. If a field is not specified or is :const:`None`, the
935 default values are copied from the :const:`DefaultContext`. If the *flags*
936 field is not specified or is :const:`None`, all flags are cleared.
937
Stefan Krah1919b7e2012-03-21 18:25:23 +0100938 *prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
939 the precision for arithmetic operations in the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000940
Stefan Krah1919b7e2012-03-21 18:25:23 +0100941 The *rounding* option is one of the constants listed in the section
942 `Rounding Modes`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000943
944 The *traps* and *flags* fields list any signals to be set. Generally, new
945 contexts should only set traps and leave the flags clear.
946
947 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
Stefan Krah1919b7e2012-03-21 18:25:23 +0100948 for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
949 *Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
Georg Brandl116aa622007-08-15 14:28:22 +0000950
951 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
952 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
953 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
954
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000955 The *clamp* field is either :const:`0` (the default) or :const:`1`.
956 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
957 instance representable in this context is strictly limited to the
958 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
959 :const:`0` then a weaker condition holds: the adjusted exponent of
960 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
961 :const:`1`, a large normal number will, where possible, have its
962 exponent reduced and a corresponding number of zeros added to its
963 coefficient, in order to fit the exponent constraints; this
964 preserves the value of the number but loses information about
965 significant trailing zeros. For example::
966
967 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
968 Decimal('1.23000E+999')
969
970 A *clamp* value of :const:`1` allows compatibility with the
971 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +0000972
Benjamin Petersone41251e2008-04-25 01:59:09 +0000973 The :class:`Context` class defines several general purpose methods as well as
974 a large number of methods for doing arithmetic directly in a given context.
975 In addition, for each of the :class:`Decimal` methods described above (with
976 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +0000977 a corresponding :class:`Context` method. For example, for a :class:`Context`
978 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
979 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000980 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +0000981 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +0000982
983
Benjamin Petersone41251e2008-04-25 01:59:09 +0000984 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +0000985
Benjamin Petersone41251e2008-04-25 01:59:09 +0000986 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000987
Stefan Krah1919b7e2012-03-21 18:25:23 +0100988 .. method:: clear_traps()
989
990 Resets all of the traps to :const:`0`.
991
992 .. versionadded:: 3.3
993
Benjamin Petersone41251e2008-04-25 01:59:09 +0000994 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000995
Benjamin Petersone41251e2008-04-25 01:59:09 +0000996 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000997
Benjamin Petersone41251e2008-04-25 01:59:09 +0000998 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +0000999
Benjamin Petersone41251e2008-04-25 01:59:09 +00001000 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +00001001
Benjamin Petersone41251e2008-04-25 01:59:09 +00001002 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +00001003
Benjamin Petersone41251e2008-04-25 01:59:09 +00001004 Creates a new Decimal instance from *num* but using *self* as
1005 context. Unlike the :class:`Decimal` constructor, the context precision,
1006 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +00001007
Benjamin Petersone41251e2008-04-25 01:59:09 +00001008 This is useful because constants are often given to a greater precision
1009 than is needed by the application. Another benefit is that rounding
1010 immediately eliminates unintended effects from digits beyond the current
1011 precision. In the following example, using unrounded inputs means that
1012 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +00001013
Benjamin Petersone41251e2008-04-25 01:59:09 +00001014 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001015
Benjamin Petersone41251e2008-04-25 01:59:09 +00001016 >>> getcontext().prec = 3
1017 >>> Decimal('3.4445') + Decimal('1.0023')
1018 Decimal('4.45')
1019 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1020 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +00001021
Benjamin Petersone41251e2008-04-25 01:59:09 +00001022 This method implements the to-number operation of the IBM specification.
1023 If the argument is a string, no leading or trailing whitespace is
1024 permitted.
1025
Georg Brandl45f53372009-01-03 21:15:20 +00001026 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +00001027
1028 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +00001029 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +00001030 the context precision, rounding method, flags, and traps are applied to
1031 the conversion.
1032
1033 .. doctest::
1034
Georg Brandl45f53372009-01-03 21:15:20 +00001035 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1036 >>> context.create_decimal_from_float(math.pi)
1037 Decimal('3.1415')
1038 >>> context = Context(prec=5, traps=[Inexact])
1039 >>> context.create_decimal_from_float(math.pi)
1040 Traceback (most recent call last):
1041 ...
1042 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001043
Georg Brandl45f53372009-01-03 21:15:20 +00001044 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001045
Benjamin Petersone41251e2008-04-25 01:59:09 +00001046 .. method:: Etiny()
1047
1048 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1049 value for subnormal results. When underflow occurs, the exponent is set
1050 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001051
Benjamin Petersone41251e2008-04-25 01:59:09 +00001052 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001053
Benjamin Petersone41251e2008-04-25 01:59:09 +00001054 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001055
Benjamin Petersone41251e2008-04-25 01:59:09 +00001056 The usual approach to working with decimals is to create :class:`Decimal`
1057 instances and then apply arithmetic operations which take place within the
1058 current context for the active thread. An alternative approach is to use
1059 context methods for calculating within a specific context. The methods are
1060 similar to those for the :class:`Decimal` class and are only briefly
1061 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001062
1063
Benjamin Petersone41251e2008-04-25 01:59:09 +00001064 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001065
Benjamin Petersone41251e2008-04-25 01:59:09 +00001066 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001067
1068
Benjamin Petersone41251e2008-04-25 01:59:09 +00001069 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001070
Benjamin Petersone41251e2008-04-25 01:59:09 +00001071 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001072
1073
Facundo Batista789bdf02008-06-21 17:29:41 +00001074 .. method:: canonical(x)
1075
1076 Returns the same Decimal object *x*.
1077
1078
1079 .. method:: compare(x, y)
1080
1081 Compares *x* and *y* numerically.
1082
1083
1084 .. method:: compare_signal(x, y)
1085
1086 Compares the values of the two operands numerically.
1087
1088
1089 .. method:: compare_total(x, y)
1090
1091 Compares two operands using their abstract representation.
1092
1093
1094 .. method:: compare_total_mag(x, y)
1095
1096 Compares two operands using their abstract representation, ignoring sign.
1097
1098
1099 .. method:: copy_abs(x)
1100
1101 Returns a copy of *x* with the sign set to 0.
1102
1103
1104 .. method:: copy_negate(x)
1105
1106 Returns a copy of *x* with the sign inverted.
1107
1108
1109 .. method:: copy_sign(x, y)
1110
1111 Copies the sign from *y* to *x*.
1112
1113
Benjamin Petersone41251e2008-04-25 01:59:09 +00001114 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001115
Benjamin Petersone41251e2008-04-25 01:59:09 +00001116 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001117
1118
Benjamin Petersone41251e2008-04-25 01:59:09 +00001119 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001120
Benjamin Petersone41251e2008-04-25 01:59:09 +00001121 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001122
1123
Benjamin Petersone41251e2008-04-25 01:59:09 +00001124 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001125
Benjamin Petersone41251e2008-04-25 01:59:09 +00001126 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001127
1128
Facundo Batista789bdf02008-06-21 17:29:41 +00001129 .. method:: exp(x)
1130
1131 Returns `e ** x`.
1132
1133
1134 .. method:: fma(x, y, z)
1135
1136 Returns *x* multiplied by *y*, plus *z*.
1137
1138
1139 .. method:: is_canonical(x)
1140
1141 Returns True if *x* is canonical; otherwise returns False.
1142
1143
1144 .. method:: is_finite(x)
1145
1146 Returns True if *x* is finite; otherwise returns False.
1147
1148
1149 .. method:: is_infinite(x)
1150
1151 Returns True if *x* is infinite; otherwise returns False.
1152
1153
1154 .. method:: is_nan(x)
1155
1156 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1157
1158
1159 .. method:: is_normal(x)
1160
1161 Returns True if *x* is a normal number; otherwise returns False.
1162
1163
1164 .. method:: is_qnan(x)
1165
1166 Returns True if *x* is a quiet NaN; otherwise returns False.
1167
1168
1169 .. method:: is_signed(x)
1170
1171 Returns True if *x* is negative; otherwise returns False.
1172
1173
1174 .. method:: is_snan(x)
1175
1176 Returns True if *x* is a signaling NaN; otherwise returns False.
1177
1178
1179 .. method:: is_subnormal(x)
1180
1181 Returns True if *x* is subnormal; otherwise returns False.
1182
1183
1184 .. method:: is_zero(x)
1185
1186 Returns True if *x* is a zero; otherwise returns False.
1187
1188
1189 .. method:: ln(x)
1190
1191 Returns the natural (base e) logarithm of *x*.
1192
1193
1194 .. method:: log10(x)
1195
1196 Returns the base 10 logarithm of *x*.
1197
1198
1199 .. method:: logb(x)
1200
1201 Returns the exponent of the magnitude of the operand's MSD.
1202
1203
1204 .. method:: logical_and(x, y)
1205
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001206 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001207
1208
1209 .. method:: logical_invert(x)
1210
1211 Invert all the digits in *x*.
1212
1213
1214 .. method:: logical_or(x, y)
1215
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001216 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001217
1218
1219 .. method:: logical_xor(x, y)
1220
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001221 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001222
1223
1224 .. method:: max(x, y)
1225
1226 Compares two values numerically and returns the maximum.
1227
1228
1229 .. method:: max_mag(x, y)
1230
1231 Compares the values numerically with their sign ignored.
1232
1233
1234 .. method:: min(x, y)
1235
1236 Compares two values numerically and returns the minimum.
1237
1238
1239 .. method:: min_mag(x, y)
1240
1241 Compares the values numerically with their sign ignored.
1242
1243
Benjamin Petersone41251e2008-04-25 01:59:09 +00001244 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001245
Benjamin Petersone41251e2008-04-25 01:59:09 +00001246 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001247
1248
Benjamin Petersone41251e2008-04-25 01:59:09 +00001249 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001250
Benjamin Petersone41251e2008-04-25 01:59:09 +00001251 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001252
1253
Facundo Batista789bdf02008-06-21 17:29:41 +00001254 .. method:: next_minus(x)
1255
1256 Returns the largest representable number smaller than *x*.
1257
1258
1259 .. method:: next_plus(x)
1260
1261 Returns the smallest representable number larger than *x*.
1262
1263
1264 .. method:: next_toward(x, y)
1265
1266 Returns the number closest to *x*, in direction towards *y*.
1267
1268
1269 .. method:: normalize(x)
1270
1271 Reduces *x* to its simplest form.
1272
1273
1274 .. method:: number_class(x)
1275
1276 Returns an indication of the class of *x*.
1277
1278
Benjamin Petersone41251e2008-04-25 01:59:09 +00001279 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001280
Benjamin Petersone41251e2008-04-25 01:59:09 +00001281 Plus corresponds to the unary prefix plus operator in Python. This
1282 operation applies the context precision and rounding, so it is *not* an
1283 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001284
1285
Benjamin Petersone41251e2008-04-25 01:59:09 +00001286 .. method:: power(x, y[, modulo])
Georg Brandl116aa622007-08-15 14:28:22 +00001287
Benjamin Petersone41251e2008-04-25 01:59:09 +00001288 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001289
Benjamin Petersone41251e2008-04-25 01:59:09 +00001290 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1291 must be integral. The result will be inexact unless ``y`` is integral and
1292 the result is finite and can be expressed exactly in 'precision' digits.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001293 The rounding mode of the context is used. Results are always correctly-rounded
1294 in the Python version.
1295
1296 .. versionchanged:: 3.3
1297 The C module computes :meth:`power` in terms of the correctly-rounded
1298 :meth:`exp` and :meth:`ln` functions. The result is well-defined but
1299 only "almost always correctly-rounded".
Georg Brandl116aa622007-08-15 14:28:22 +00001300
Benjamin Petersone41251e2008-04-25 01:59:09 +00001301 With three arguments, compute ``(x**y) % modulo``. For the three argument
1302 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001303
Benjamin Petersone41251e2008-04-25 01:59:09 +00001304 - all three arguments must be integral
1305 - ``y`` must be nonnegative
1306 - at least one of ``x`` or ``y`` must be nonzero
1307 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001308
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001309 The value resulting from ``Context.power(x, y, modulo)`` is
1310 equal to the value that would be obtained by computing ``(x**y)
1311 % modulo`` with unbounded precision, but is computed more
1312 efficiently. The exponent of the result is zero, regardless of
1313 the exponents of ``x``, ``y`` and ``modulo``. The result is
1314 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001315
Facundo Batista789bdf02008-06-21 17:29:41 +00001316
1317 .. method:: quantize(x, y)
1318
1319 Returns a value equal to *x* (rounded), having the exponent of *y*.
1320
1321
1322 .. method:: radix()
1323
1324 Just returns 10, as this is Decimal, :)
1325
1326
Benjamin Petersone41251e2008-04-25 01:59:09 +00001327 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001328
Benjamin Petersone41251e2008-04-25 01:59:09 +00001329 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001330
Benjamin Petersone41251e2008-04-25 01:59:09 +00001331 The sign of the result, if non-zero, is the same as that of the original
1332 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001333
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001334
Facundo Batista789bdf02008-06-21 17:29:41 +00001335 .. method:: remainder_near(x, y)
1336
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001337 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1338 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001339
1340
1341 .. method:: rotate(x, y)
1342
1343 Returns a rotated copy of *x*, *y* times.
1344
1345
1346 .. method:: same_quantum(x, y)
1347
1348 Returns True if the two operands have the same exponent.
1349
1350
1351 .. method:: scaleb (x, y)
1352
1353 Returns the first operand after adding the second value its exp.
1354
1355
1356 .. method:: shift(x, y)
1357
1358 Returns a shifted copy of *x*, *y* times.
1359
1360
1361 .. method:: sqrt(x)
1362
1363 Square root of a non-negative number to context precision.
1364
1365
Benjamin Petersone41251e2008-04-25 01:59:09 +00001366 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001367
Benjamin Petersone41251e2008-04-25 01:59:09 +00001368 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001369
Facundo Batista789bdf02008-06-21 17:29:41 +00001370
1371 .. method:: to_eng_string(x)
1372
1373 Converts a number to a string, using scientific notation.
1374
1375
1376 .. method:: to_integral_exact(x)
1377
1378 Rounds to an integer.
1379
1380
Benjamin Petersone41251e2008-04-25 01:59:09 +00001381 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001382
Benjamin Petersone41251e2008-04-25 01:59:09 +00001383 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001384
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001385.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001386
Stefan Krah1919b7e2012-03-21 18:25:23 +01001387.. _decimal-rounding-modes:
1388
1389Constants
1390---------
1391
1392The constants in this section are only relevant for the C module. They
1393are also included in the pure Python version for compatibility.
1394
Stefan Krah851a07e2012-03-21 18:47:20 +01001395+---------------------+---------------------+-------------------------------+
1396| | 32-bit | 64-bit |
1397+=====================+=====================+===============================+
1398| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
1399+---------------------+---------------------+-------------------------------+
1400| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
1401+---------------------+---------------------+-------------------------------+
1402| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
1403+---------------------+---------------------+-------------------------------+
1404| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
1405+---------------------+---------------------+-------------------------------+
1406
Stefan Krah1919b7e2012-03-21 18:25:23 +01001407
1408.. data:: HAVE_THREADS
1409
1410 The default value is True. If Python is compiled without threads, the
1411 C version automatically disables the expensive thread local context
1412 machinery. In this case, the value is False.
1413
1414Rounding modes
1415--------------
1416
1417.. data:: ROUND_CEILING
1418
1419 Round towards :const:`Infinity`.
1420
1421.. data:: ROUND_DOWN
1422
1423 Round towards zero.
1424
1425.. data:: ROUND_FLOOR
1426
1427 Round towards :const:`-Infinity`.
1428
1429.. data:: ROUND_HALF_DOWN
1430
1431 Round to nearest with ties going towards zero.
1432
1433.. data:: ROUND_HALF_EVEN
1434
1435 Round to nearest with ties going to nearest even integer.
1436
1437.. data:: ROUND_HALF_UP
1438
1439 Round to nearest with ties going away from zero.
1440
1441.. data:: ROUND_UP
1442
1443 Round away from zero.
1444
1445.. data:: ROUND_05UP
1446
1447 Round away from zero if last digit after rounding towards zero would have
1448 been 0 or 5; otherwise round towards zero.
1449
Georg Brandl116aa622007-08-15 14:28:22 +00001450
1451.. _decimal-signals:
1452
1453Signals
1454-------
1455
1456Signals represent conditions that arise during computation. Each corresponds to
1457one context flag and one context trap enabler.
1458
Raymond Hettinger86173da2008-02-01 20:38:12 +00001459The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001460computation, flags may be checked for informational purposes (for instance, to
1461determine whether a computation was exact). After checking the flags, be sure to
1462clear all flags before starting the next computation.
1463
1464If the context's trap enabler is set for the signal, then the condition causes a
1465Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1466is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1467condition.
1468
1469
1470.. class:: Clamped
1471
1472 Altered an exponent to fit representation constraints.
1473
1474 Typically, clamping occurs when an exponent falls outside the context's
1475 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001476 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001477
1478
1479.. class:: DecimalException
1480
1481 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1482
1483
1484.. class:: DivisionByZero
1485
1486 Signals the division of a non-infinite number by zero.
1487
1488 Can occur with division, modulo division, or when raising a number to a negative
1489 power. If this signal is not trapped, returns :const:`Infinity` or
1490 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1491
1492
1493.. class:: Inexact
1494
1495 Indicates that rounding occurred and the result is not exact.
1496
1497 Signals when non-zero digits were discarded during rounding. The rounded result
1498 is returned. The signal flag or trap is used to detect when results are
1499 inexact.
1500
1501
1502.. class:: InvalidOperation
1503
1504 An invalid operation was performed.
1505
1506 Indicates that an operation was requested that does not make sense. If not
1507 trapped, returns :const:`NaN`. Possible causes include::
1508
1509 Infinity - Infinity
1510 0 * Infinity
1511 Infinity / Infinity
1512 x % 0
1513 Infinity % x
Georg Brandl116aa622007-08-15 14:28:22 +00001514 sqrt(-x) and x > 0
1515 0 ** 0
1516 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001517 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001518
1519
1520.. class:: Overflow
1521
1522 Numerical overflow.
1523
Benjamin Petersone41251e2008-04-25 01:59:09 +00001524 Indicates the exponent is larger than :attr:`Emax` after rounding has
1525 occurred. If not trapped, the result depends on the rounding mode, either
1526 pulling inward to the largest representable finite number or rounding outward
1527 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1528 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001529
1530
1531.. class:: Rounded
1532
1533 Rounding occurred though possibly no information was lost.
1534
Benjamin Petersone41251e2008-04-25 01:59:09 +00001535 Signaled whenever rounding discards digits; even if those digits are zero
1536 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1537 the result unchanged. This signal is used to detect loss of significant
1538 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001539
1540
1541.. class:: Subnormal
1542
1543 Exponent was lower than :attr:`Emin` prior to rounding.
1544
Benjamin Petersone41251e2008-04-25 01:59:09 +00001545 Occurs when an operation result is subnormal (the exponent is too small). If
1546 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001547
1548
1549.. class:: Underflow
1550
1551 Numerical underflow with result rounded to zero.
1552
1553 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1554 and :class:`Subnormal` are also signaled.
1555
Stefan Krah1919b7e2012-03-21 18:25:23 +01001556
1557.. class:: FloatOperation
1558
1559 Enable stricter semantics for mixing floats and Decimals.
1560
1561 If the signal is not trapped (default), mixing floats and Decimals is
1562 permitted in the :class:`~decimal.Decimal` constructor,
1563 :meth:`~decimal.Context.create_decimal` and all comparison operators.
1564 Both conversion and comparisons are exact. Any occurrence of a mixed
1565 operation is silently recorded by setting :exc:`FloatOperation` in the
1566 context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
1567 or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
1568
1569 Otherwise (the signal is trapped), only equality comparisons and explicit
1570 conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
1571
1572
Georg Brandl116aa622007-08-15 14:28:22 +00001573The following table summarizes the hierarchy of signals::
1574
1575 exceptions.ArithmeticError(exceptions.Exception)
1576 DecimalException
1577 Clamped
1578 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1579 Inexact
1580 Overflow(Inexact, Rounded)
1581 Underflow(Inexact, Rounded, Subnormal)
1582 InvalidOperation
1583 Rounded
1584 Subnormal
Stefan Krahb6405ef2012-03-23 14:46:48 +01001585 FloatOperation(DecimalException, exceptions.TypeError)
Georg Brandl116aa622007-08-15 14:28:22 +00001586
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001587.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001588
1589
Stefan Krah1919b7e2012-03-21 18:25:23 +01001590
Georg Brandl116aa622007-08-15 14:28:22 +00001591.. _decimal-notes:
1592
1593Floating Point Notes
1594--------------------
1595
1596
1597Mitigating round-off error with increased precision
1598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1599
1600The use of decimal floating point eliminates decimal representation error
1601(making it possible to represent :const:`0.1` exactly); however, some operations
1602can still incur round-off error when non-zero digits exceed the fixed precision.
1603
1604The effects of round-off error can be amplified by the addition or subtraction
1605of nearly offsetting quantities resulting in loss of significance. Knuth
1606provides two instructive examples where rounded floating point arithmetic with
1607insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001608properties of addition:
1609
1610.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001611
1612 # Examples from Seminumerical Algorithms, Section 4.2.2.
1613 >>> from decimal import Decimal, getcontext
1614 >>> getcontext().prec = 8
1615
1616 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1617 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001618 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001619 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001620 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001621
1622 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1623 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001624 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001625 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001626 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001627
1628The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001629expanding the precision sufficiently to avoid loss of significance:
1630
1631.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001632
1633 >>> getcontext().prec = 20
1634 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1635 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001636 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001637 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001638 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001639 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001640 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1641 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001642 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001643 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001644 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001645
1646
1647Special values
1648^^^^^^^^^^^^^^
1649
1650The number system for the :mod:`decimal` module provides special values
1651including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001652and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001653
1654Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1655they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1656not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1657can result from rounding beyond the limits of the largest representable number.
1658
1659The infinities are signed (affine) and can be used in arithmetic operations
1660where they get treated as very large, indeterminate numbers. For instance,
1661adding a constant to infinity gives another infinite result.
1662
1663Some operations are indeterminate and return :const:`NaN`, or if the
1664:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1665``0/0`` returns :const:`NaN` which means "not a number". This variety of
1666:const:`NaN` is quiet and, once created, will flow through other computations
1667always resulting in another :const:`NaN`. This behavior can be useful for a
1668series of computations that occasionally have missing inputs --- it allows the
1669calculation to proceed while flagging specific results as invalid.
1670
1671A variant is :const:`sNaN` which signals rather than remaining quiet after every
1672operation. This is a useful return value when an invalid result needs to
1673interrupt a calculation for special handling.
1674
Christian Heimes77c02eb2008-02-09 02:18:51 +00001675The behavior of Python's comparison operators can be a little surprising where a
1676:const:`NaN` is involved. A test for equality where one of the operands is a
1677quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1678``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1679:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1680``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1681if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001682not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001683specify the behavior of direct comparisons; these rules for comparisons
1684involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1685section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1686and :meth:`compare-signal` methods instead.
1687
Georg Brandl116aa622007-08-15 14:28:22 +00001688The signed zeros can result from calculations that underflow. They keep the sign
1689that would have resulted if the calculation had been carried out to greater
1690precision. Since their magnitude is zero, both positive and negative zeros are
1691treated as equal and their sign is informational.
1692
1693In addition to the two signed zeros which are distinct yet equal, there are
1694various representations of zero with differing precisions yet equivalent in
1695value. This takes a bit of getting used to. For an eye accustomed to
1696normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001697the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001698
1699 >>> 1 / Decimal('Infinity')
Stefan Krah1919b7e2012-03-21 18:25:23 +01001700 Decimal('0E-1000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001701
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001702.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001703
1704
1705.. _decimal-threads:
1706
1707Working with threads
1708--------------------
1709
1710The :func:`getcontext` function accesses a different :class:`Context` object for
1711each thread. Having separate thread contexts means that threads may make
Stefan Krah1919b7e2012-03-21 18:25:23 +01001712changes (such as ``getcontext().prec=10``) without interfering with other threads.
Georg Brandl116aa622007-08-15 14:28:22 +00001713
1714Likewise, the :func:`setcontext` function automatically assigns its target to
1715the current thread.
1716
1717If :func:`setcontext` has not been called before :func:`getcontext`, then
1718:func:`getcontext` will automatically create a new context for use in the
1719current thread.
1720
1721The new context is copied from a prototype context called *DefaultContext*. To
1722control the defaults so that each thread will use the same values throughout the
1723application, directly modify the *DefaultContext* object. This should be done
1724*before* any threads are started so that there won't be a race condition between
1725threads calling :func:`getcontext`. For example::
1726
1727 # Set applicationwide defaults for all threads about to be launched
1728 DefaultContext.prec = 12
1729 DefaultContext.rounding = ROUND_DOWN
1730 DefaultContext.traps = ExtendedContext.traps.copy()
1731 DefaultContext.traps[InvalidOperation] = 1
1732 setcontext(DefaultContext)
1733
1734 # Afterwards, the threads can be started
1735 t1.start()
1736 t2.start()
1737 t3.start()
1738 . . .
1739
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001740.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001741
1742
1743.. _decimal-recipes:
1744
1745Recipes
1746-------
1747
1748Here are a few recipes that serve as utility functions and that demonstrate ways
1749to work with the :class:`Decimal` class::
1750
1751 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1752 pos='', neg='-', trailneg=''):
1753 """Convert Decimal to a money formatted string.
1754
1755 places: required number of places after the decimal point
1756 curr: optional currency symbol before the sign (may be blank)
1757 sep: optional grouping separator (comma, period, space, or blank)
1758 dp: decimal point indicator (comma or period)
1759 only specify as blank when places is zero
1760 pos: optional sign for positive numbers: '+', space or blank
1761 neg: optional sign for negative numbers: '-', '(', space or blank
1762 trailneg:optional trailing minus indicator: '-', ')', space or blank
1763
1764 >>> d = Decimal('-1234567.8901')
1765 >>> moneyfmt(d, curr='$')
1766 '-$1,234,567.89'
1767 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1768 '1.234.568-'
1769 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1770 '($1,234,567.89)'
1771 >>> moneyfmt(Decimal(123456789), sep=' ')
1772 '123 456 789.00'
1773 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001774 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001775
1776 """
Christian Heimesa156e092008-02-16 07:38:31 +00001777 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001778 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001779 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001780 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001781 build, next = result.append, digits.pop
1782 if sign:
1783 build(trailneg)
1784 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001785 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001786 if places:
1787 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001788 if not digits:
1789 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001790 i = 0
1791 while digits:
1792 build(next())
1793 i += 1
1794 if i == 3 and digits:
1795 i = 0
1796 build(sep)
1797 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001798 build(neg if sign else pos)
1799 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001800
1801 def pi():
1802 """Compute Pi to the current precision.
1803
Georg Brandl6911e3c2007-09-04 07:15:32 +00001804 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001805 3.141592653589793238462643383
1806
1807 """
1808 getcontext().prec += 2 # extra digits for intermediate steps
1809 three = Decimal(3) # substitute "three=3.0" for regular floats
1810 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1811 while s != lasts:
1812 lasts = s
1813 n, na = n+na, na+8
1814 d, da = d+da, da+32
1815 t = (t * n) / d
1816 s += t
1817 getcontext().prec -= 2
1818 return +s # unary plus applies the new precision
1819
1820 def exp(x):
1821 """Return e raised to the power of x. Result type matches input type.
1822
Georg Brandl6911e3c2007-09-04 07:15:32 +00001823 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001824 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001825 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001826 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001827 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001828 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001829 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001830 (7.38905609893+0j)
1831
1832 """
1833 getcontext().prec += 2
1834 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1835 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001836 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001837 i += 1
1838 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001839 num *= x
1840 s += num / fact
1841 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001842 return +s
1843
1844 def cos(x):
1845 """Return the cosine of x as measured in radians.
1846
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001847 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001848 For larger values, first compute x = x % (2 * pi).
1849
Georg Brandl6911e3c2007-09-04 07:15:32 +00001850 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001851 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001852 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001853 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001854 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001855 (0.87758256189+0j)
1856
1857 """
1858 getcontext().prec += 2
1859 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1860 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001861 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001862 i += 2
1863 fact *= i * (i-1)
1864 num *= x * x
1865 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001866 s += num / fact * sign
1867 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001868 return +s
1869
1870 def sin(x):
1871 """Return the sine of x as measured in radians.
1872
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001873 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001874 For larger values, first compute x = x % (2 * pi).
1875
Georg Brandl6911e3c2007-09-04 07:15:32 +00001876 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001877 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001878 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001879 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001880 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001881 (0.479425538604+0j)
1882
1883 """
1884 getcontext().prec += 2
1885 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1886 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001887 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001888 i += 2
1889 fact *= i * (i-1)
1890 num *= x * x
1891 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001892 s += num / fact * sign
1893 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001894 return +s
1895
1896
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001897.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001898
1899
1900.. _decimal-faq:
1901
1902Decimal FAQ
1903-----------
1904
1905Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1906minimize typing when using the interactive interpreter?
1907
Christian Heimesfe337bf2008-03-23 21:54:12 +00001908A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001909
1910 >>> D = decimal.Decimal
1911 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001912 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001913
1914Q. In a fixed-point application with two decimal places, some inputs have many
1915places and need to be rounded. Others are not supposed to have excess digits
1916and need to be validated. What methods should be used?
1917
1918A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001919the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001920
1921 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1922
1923 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001924 >>> Decimal('3.214').quantize(TWOPLACES)
1925 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001926
Georg Brandl48310cd2009-01-03 21:18:54 +00001927 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001928 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1929 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001930
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001931 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001932 Traceback (most recent call last):
1933 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001934 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001935
1936Q. Once I have valid two place inputs, how do I maintain that invariant
1937throughout an application?
1938
Christian Heimesa156e092008-02-16 07:38:31 +00001939A. Some operations like addition, subtraction, and multiplication by an integer
1940will automatically preserve fixed point. Others operations, like division and
1941non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001942be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001943
1944 >>> a = Decimal('102.72') # Initial fixed-point values
1945 >>> b = Decimal('3.17')
1946 >>> a + b # Addition preserves fixed-point
1947 Decimal('105.89')
1948 >>> a - b
1949 Decimal('99.55')
1950 >>> a * 42 # So does integer multiplication
1951 Decimal('4314.24')
1952 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1953 Decimal('325.62')
1954 >>> (b / a).quantize(TWOPLACES) # And quantize division
1955 Decimal('0.03')
1956
1957In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001958to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001959
1960 >>> def mul(x, y, fp=TWOPLACES):
1961 ... return (x * y).quantize(fp)
1962 >>> def div(x, y, fp=TWOPLACES):
1963 ... return (x / y).quantize(fp)
1964
1965 >>> mul(a, b) # Automatically preserve fixed-point
1966 Decimal('325.62')
1967 >>> div(b, a)
1968 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00001969
1970Q. There are many ways to express the same value. The numbers :const:`200`,
1971:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1972various precisions. Is there a way to transform them to a single recognizable
1973canonical value?
1974
1975A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00001976representative:
Georg Brandl116aa622007-08-15 14:28:22 +00001977
1978 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1979 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001980 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00001981
1982Q. Some decimal values always print with exponential notation. Is there a way
1983to get a non-exponential representation?
1984
1985A. For some values, exponential notation is the only way to express the number
1986of significant places in the coefficient. For example, expressing
1987:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1988original's two-place significance.
1989
Christian Heimesa156e092008-02-16 07:38:31 +00001990If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00001991remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001992value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00001993
1994 >>> def remove_exponent(d):
1995 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1996
1997 >>> remove_exponent(Decimal('5E+3'))
1998 Decimal('5000')
1999
Georg Brandl116aa622007-08-15 14:28:22 +00002000Q. Is there a way to convert a regular float to a :class:`Decimal`?
2001
Mark Dickinsone534a072010-04-04 22:13:14 +00002002A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00002003Decimal though an exact conversion may take more precision than intuition would
2004suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00002005
Christian Heimesfe337bf2008-03-23 21:54:12 +00002006.. doctest::
2007
Raymond Hettinger96798592010-04-02 16:58:27 +00002008 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002009 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00002010
Georg Brandl116aa622007-08-15 14:28:22 +00002011Q. Within a complex calculation, how can I make sure that I haven't gotten a
2012spurious result because of insufficient precision or rounding anomalies.
2013
2014A. The decimal module makes it easy to test results. A best practice is to
2015re-run calculations using greater precision and with various rounding modes.
2016Widely differing results indicate insufficient precision, rounding mode issues,
2017ill-conditioned inputs, or a numerically unstable algorithm.
2018
2019Q. I noticed that context precision is applied to the results of operations but
2020not to the inputs. Is there anything to watch out for when mixing values of
2021different precisions?
2022
2023A. Yes. The principle is that all values are considered to be exact and so is
2024the arithmetic on those values. Only the results are rounded. The advantage
2025for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002026results can look odd if you forget that the inputs haven't been rounded:
2027
2028.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002029
2030 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00002031 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002032 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00002033 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002034 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00002035
2036The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00002037using the unary plus operation:
2038
2039.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002040
2041 >>> getcontext().prec = 3
2042 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002043 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00002044
2045Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002046:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00002047
2048 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002049 Decimal('1.2345')
Georg Brandl116aa622007-08-15 14:28:22 +00002050