blob: 3d83114f7a23544867e5eaa57c4df9da94ac368a [file] [log] [blame]
Antoine Pitrou64a467d2010-12-12 20:34:49 +00001:mod:`multiprocessing` --- Process-based parallelism
2====================================================
Benjamin Petersone711caf2008-06-11 16:44:04 +00003
4.. module:: multiprocessing
Antoine Pitrou64a467d2010-12-12 20:34:49 +00005 :synopsis: Process-based parallelism.
Benjamin Petersone711caf2008-06-11 16:44:04 +00006
Benjamin Petersone711caf2008-06-11 16:44:04 +00007
8Introduction
Georg Brandl49702152008-09-29 06:43:45 +00009------------
Benjamin Petersone711caf2008-06-11 16:44:04 +000010
Benjamin Peterson5289b2b2008-06-28 00:40:54 +000011:mod:`multiprocessing` is a package that supports spawning processes using an
12API similar to the :mod:`threading` module. The :mod:`multiprocessing` package
13offers both local and remote concurrency, effectively side-stepping the
14:term:`Global Interpreter Lock` by using subprocesses instead of threads. Due
15to this, the :mod:`multiprocessing` module allows the programmer to fully
16leverage multiple processors on a given machine. It runs on both Unix and
17Windows.
Benjamin Petersone711caf2008-06-11 16:44:04 +000018
Raymond Hettingerfd151912010-11-04 03:02:56 +000019.. note::
Benjamin Petersone5384b02008-10-04 22:00:42 +000020
21 Some of this package's functionality requires a functioning shared semaphore
Georg Brandl48310cd2009-01-03 21:18:54 +000022 implementation on the host operating system. Without one, the
23 :mod:`multiprocessing.synchronize` module will be disabled, and attempts to
24 import it will result in an :exc:`ImportError`. See
Benjamin Petersone5384b02008-10-04 22:00:42 +000025 :issue:`3770` for additional information.
Benjamin Petersone711caf2008-06-11 16:44:04 +000026
Jesse Noller45239682008-11-28 18:46:19 +000027.. note::
28
Ezio Melotti2ee88352011-04-29 07:10:24 +030029 Functionality within this package requires that the ``__main__`` module be
Jesse Noller45239682008-11-28 18:46:19 +000030 importable by the children. This is covered in :ref:`multiprocessing-programming`
31 however it is worth pointing out here. This means that some examples, such
32 as the :class:`multiprocessing.Pool` examples will not work in the
33 interactive interpreter. For example::
34
35 >>> from multiprocessing import Pool
36 >>> p = Pool(5)
37 >>> def f(x):
Georg Brandla1c6a1c2009-01-03 21:26:05 +000038 ... return x*x
Georg Brandl48310cd2009-01-03 21:18:54 +000039 ...
Jesse Noller45239682008-11-28 18:46:19 +000040 >>> p.map(f, [1,2,3])
41 Process PoolWorker-1:
42 Process PoolWorker-2:
R. David Murray8e8099c2009-04-28 18:02:00 +000043 Process PoolWorker-3:
44 Traceback (most recent call last):
Jesse Noller45239682008-11-28 18:46:19 +000045 Traceback (most recent call last):
46 Traceback (most recent call last):
47 AttributeError: 'module' object has no attribute 'f'
48 AttributeError: 'module' object has no attribute 'f'
49 AttributeError: 'module' object has no attribute 'f'
50
R. David Murray8e8099c2009-04-28 18:02:00 +000051 (If you try this it will actually output three full tracebacks
52 interleaved in a semi-random fashion, and then you may have to
53 stop the master process somehow.)
54
Jesse Noller45239682008-11-28 18:46:19 +000055
Benjamin Petersone711caf2008-06-11 16:44:04 +000056The :class:`Process` class
57~~~~~~~~~~~~~~~~~~~~~~~~~~
58
59In :mod:`multiprocessing`, processes are spawned by creating a :class:`Process`
Benjamin Peterson5289b2b2008-06-28 00:40:54 +000060object and then calling its :meth:`~Process.start` method. :class:`Process`
Benjamin Petersone711caf2008-06-11 16:44:04 +000061follows the API of :class:`threading.Thread`. A trivial example of a
62multiprocess program is ::
63
Georg Brandlb3959bd2010-04-08 06:33:16 +000064 from multiprocessing import Process
Benjamin Petersone711caf2008-06-11 16:44:04 +000065
66 def f(name):
Georg Brandl49702152008-09-29 06:43:45 +000067 print('hello', name)
Benjamin Petersone711caf2008-06-11 16:44:04 +000068
Georg Brandlb3959bd2010-04-08 06:33:16 +000069 if __name__ == '__main__':
70 p = Process(target=f, args=('bob',))
71 p.start()
72 p.join()
Benjamin Petersone711caf2008-06-11 16:44:04 +000073
Jesse Noller45239682008-11-28 18:46:19 +000074To show the individual process IDs involved, here is an expanded example::
75
76 from multiprocessing import Process
77 import os
78
79 def info(title):
Ezio Melotti985e24d2009-09-13 07:54:02 +000080 print(title)
81 print('module name:', __name__)
82 print('parent process:', os.getppid())
83 print('process id:', os.getpid())
Georg Brandl48310cd2009-01-03 21:18:54 +000084
Jesse Noller45239682008-11-28 18:46:19 +000085 def f(name):
86 info('function f')
Ezio Melotti985e24d2009-09-13 07:54:02 +000087 print('hello', name)
Georg Brandl48310cd2009-01-03 21:18:54 +000088
Jesse Noller45239682008-11-28 18:46:19 +000089 if __name__ == '__main__':
90 info('main line')
91 p = Process(target=f, args=('bob',))
92 p.start()
93 p.join()
Benjamin Petersone711caf2008-06-11 16:44:04 +000094
95For an explanation of why (on Windows) the ``if __name__ == '__main__'`` part is
96necessary, see :ref:`multiprocessing-programming`.
97
98
99
100Exchanging objects between processes
101~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102
103:mod:`multiprocessing` supports two types of communication channel between
104processes:
105
106**Queues**
107
Benjamin Peterson257060a2008-06-28 01:42:41 +0000108 The :class:`Queue` class is a near clone of :class:`queue.Queue`. For
Benjamin Petersone711caf2008-06-11 16:44:04 +0000109 example::
110
111 from multiprocessing import Process, Queue
112
113 def f(q):
114 q.put([42, None, 'hello'])
115
Georg Brandl1f01deb2009-01-03 22:47:39 +0000116 if __name__ == '__main__':
117 q = Queue()
118 p = Process(target=f, args=(q,))
119 p.start()
120 print(q.get()) # prints "[42, None, 'hello']"
121 p.join()
Benjamin Petersone711caf2008-06-11 16:44:04 +0000122
Ask Solem518eaa82010-11-09 21:46:03 +0000123 Queues are thread and process safe, but note that they must never
124 be instantiated as a side effect of importing a module: this can lead
125 to a deadlock! (see :ref:`threaded-imports`)
Benjamin Petersone711caf2008-06-11 16:44:04 +0000126
127**Pipes**
128
129 The :func:`Pipe` function returns a pair of connection objects connected by a
130 pipe which by default is duplex (two-way). For example::
131
132 from multiprocessing import Process, Pipe
133
134 def f(conn):
135 conn.send([42, None, 'hello'])
136 conn.close()
137
138 if __name__ == '__main__':
139 parent_conn, child_conn = Pipe()
140 p = Process(target=f, args=(child_conn,))
141 p.start()
Georg Brandl49702152008-09-29 06:43:45 +0000142 print(parent_conn.recv()) # prints "[42, None, 'hello']"
Benjamin Petersone711caf2008-06-11 16:44:04 +0000143 p.join()
144
145 The two connection objects returned by :func:`Pipe` represent the two ends of
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000146 the pipe. Each connection object has :meth:`~Connection.send` and
147 :meth:`~Connection.recv` methods (among others). Note that data in a pipe
148 may become corrupted if two processes (or threads) try to read from or write
149 to the *same* end of the pipe at the same time. Of course there is no risk
150 of corruption from processes using different ends of the pipe at the same
151 time.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000152
153
154Synchronization between processes
155~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
156
157:mod:`multiprocessing` contains equivalents of all the synchronization
158primitives from :mod:`threading`. For instance one can use a lock to ensure
159that only one process prints to standard output at a time::
160
161 from multiprocessing import Process, Lock
162
163 def f(l, i):
164 l.acquire()
Georg Brandl49702152008-09-29 06:43:45 +0000165 print('hello world', i)
Benjamin Petersone711caf2008-06-11 16:44:04 +0000166 l.release()
167
168 if __name__ == '__main__':
169 lock = Lock()
170
171 for num in range(10):
172 Process(target=f, args=(lock, num)).start()
173
174Without using the lock output from the different processes is liable to get all
175mixed up.
176
177
178Sharing state between processes
179~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
180
181As mentioned above, when doing concurrent programming it is usually best to
182avoid using shared state as far as possible. This is particularly true when
183using multiple processes.
184
185However, if you really do need to use some shared data then
186:mod:`multiprocessing` provides a couple of ways of doing so.
187
188**Shared memory**
189
190 Data can be stored in a shared memory map using :class:`Value` or
191 :class:`Array`. For example, the following code ::
192
193 from multiprocessing import Process, Value, Array
194
195 def f(n, a):
196 n.value = 3.1415927
197 for i in range(len(a)):
198 a[i] = -a[i]
199
200 if __name__ == '__main__':
201 num = Value('d', 0.0)
202 arr = Array('i', range(10))
203
204 p = Process(target=f, args=(num, arr))
205 p.start()
206 p.join()
207
Georg Brandl49702152008-09-29 06:43:45 +0000208 print(num.value)
209 print(arr[:])
Benjamin Petersone711caf2008-06-11 16:44:04 +0000210
211 will print ::
212
213 3.1415927
214 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
215
216 The ``'d'`` and ``'i'`` arguments used when creating ``num`` and ``arr`` are
217 typecodes of the kind used by the :mod:`array` module: ``'d'`` indicates a
Georg Brandl2ee470f2008-07-16 12:55:28 +0000218 double precision float and ``'i'`` indicates a signed integer. These shared
Georg Brandlf285bcc2010-10-19 21:07:16 +0000219 objects will be process and thread-safe.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000220
221 For more flexibility in using shared memory one can use the
222 :mod:`multiprocessing.sharedctypes` module which supports the creation of
223 arbitrary ctypes objects allocated from shared memory.
224
225**Server process**
226
227 A manager object returned by :func:`Manager` controls a server process which
Georg Brandl2ee470f2008-07-16 12:55:28 +0000228 holds Python objects and allows other processes to manipulate them using
Benjamin Petersone711caf2008-06-11 16:44:04 +0000229 proxies.
230
231 A manager returned by :func:`Manager` will support types :class:`list`,
232 :class:`dict`, :class:`Namespace`, :class:`Lock`, :class:`RLock`,
233 :class:`Semaphore`, :class:`BoundedSemaphore`, :class:`Condition`,
234 :class:`Event`, :class:`Queue`, :class:`Value` and :class:`Array`. For
235 example, ::
236
237 from multiprocessing import Process, Manager
238
239 def f(d, l):
240 d[1] = '1'
241 d['2'] = 2
242 d[0.25] = None
243 l.reverse()
244
245 if __name__ == '__main__':
246 manager = Manager()
247
248 d = manager.dict()
249 l = manager.list(range(10))
250
251 p = Process(target=f, args=(d, l))
252 p.start()
253 p.join()
254
Georg Brandl49702152008-09-29 06:43:45 +0000255 print(d)
256 print(l)
Benjamin Petersone711caf2008-06-11 16:44:04 +0000257
258 will print ::
259
260 {0.25: None, 1: '1', '2': 2}
261 [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
262
263 Server process managers are more flexible than using shared memory objects
264 because they can be made to support arbitrary object types. Also, a single
265 manager can be shared by processes on different computers over a network.
266 They are, however, slower than using shared memory.
267
268
269Using a pool of workers
270~~~~~~~~~~~~~~~~~~~~~~~
271
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000272The :class:`~multiprocessing.pool.Pool` class represents a pool of worker
Benjamin Petersone711caf2008-06-11 16:44:04 +0000273processes. It has methods which allows tasks to be offloaded to the worker
274processes in a few different ways.
275
276For example::
277
278 from multiprocessing import Pool
279
280 def f(x):
281 return x*x
282
283 if __name__ == '__main__':
Ezio Melotti985e24d2009-09-13 07:54:02 +0000284 pool = Pool(processes=4) # start 4 worker processes
Jesse Noller45239682008-11-28 18:46:19 +0000285 result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
Ezio Melotti985e24d2009-09-13 07:54:02 +0000286 print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow
287 print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"
Benjamin Petersone711caf2008-06-11 16:44:04 +0000288
289
290Reference
291---------
292
293The :mod:`multiprocessing` package mostly replicates the API of the
294:mod:`threading` module.
295
296
297:class:`Process` and exceptions
298~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
299
300.. class:: Process([group[, target[, name[, args[, kwargs]]]]])
301
302 Process objects represent activity that is run in a separate process. The
303 :class:`Process` class has equivalents of all the methods of
304 :class:`threading.Thread`.
305
306 The constructor should always be called with keyword arguments. *group*
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000307 should always be ``None``; it exists solely for compatibility with
Benjamin Petersona786b022008-08-25 21:05:21 +0000308 :class:`threading.Thread`. *target* is the callable object to be invoked by
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000309 the :meth:`run()` method. It defaults to ``None``, meaning nothing is
Benjamin Petersone711caf2008-06-11 16:44:04 +0000310 called. *name* is the process name. By default, a unique name is constructed
311 of the form 'Process-N\ :sub:`1`:N\ :sub:`2`:...:N\ :sub:`k`' where N\
312 :sub:`1`,N\ :sub:`2`,...,N\ :sub:`k` is a sequence of integers whose length
313 is determined by the *generation* of the process. *args* is the argument
314 tuple for the target invocation. *kwargs* is a dictionary of keyword
315 arguments for the target invocation. By default, no arguments are passed to
316 *target*.
317
318 If a subclass overrides the constructor, it must make sure it invokes the
319 base class constructor (:meth:`Process.__init__`) before doing anything else
320 to the process.
321
322 .. method:: run()
323
324 Method representing the process's activity.
325
326 You may override this method in a subclass. The standard :meth:`run`
327 method invokes the callable object passed to the object's constructor as
328 the target argument, if any, with sequential and keyword arguments taken
329 from the *args* and *kwargs* arguments, respectively.
330
331 .. method:: start()
332
333 Start the process's activity.
334
335 This must be called at most once per process object. It arranges for the
336 object's :meth:`run` method to be invoked in a separate process.
337
338 .. method:: join([timeout])
339
340 Block the calling thread until the process whose :meth:`join` method is
341 called terminates or until the optional timeout occurs.
342
343 If *timeout* is ``None`` then there is no timeout.
344
345 A process can be joined many times.
346
347 A process cannot join itself because this would cause a deadlock. It is
348 an error to attempt to join a process before it has been started.
349
Benjamin Petersona786b022008-08-25 21:05:21 +0000350 .. attribute:: name
Benjamin Petersone711caf2008-06-11 16:44:04 +0000351
Benjamin Petersona786b022008-08-25 21:05:21 +0000352 The process's name.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000353
354 The name is a string used for identification purposes only. It has no
355 semantics. Multiple processes may be given the same name. The initial
356 name is set by the constructor.
357
Jesse Noller45239682008-11-28 18:46:19 +0000358 .. method:: is_alive
Benjamin Petersone711caf2008-06-11 16:44:04 +0000359
360 Return whether the process is alive.
361
362 Roughly, a process object is alive from the moment the :meth:`start`
363 method returns until the child process terminates.
364
Benjamin Petersona786b022008-08-25 21:05:21 +0000365 .. attribute:: daemon
Benjamin Petersone711caf2008-06-11 16:44:04 +0000366
Benjamin Petersonda10d3b2009-01-01 00:23:30 +0000367 The process's daemon flag, a Boolean value. This must be set before
Benjamin Petersona786b022008-08-25 21:05:21 +0000368 :meth:`start` is called.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000369
370 The initial value is inherited from the creating process.
371
372 When a process exits, it attempts to terminate all of its daemonic child
373 processes.
374
375 Note that a daemonic process is not allowed to create child processes.
376 Otherwise a daemonic process would leave its children orphaned if it gets
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000377 terminated when its parent process exits. Additionally, these are **not**
378 Unix daemons or services, they are normal processes that will be
Georg Brandl6faee4e2010-09-21 14:48:28 +0000379 terminated (and not joined) if non-daemonic processes have exited.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000380
Benjamin Petersona786b022008-08-25 21:05:21 +0000381 In addition to the :class:`Threading.Thread` API, :class:`Process` objects
382 also support the following attributes and methods:
Benjamin Petersone711caf2008-06-11 16:44:04 +0000383
Benjamin Petersona786b022008-08-25 21:05:21 +0000384 .. attribute:: pid
Benjamin Petersone711caf2008-06-11 16:44:04 +0000385
386 Return the process ID. Before the process is spawned, this will be
387 ``None``.
388
Benjamin Petersona786b022008-08-25 21:05:21 +0000389 .. attribute:: exitcode
Benjamin Petersone711caf2008-06-11 16:44:04 +0000390
Benjamin Petersona786b022008-08-25 21:05:21 +0000391 The child's exit code. This will be ``None`` if the process has not yet
392 terminated. A negative value *-N* indicates that the child was terminated
393 by signal *N*.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000394
Benjamin Petersona786b022008-08-25 21:05:21 +0000395 .. attribute:: authkey
Benjamin Petersone711caf2008-06-11 16:44:04 +0000396
Benjamin Petersona786b022008-08-25 21:05:21 +0000397 The process's authentication key (a byte string).
Benjamin Petersone711caf2008-06-11 16:44:04 +0000398
399 When :mod:`multiprocessing` is initialized the main process is assigned a
400 random string using :func:`os.random`.
401
402 When a :class:`Process` object is created, it will inherit the
Benjamin Petersona786b022008-08-25 21:05:21 +0000403 authentication key of its parent process, although this may be changed by
404 setting :attr:`authkey` to another byte string.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000405
406 See :ref:`multiprocessing-auth-keys`.
407
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000408 .. method:: terminate()
Benjamin Petersone711caf2008-06-11 16:44:04 +0000409
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000410 Terminate the process. On Unix this is done using the ``SIGTERM`` signal;
Georg Brandl60203b42010-10-06 10:11:56 +0000411 on Windows :c:func:`TerminateProcess` is used. Note that exit handlers and
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000412 finally clauses, etc., will not be executed.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000413
414 Note that descendant processes of the process will *not* be terminated --
415 they will simply become orphaned.
416
417 .. warning::
418
419 If this method is used when the associated process is using a pipe or
420 queue then the pipe or queue is liable to become corrupted and may
421 become unusable by other process. Similarly, if the process has
422 acquired a lock or semaphore etc. then terminating it is liable to
423 cause other processes to deadlock.
424
Ask Solemff7ffdd2010-11-09 21:52:33 +0000425 Note that the :meth:`start`, :meth:`join`, :meth:`is_alive`,
426 :meth:`terminate` and :attr:`exit_code` methods should only be called by
427 the process that created the process object.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000428
R. David Murray8e8099c2009-04-28 18:02:00 +0000429 Example usage of some of the methods of :class:`Process`:
430
431 .. doctest::
Benjamin Petersone711caf2008-06-11 16:44:04 +0000432
Benjamin Peterson206e3072008-10-19 14:07:49 +0000433 >>> import multiprocessing, time, signal
434 >>> p = multiprocessing.Process(target=time.sleep, args=(1000,))
Georg Brandl49702152008-09-29 06:43:45 +0000435 >>> print(p, p.is_alive())
Benjamin Petersone711caf2008-06-11 16:44:04 +0000436 <Process(Process-1, initial)> False
437 >>> p.start()
Georg Brandl49702152008-09-29 06:43:45 +0000438 >>> print(p, p.is_alive())
Benjamin Petersone711caf2008-06-11 16:44:04 +0000439 <Process(Process-1, started)> True
440 >>> p.terminate()
R. David Murray8e8099c2009-04-28 18:02:00 +0000441 >>> time.sleep(0.1)
Georg Brandl49702152008-09-29 06:43:45 +0000442 >>> print(p, p.is_alive())
Benjamin Petersone711caf2008-06-11 16:44:04 +0000443 <Process(Process-1, stopped[SIGTERM])> False
Benjamin Petersona786b022008-08-25 21:05:21 +0000444 >>> p.exitcode == -signal.SIGTERM
Benjamin Petersone711caf2008-06-11 16:44:04 +0000445 True
446
447
448.. exception:: BufferTooShort
449
450 Exception raised by :meth:`Connection.recv_bytes_into()` when the supplied
451 buffer object is too small for the message read.
452
453 If ``e`` is an instance of :exc:`BufferTooShort` then ``e.args[0]`` will give
454 the message as a byte string.
455
456
457Pipes and Queues
458~~~~~~~~~~~~~~~~
459
460When using multiple processes, one generally uses message passing for
461communication between processes and avoids having to use any synchronization
462primitives like locks.
463
464For passing messages one can use :func:`Pipe` (for a connection between two
465processes) or a queue (which allows multiple producers and consumers).
466
467The :class:`Queue` and :class:`JoinableQueue` types are multi-producer,
Benjamin Peterson257060a2008-06-28 01:42:41 +0000468multi-consumer FIFO queues modelled on the :class:`queue.Queue` class in the
Benjamin Petersone711caf2008-06-11 16:44:04 +0000469standard library. They differ in that :class:`Queue` lacks the
Benjamin Peterson257060a2008-06-28 01:42:41 +0000470:meth:`~queue.Queue.task_done` and :meth:`~queue.Queue.join` methods introduced
471into Python 2.5's :class:`queue.Queue` class.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000472
473If you use :class:`JoinableQueue` then you **must** call
474:meth:`JoinableQueue.task_done` for each task removed from the queue or else the
Eli Benderskyd08effe2011-12-31 07:20:26 +0200475semaphore used to count the number of unfinished tasks may eventually overflow,
Benjamin Petersone711caf2008-06-11 16:44:04 +0000476raising an exception.
477
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000478Note that one can also create a shared queue by using a manager object -- see
479:ref:`multiprocessing-managers`.
480
Benjamin Petersone711caf2008-06-11 16:44:04 +0000481.. note::
482
Benjamin Peterson257060a2008-06-28 01:42:41 +0000483 :mod:`multiprocessing` uses the usual :exc:`queue.Empty` and
484 :exc:`queue.Full` exceptions to signal a timeout. They are not available in
Benjamin Petersone711caf2008-06-11 16:44:04 +0000485 the :mod:`multiprocessing` namespace so you need to import them from
Benjamin Peterson257060a2008-06-28 01:42:41 +0000486 :mod:`queue`.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000487
488
489.. warning::
490
491 If a process is killed using :meth:`Process.terminate` or :func:`os.kill`
492 while it is trying to use a :class:`Queue`, then the data in the queue is
Eli Benderskyd08effe2011-12-31 07:20:26 +0200493 likely to become corrupted. This may cause any other process to get an
Benjamin Petersone711caf2008-06-11 16:44:04 +0000494 exception when it tries to use the queue later on.
495
496.. warning::
497
498 As mentioned above, if a child process has put items on a queue (and it has
499 not used :meth:`JoinableQueue.cancel_join_thread`), then that process will
500 not terminate until all buffered items have been flushed to the pipe.
501
502 This means that if you try joining that process you may get a deadlock unless
503 you are sure that all items which have been put on the queue have been
504 consumed. Similarly, if the child process is non-daemonic then the parent
Georg Brandl2ee470f2008-07-16 12:55:28 +0000505 process may hang on exit when it tries to join all its non-daemonic children.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000506
507 Note that a queue created using a manager does not have this issue. See
508 :ref:`multiprocessing-programming`.
509
Benjamin Petersone711caf2008-06-11 16:44:04 +0000510For an example of the usage of queues for interprocess communication see
511:ref:`multiprocessing-examples`.
512
513
514.. function:: Pipe([duplex])
515
516 Returns a pair ``(conn1, conn2)`` of :class:`Connection` objects representing
517 the ends of a pipe.
518
519 If *duplex* is ``True`` (the default) then the pipe is bidirectional. If
520 *duplex* is ``False`` then the pipe is unidirectional: ``conn1`` can only be
521 used for receiving messages and ``conn2`` can only be used for sending
522 messages.
523
524
525.. class:: Queue([maxsize])
526
527 Returns a process shared queue implemented using a pipe and a few
528 locks/semaphores. When a process first puts an item on the queue a feeder
529 thread is started which transfers objects from a buffer into the pipe.
530
Benjamin Peterson257060a2008-06-28 01:42:41 +0000531 The usual :exc:`queue.Empty` and :exc:`queue.Full` exceptions from the
Benjamin Petersone711caf2008-06-11 16:44:04 +0000532 standard library's :mod:`Queue` module are raised to signal timeouts.
533
Benjamin Peterson257060a2008-06-28 01:42:41 +0000534 :class:`Queue` implements all the methods of :class:`queue.Queue` except for
535 :meth:`~queue.Queue.task_done` and :meth:`~queue.Queue.join`.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000536
537 .. method:: qsize()
538
539 Return the approximate size of the queue. Because of
540 multithreading/multiprocessing semantics, this number is not reliable.
541
542 Note that this may raise :exc:`NotImplementedError` on Unix platforms like
Georg Brandlc575c902008-09-13 17:46:05 +0000543 Mac OS X where ``sem_getvalue()`` is not implemented.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000544
545 .. method:: empty()
546
547 Return ``True`` if the queue is empty, ``False`` otherwise. Because of
548 multithreading/multiprocessing semantics, this is not reliable.
549
550 .. method:: full()
551
552 Return ``True`` if the queue is full, ``False`` otherwise. Because of
553 multithreading/multiprocessing semantics, this is not reliable.
554
Senthil Kumarane969a212011-09-06 00:21:30 +0800555 .. method:: put(obj[, block[, timeout]])
Benjamin Petersone711caf2008-06-11 16:44:04 +0000556
Senthil Kumarane969a212011-09-06 00:21:30 +0800557 Put obj into the queue. If the optional argument *block* is ``True``
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000558 (the default) and *timeout* is ``None`` (the default), block if necessary until
Benjamin Petersone711caf2008-06-11 16:44:04 +0000559 a free slot is available. If *timeout* is a positive number, it blocks at
Benjamin Peterson257060a2008-06-28 01:42:41 +0000560 most *timeout* seconds and raises the :exc:`queue.Full` exception if no
Benjamin Petersone711caf2008-06-11 16:44:04 +0000561 free slot was available within that time. Otherwise (*block* is
562 ``False``), put an item on the queue if a free slot is immediately
Benjamin Peterson257060a2008-06-28 01:42:41 +0000563 available, else raise the :exc:`queue.Full` exception (*timeout* is
Benjamin Petersone711caf2008-06-11 16:44:04 +0000564 ignored in that case).
565
Senthil Kumarane969a212011-09-06 00:21:30 +0800566 .. method:: put_nowait(obj)
Benjamin Petersone711caf2008-06-11 16:44:04 +0000567
Senthil Kumarane969a212011-09-06 00:21:30 +0800568 Equivalent to ``put(obj, False)``.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000569
570 .. method:: get([block[, timeout]])
571
572 Remove and return an item from the queue. If optional args *block* is
573 ``True`` (the default) and *timeout* is ``None`` (the default), block if
574 necessary until an item is available. If *timeout* is a positive number,
Benjamin Peterson257060a2008-06-28 01:42:41 +0000575 it blocks at most *timeout* seconds and raises the :exc:`queue.Empty`
Benjamin Petersone711caf2008-06-11 16:44:04 +0000576 exception if no item was available within that time. Otherwise (block is
577 ``False``), return an item if one is immediately available, else raise the
Benjamin Peterson257060a2008-06-28 01:42:41 +0000578 :exc:`queue.Empty` exception (*timeout* is ignored in that case).
Benjamin Petersone711caf2008-06-11 16:44:04 +0000579
580 .. method:: get_nowait()
581 get_no_wait()
582
583 Equivalent to ``get(False)``.
584
585 :class:`multiprocessing.Queue` has a few additional methods not found in
Georg Brandl2ee470f2008-07-16 12:55:28 +0000586 :class:`queue.Queue`. These methods are usually unnecessary for most
587 code:
Benjamin Petersone711caf2008-06-11 16:44:04 +0000588
589 .. method:: close()
590
591 Indicate that no more data will be put on this queue by the current
592 process. The background thread will quit once it has flushed all buffered
593 data to the pipe. This is called automatically when the queue is garbage
594 collected.
595
596 .. method:: join_thread()
597
598 Join the background thread. This can only be used after :meth:`close` has
599 been called. It blocks until the background thread exits, ensuring that
600 all data in the buffer has been flushed to the pipe.
601
602 By default if a process is not the creator of the queue then on exit it
603 will attempt to join the queue's background thread. The process can call
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000604 :meth:`cancel_join_thread` to make :meth:`join_thread` do nothing.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000605
606 .. method:: cancel_join_thread()
607
608 Prevent :meth:`join_thread` from blocking. In particular, this prevents
609 the background thread from being joined automatically when the process
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000610 exits -- see :meth:`join_thread`.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000611
612
613.. class:: JoinableQueue([maxsize])
614
615 :class:`JoinableQueue`, a :class:`Queue` subclass, is a queue which
616 additionally has :meth:`task_done` and :meth:`join` methods.
617
618 .. method:: task_done()
619
620 Indicate that a formerly enqueued task is complete. Used by queue consumer
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000621 threads. For each :meth:`~Queue.get` used to fetch a task, a subsequent
622 call to :meth:`task_done` tells the queue that the processing on the task
623 is complete.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000624
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000625 If a :meth:`~Queue.join` is currently blocking, it will resume when all
626 items have been processed (meaning that a :meth:`task_done` call was
627 received for every item that had been :meth:`~Queue.put` into the queue).
Benjamin Petersone711caf2008-06-11 16:44:04 +0000628
629 Raises a :exc:`ValueError` if called more times than there were items
630 placed in the queue.
631
632
633 .. method:: join()
634
635 Block until all items in the queue have been gotten and processed.
636
637 The count of unfinished tasks goes up whenever an item is added to the
638 queue. The count goes down whenever a consumer thread calls
639 :meth:`task_done` to indicate that the item was retrieved and all work on
640 it is complete. When the count of unfinished tasks drops to zero,
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000641 :meth:`~Queue.join` unblocks.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000642
643
644Miscellaneous
645~~~~~~~~~~~~~
646
647.. function:: active_children()
648
649 Return list of all live children of the current process.
650
651 Calling this has the side affect of "joining" any processes which have
652 already finished.
653
654.. function:: cpu_count()
655
656 Return the number of CPUs in the system. May raise
657 :exc:`NotImplementedError`.
658
659.. function:: current_process()
660
661 Return the :class:`Process` object corresponding to the current process.
662
663 An analogue of :func:`threading.current_thread`.
664
665.. function:: freeze_support()
666
667 Add support for when a program which uses :mod:`multiprocessing` has been
668 frozen to produce a Windows executable. (Has been tested with **py2exe**,
669 **PyInstaller** and **cx_Freeze**.)
670
671 One needs to call this function straight after the ``if __name__ ==
672 '__main__'`` line of the main module. For example::
673
674 from multiprocessing import Process, freeze_support
675
676 def f():
Georg Brandl49702152008-09-29 06:43:45 +0000677 print('hello world!')
Benjamin Petersone711caf2008-06-11 16:44:04 +0000678
679 if __name__ == '__main__':
680 freeze_support()
681 Process(target=f).start()
682
R. David Murray8e8099c2009-04-28 18:02:00 +0000683 If the ``freeze_support()`` line is omitted then trying to run the frozen
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000684 executable will raise :exc:`RuntimeError`.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000685
686 If the module is being run normally by the Python interpreter then
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000687 :func:`freeze_support` has no effect.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000688
689.. function:: set_executable()
690
Ezio Melotti0639d5a2009-12-19 23:26:38 +0000691 Sets the path of the Python interpreter to use when starting a child process.
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000692 (By default :data:`sys.executable` is used). Embedders will probably need to
693 do some thing like ::
Benjamin Petersone711caf2008-06-11 16:44:04 +0000694
Eli Benderskyd08effe2011-12-31 07:20:26 +0200695 set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))
Benjamin Petersone711caf2008-06-11 16:44:04 +0000696
R. David Murray8e8099c2009-04-28 18:02:00 +0000697 before they can create child processes. (Windows only)
Benjamin Petersone711caf2008-06-11 16:44:04 +0000698
699
700.. note::
701
702 :mod:`multiprocessing` contains no analogues of
703 :func:`threading.active_count`, :func:`threading.enumerate`,
704 :func:`threading.settrace`, :func:`threading.setprofile`,
705 :class:`threading.Timer`, or :class:`threading.local`.
706
707
708Connection Objects
709~~~~~~~~~~~~~~~~~~
710
711Connection objects allow the sending and receiving of picklable objects or
712strings. They can be thought of as message oriented connected sockets.
713
Eli Benderskyd08effe2011-12-31 07:20:26 +0200714Connection objects are usually created using :func:`Pipe` -- see also
Benjamin Petersone711caf2008-06-11 16:44:04 +0000715:ref:`multiprocessing-listeners-clients`.
716
717.. class:: Connection
718
719 .. method:: send(obj)
720
721 Send an object to the other end of the connection which should be read
722 using :meth:`recv`.
723
Benjamin Peterson965ce872009-04-05 21:24:58 +0000724 The object must be picklable. Very large pickles (approximately 32 MB+,
725 though it depends on the OS) may raise a ValueError exception.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000726
727 .. method:: recv()
728
729 Return an object sent from the other end of the connection using
Sandro Tosib52e7a92012-01-07 17:56:58 +0100730 :meth:`send`. Blocks until there its something to receive. Raises
731 :exc:`EOFError` if there is nothing left to receive
Benjamin Petersone711caf2008-06-11 16:44:04 +0000732 and the other end was closed.
733
734 .. method:: fileno()
735
Eli Benderskyd08effe2011-12-31 07:20:26 +0200736 Return the file descriptor or handle used by the connection.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000737
738 .. method:: close()
739
740 Close the connection.
741
742 This is called automatically when the connection is garbage collected.
743
744 .. method:: poll([timeout])
745
746 Return whether there is any data available to be read.
747
748 If *timeout* is not specified then it will return immediately. If
749 *timeout* is a number then this specifies the maximum time in seconds to
750 block. If *timeout* is ``None`` then an infinite timeout is used.
751
752 .. method:: send_bytes(buffer[, offset[, size]])
753
754 Send byte data from an object supporting the buffer interface as a
755 complete message.
756
757 If *offset* is given then data is read from that position in *buffer*. If
Benjamin Peterson965ce872009-04-05 21:24:58 +0000758 *size* is given then that many bytes will be read from buffer. Very large
759 buffers (approximately 32 MB+, though it depends on the OS) may raise a
Eli Benderskyd08effe2011-12-31 07:20:26 +0200760 :exc:`ValueError` exception
Benjamin Petersone711caf2008-06-11 16:44:04 +0000761
762 .. method:: recv_bytes([maxlength])
763
764 Return a complete message of byte data sent from the other end of the
Sandro Tosib52e7a92012-01-07 17:56:58 +0100765 connection as a string. Blocks until there is something to receive.
766 Raises :exc:`EOFError` if there is nothing left
Benjamin Petersone711caf2008-06-11 16:44:04 +0000767 to receive and the other end has closed.
768
769 If *maxlength* is specified and the message is longer than *maxlength*
770 then :exc:`IOError` is raised and the connection will no longer be
771 readable.
772
773 .. method:: recv_bytes_into(buffer[, offset])
774
775 Read into *buffer* a complete message of byte data sent from the other end
Sandro Tosib52e7a92012-01-07 17:56:58 +0100776 of the connection and return the number of bytes in the message. Blocks
777 until there is something to receive. Raises
Benjamin Petersone711caf2008-06-11 16:44:04 +0000778 :exc:`EOFError` if there is nothing left to receive and the other end was
779 closed.
780
781 *buffer* must be an object satisfying the writable buffer interface. If
782 *offset* is given then the message will be written into the buffer from
R. David Murray8e8099c2009-04-28 18:02:00 +0000783 that position. Offset must be a non-negative integer less than the
784 length of *buffer* (in bytes).
Benjamin Petersone711caf2008-06-11 16:44:04 +0000785
786 If the buffer is too short then a :exc:`BufferTooShort` exception is
787 raised and the complete message is available as ``e.args[0]`` where ``e``
788 is the exception instance.
789
790
791For example:
792
R. David Murray8e8099c2009-04-28 18:02:00 +0000793.. doctest::
794
Benjamin Petersone711caf2008-06-11 16:44:04 +0000795 >>> from multiprocessing import Pipe
796 >>> a, b = Pipe()
797 >>> a.send([1, 'hello', None])
798 >>> b.recv()
799 [1, 'hello', None]
Georg Brandl30176892010-10-29 05:22:17 +0000800 >>> b.send_bytes(b'thank you')
Benjamin Petersone711caf2008-06-11 16:44:04 +0000801 >>> a.recv_bytes()
Georg Brandl30176892010-10-29 05:22:17 +0000802 b'thank you'
Benjamin Petersone711caf2008-06-11 16:44:04 +0000803 >>> import array
804 >>> arr1 = array.array('i', range(5))
805 >>> arr2 = array.array('i', [0] * 10)
806 >>> a.send_bytes(arr1)
807 >>> count = b.recv_bytes_into(arr2)
808 >>> assert count == len(arr1) * arr1.itemsize
809 >>> arr2
810 array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])
811
812
813.. warning::
814
815 The :meth:`Connection.recv` method automatically unpickles the data it
816 receives, which can be a security risk unless you can trust the process
817 which sent the message.
818
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000819 Therefore, unless the connection object was produced using :func:`Pipe` you
820 should only use the :meth:`~Connection.recv` and :meth:`~Connection.send`
821 methods after performing some sort of authentication. See
822 :ref:`multiprocessing-auth-keys`.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000823
824.. warning::
825
826 If a process is killed while it is trying to read or write to a pipe then
827 the data in the pipe is likely to become corrupted, because it may become
828 impossible to be sure where the message boundaries lie.
829
830
831Synchronization primitives
832~~~~~~~~~~~~~~~~~~~~~~~~~~
833
834Generally synchronization primitives are not as necessary in a multiprocess
Georg Brandl2ee470f2008-07-16 12:55:28 +0000835program as they are in a multithreaded program. See the documentation for
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000836:mod:`threading` module.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000837
838Note that one can also create synchronization primitives by using a manager
839object -- see :ref:`multiprocessing-managers`.
840
841.. class:: BoundedSemaphore([value])
842
843 A bounded semaphore object: a clone of :class:`threading.BoundedSemaphore`.
844
Georg Brandl592296e2010-05-21 21:48:27 +0000845 (On Mac OS X, this is indistinguishable from :class:`Semaphore` because
Benjamin Petersone711caf2008-06-11 16:44:04 +0000846 ``sem_getvalue()`` is not implemented on that platform).
847
848.. class:: Condition([lock])
849
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000850 A condition variable: a clone of :class:`threading.Condition`.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000851
852 If *lock* is specified then it should be a :class:`Lock` or :class:`RLock`
853 object from :mod:`multiprocessing`.
854
855.. class:: Event()
856
857 A clone of :class:`threading.Event`.
Benjamin Peterson965ce872009-04-05 21:24:58 +0000858 This method returns the state of the internal semaphore on exit, so it
859 will always return ``True`` except if a timeout is given and the operation
860 times out.
861
Raymond Hettinger35a88362009-04-09 00:08:24 +0000862 .. versionchanged:: 3.1
Benjamin Peterson965ce872009-04-05 21:24:58 +0000863 Previously, the method always returned ``None``.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000864
865.. class:: Lock()
866
867 A non-recursive lock object: a clone of :class:`threading.Lock`.
868
869.. class:: RLock()
870
871 A recursive lock object: a clone of :class:`threading.RLock`.
872
873.. class:: Semaphore([value])
874
Ross Lagerwall8fea2e62011-03-14 10:40:15 +0200875 A semaphore object: a clone of :class:`threading.Semaphore`.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000876
877.. note::
878
Benjamin Peterson5289b2b2008-06-28 00:40:54 +0000879 The :meth:`acquire` method of :class:`BoundedSemaphore`, :class:`Lock`,
Benjamin Petersone711caf2008-06-11 16:44:04 +0000880 :class:`RLock` and :class:`Semaphore` has a timeout parameter not supported
881 by the equivalents in :mod:`threading`. The signature is
882 ``acquire(block=True, timeout=None)`` with keyword parameters being
883 acceptable. If *block* is ``True`` and *timeout* is not ``None`` then it
884 specifies a timeout in seconds. If *block* is ``False`` then *timeout* is
885 ignored.
Georg Brandl48310cd2009-01-03 21:18:54 +0000886
Georg Brandl592296e2010-05-21 21:48:27 +0000887 On Mac OS X, ``sem_timedwait`` is unsupported, so calling ``acquire()`` with
888 a timeout will emulate that function's behavior using a sleeping loop.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000889
890.. note::
891
892 If the SIGINT signal generated by Ctrl-C arrives while the main thread is
893 blocked by a call to :meth:`BoundedSemaphore.acquire`, :meth:`Lock.acquire`,
894 :meth:`RLock.acquire`, :meth:`Semaphore.acquire`, :meth:`Condition.acquire`
895 or :meth:`Condition.wait` then the call will be immediately interrupted and
896 :exc:`KeyboardInterrupt` will be raised.
897
898 This differs from the behaviour of :mod:`threading` where SIGINT will be
899 ignored while the equivalent blocking calls are in progress.
900
901
902Shared :mod:`ctypes` Objects
903~~~~~~~~~~~~~~~~~~~~~~~~~~~~
904
905It is possible to create shared objects using shared memory which can be
906inherited by child processes.
907
Jesse Nollerb0516a62009-01-18 03:11:38 +0000908.. function:: Value(typecode_or_type, *args[, lock])
Benjamin Petersone711caf2008-06-11 16:44:04 +0000909
910 Return a :mod:`ctypes` object allocated from shared memory. By default the
911 return value is actually a synchronized wrapper for the object.
912
913 *typecode_or_type* determines the type of the returned object: it is either a
914 ctypes type or a one character typecode of the kind used by the :mod:`array`
915 module. *\*args* is passed on to the constructor for the type.
916
917 If *lock* is ``True`` (the default) then a new lock object is created to
918 synchronize access to the value. If *lock* is a :class:`Lock` or
919 :class:`RLock` object then that will be used to synchronize access to the
920 value. If *lock* is ``False`` then access to the returned object will not be
921 automatically protected by a lock, so it will not necessarily be
922 "process-safe".
923
924 Note that *lock* is a keyword-only argument.
925
926.. function:: Array(typecode_or_type, size_or_initializer, *, lock=True)
927
928 Return a ctypes array allocated from shared memory. By default the return
929 value is actually a synchronized wrapper for the array.
930
931 *typecode_or_type* determines the type of the elements of the returned array:
932 it is either a ctypes type or a one character typecode of the kind used by
933 the :mod:`array` module. If *size_or_initializer* is an integer, then it
934 determines the length of the array, and the array will be initially zeroed.
935 Otherwise, *size_or_initializer* is a sequence which is used to initialize
936 the array and whose length determines the length of the array.
937
938 If *lock* is ``True`` (the default) then a new lock object is created to
939 synchronize access to the value. If *lock* is a :class:`Lock` or
940 :class:`RLock` object then that will be used to synchronize access to the
941 value. If *lock* is ``False`` then access to the returned object will not be
942 automatically protected by a lock, so it will not necessarily be
943 "process-safe".
944
945 Note that *lock* is a keyword only argument.
946
Amaury Forgeot d'Arcb0c29162008-11-22 22:18:04 +0000947 Note that an array of :data:`ctypes.c_char` has *value* and *raw*
Benjamin Petersone711caf2008-06-11 16:44:04 +0000948 attributes which allow one to use it to store and retrieve strings.
949
950
951The :mod:`multiprocessing.sharedctypes` module
952>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
953
954.. module:: multiprocessing.sharedctypes
955 :synopsis: Allocate ctypes objects from shared memory.
956
957The :mod:`multiprocessing.sharedctypes` module provides functions for allocating
958:mod:`ctypes` objects from shared memory which can be inherited by child
959processes.
960
961.. note::
962
Georg Brandl2ee470f2008-07-16 12:55:28 +0000963 Although it is possible to store a pointer in shared memory remember that
964 this will refer to a location in the address space of a specific process.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000965 However, the pointer is quite likely to be invalid in the context of a second
966 process and trying to dereference the pointer from the second process may
967 cause a crash.
968
969.. function:: RawArray(typecode_or_type, size_or_initializer)
970
971 Return a ctypes array allocated from shared memory.
972
973 *typecode_or_type* determines the type of the elements of the returned array:
974 it is either a ctypes type or a one character typecode of the kind used by
975 the :mod:`array` module. If *size_or_initializer* is an integer then it
976 determines the length of the array, and the array will be initially zeroed.
977 Otherwise *size_or_initializer* is a sequence which is used to initialize the
978 array and whose length determines the length of the array.
979
980 Note that setting and getting an element is potentially non-atomic -- use
981 :func:`Array` instead to make sure that access is automatically synchronized
982 using a lock.
983
984.. function:: RawValue(typecode_or_type, *args)
985
986 Return a ctypes object allocated from shared memory.
987
988 *typecode_or_type* determines the type of the returned object: it is either a
989 ctypes type or a one character typecode of the kind used by the :mod:`array`
Jesse Nollerb0516a62009-01-18 03:11:38 +0000990 module. *\*args* is passed on to the constructor for the type.
Benjamin Petersone711caf2008-06-11 16:44:04 +0000991
992 Note that setting and getting the value is potentially non-atomic -- use
993 :func:`Value` instead to make sure that access is automatically synchronized
994 using a lock.
995
Amaury Forgeot d'Arcb0c29162008-11-22 22:18:04 +0000996 Note that an array of :data:`ctypes.c_char` has ``value`` and ``raw``
Benjamin Petersone711caf2008-06-11 16:44:04 +0000997 attributes which allow one to use it to store and retrieve strings -- see
998 documentation for :mod:`ctypes`.
999
Jesse Nollerb0516a62009-01-18 03:11:38 +00001000.. function:: Array(typecode_or_type, size_or_initializer, *args[, lock])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001001
1002 The same as :func:`RawArray` except that depending on the value of *lock* a
1003 process-safe synchronization wrapper may be returned instead of a raw ctypes
1004 array.
1005
1006 If *lock* is ``True`` (the default) then a new lock object is created to
1007 synchronize access to the value. If *lock* is a :class:`Lock` or
1008 :class:`RLock` object then that will be used to synchronize access to the
1009 value. If *lock* is ``False`` then access to the returned object will not be
1010 automatically protected by a lock, so it will not necessarily be
1011 "process-safe".
1012
1013 Note that *lock* is a keyword-only argument.
1014
1015.. function:: Value(typecode_or_type, *args[, lock])
1016
1017 The same as :func:`RawValue` except that depending on the value of *lock* a
1018 process-safe synchronization wrapper may be returned instead of a raw ctypes
1019 object.
1020
1021 If *lock* is ``True`` (the default) then a new lock object is created to
1022 synchronize access to the value. If *lock* is a :class:`Lock` or
1023 :class:`RLock` object then that will be used to synchronize access to the
1024 value. If *lock* is ``False`` then access to the returned object will not be
1025 automatically protected by a lock, so it will not necessarily be
1026 "process-safe".
1027
1028 Note that *lock* is a keyword-only argument.
1029
1030.. function:: copy(obj)
1031
1032 Return a ctypes object allocated from shared memory which is a copy of the
1033 ctypes object *obj*.
1034
1035.. function:: synchronized(obj[, lock])
1036
1037 Return a process-safe wrapper object for a ctypes object which uses *lock* to
1038 synchronize access. If *lock* is ``None`` (the default) then a
1039 :class:`multiprocessing.RLock` object is created automatically.
1040
1041 A synchronized wrapper will have two methods in addition to those of the
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001042 object it wraps: :meth:`get_obj` returns the wrapped object and
1043 :meth:`get_lock` returns the lock object used for synchronization.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001044
1045 Note that accessing the ctypes object through the wrapper can be a lot slower
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001046 than accessing the raw ctypes object.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001047
1048
1049The table below compares the syntax for creating shared ctypes objects from
1050shared memory with the normal ctypes syntax. (In the table ``MyStruct`` is some
1051subclass of :class:`ctypes.Structure`.)
1052
1053==================== ========================== ===========================
1054ctypes sharedctypes using type sharedctypes using typecode
1055==================== ========================== ===========================
1056c_double(2.4) RawValue(c_double, 2.4) RawValue('d', 2.4)
1057MyStruct(4, 6) RawValue(MyStruct, 4, 6)
1058(c_short * 7)() RawArray(c_short, 7) RawArray('h', 7)
1059(c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray('i', (9, 2, 8))
1060==================== ========================== ===========================
1061
1062
1063Below is an example where a number of ctypes objects are modified by a child
1064process::
1065
1066 from multiprocessing import Process, Lock
1067 from multiprocessing.sharedctypes import Value, Array
1068 from ctypes import Structure, c_double
1069
1070 class Point(Structure):
1071 _fields_ = [('x', c_double), ('y', c_double)]
1072
1073 def modify(n, x, s, A):
1074 n.value **= 2
1075 x.value **= 2
1076 s.value = s.value.upper()
1077 for a in A:
1078 a.x **= 2
1079 a.y **= 2
1080
1081 if __name__ == '__main__':
1082 lock = Lock()
1083
1084 n = Value('i', 7)
R. David Murray8e8099c2009-04-28 18:02:00 +00001085 x = Value(c_double, 1.0/3.0, lock=False)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001086 s = Array('c', 'hello world', lock=lock)
1087 A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)
1088
1089 p = Process(target=modify, args=(n, x, s, A))
1090 p.start()
1091 p.join()
1092
Georg Brandl49702152008-09-29 06:43:45 +00001093 print(n.value)
1094 print(x.value)
1095 print(s.value)
1096 print([(a.x, a.y) for a in A])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001097
1098
Georg Brandl49702152008-09-29 06:43:45 +00001099.. highlight:: none
Benjamin Petersone711caf2008-06-11 16:44:04 +00001100
1101The results printed are ::
1102
1103 49
1104 0.1111111111111111
1105 HELLO WORLD
1106 [(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]
1107
Georg Brandl49702152008-09-29 06:43:45 +00001108.. highlight:: python
Benjamin Petersone711caf2008-06-11 16:44:04 +00001109
1110
1111.. _multiprocessing-managers:
1112
1113Managers
1114~~~~~~~~
1115
1116Managers provide a way to create data which can be shared between different
1117processes. A manager object controls a server process which manages *shared
1118objects*. Other processes can access the shared objects by using proxies.
1119
1120.. function:: multiprocessing.Manager()
1121
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001122 Returns a started :class:`~multiprocessing.managers.SyncManager` object which
1123 can be used for sharing objects between processes. The returned manager
1124 object corresponds to a spawned child process and has methods which will
1125 create shared objects and return corresponding proxies.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001126
1127.. module:: multiprocessing.managers
1128 :synopsis: Share data between process with shared objects.
1129
1130Manager processes will be shutdown as soon as they are garbage collected or
1131their parent process exits. The manager classes are defined in the
1132:mod:`multiprocessing.managers` module:
1133
1134.. class:: BaseManager([address[, authkey]])
1135
1136 Create a BaseManager object.
1137
Benjamin Peterson21896a32010-03-21 22:03:03 +00001138 Once created one should call :meth:`start` or ``get_server().serve_forever()`` to ensure
Benjamin Petersone711caf2008-06-11 16:44:04 +00001139 that the manager object refers to a started manager process.
1140
1141 *address* is the address on which the manager process listens for new
1142 connections. If *address* is ``None`` then an arbitrary one is chosen.
1143
1144 *authkey* is the authentication key which will be used to check the validity
1145 of incoming connections to the server process. If *authkey* is ``None`` then
Benjamin Petersona786b022008-08-25 21:05:21 +00001146 ``current_process().authkey``. Otherwise *authkey* is used and it
Benjamin Petersone711caf2008-06-11 16:44:04 +00001147 must be a string.
1148
Benjamin Petersonf47ed4a2009-04-11 20:45:40 +00001149 .. method:: start([initializer[, initargs]])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001150
Benjamin Petersonf47ed4a2009-04-11 20:45:40 +00001151 Start a subprocess to start the manager. If *initializer* is not ``None``
1152 then the subprocess will call ``initializer(*initargs)`` when it starts.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001153
Jesse Noller45239682008-11-28 18:46:19 +00001154 .. method:: get_server()
Georg Brandl48310cd2009-01-03 21:18:54 +00001155
Jesse Noller45239682008-11-28 18:46:19 +00001156 Returns a :class:`Server` object which represents the actual server under
Georg Brandl48310cd2009-01-03 21:18:54 +00001157 the control of the Manager. The :class:`Server` object supports the
R. David Murray8e8099c2009-04-28 18:02:00 +00001158 :meth:`serve_forever` method::
Georg Brandl48310cd2009-01-03 21:18:54 +00001159
Georg Brandl1f01deb2009-01-03 22:47:39 +00001160 >>> from multiprocessing.managers import BaseManager
R. David Murray8e8099c2009-04-28 18:02:00 +00001161 >>> manager = BaseManager(address=('', 50000), authkey='abc')
1162 >>> server = manager.get_server()
1163 >>> server.serve_forever()
Georg Brandl48310cd2009-01-03 21:18:54 +00001164
R. David Murray8e8099c2009-04-28 18:02:00 +00001165 :class:`Server` additionally has an :attr:`address` attribute.
Jesse Noller45239682008-11-28 18:46:19 +00001166
1167 .. method:: connect()
Georg Brandl48310cd2009-01-03 21:18:54 +00001168
R. David Murray8e8099c2009-04-28 18:02:00 +00001169 Connect a local manager object to a remote manager process::
Georg Brandl48310cd2009-01-03 21:18:54 +00001170
Jesse Noller45239682008-11-28 18:46:19 +00001171 >>> from multiprocessing.managers import BaseManager
R. David Murray8e8099c2009-04-28 18:02:00 +00001172 >>> m = BaseManager(address=('127.0.0.1', 5000), authkey='abc')
Jesse Noller45239682008-11-28 18:46:19 +00001173 >>> m.connect()
1174
Benjamin Petersone711caf2008-06-11 16:44:04 +00001175 .. method:: shutdown()
1176
1177 Stop the process used by the manager. This is only available if
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001178 :meth:`start` has been used to start the server process.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001179
1180 This can be called multiple times.
1181
1182 .. method:: register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])
1183
1184 A classmethod which can be used for registering a type or callable with
1185 the manager class.
1186
1187 *typeid* is a "type identifier" which is used to identify a particular
1188 type of shared object. This must be a string.
1189
1190 *callable* is a callable used for creating objects for this type
1191 identifier. If a manager instance will be created using the
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001192 :meth:`from_address` classmethod or if the *create_method* argument is
Benjamin Petersone711caf2008-06-11 16:44:04 +00001193 ``False`` then this can be left as ``None``.
1194
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001195 *proxytype* is a subclass of :class:`BaseProxy` which is used to create
1196 proxies for shared objects with this *typeid*. If ``None`` then a proxy
1197 class is created automatically.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001198
1199 *exposed* is used to specify a sequence of method names which proxies for
1200 this typeid should be allowed to access using
1201 :meth:`BaseProxy._callMethod`. (If *exposed* is ``None`` then
1202 :attr:`proxytype._exposed_` is used instead if it exists.) In the case
1203 where no exposed list is specified, all "public methods" of the shared
1204 object will be accessible. (Here a "public method" means any attribute
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001205 which has a :meth:`__call__` method and whose name does not begin with
Benjamin Petersone711caf2008-06-11 16:44:04 +00001206 ``'_'``.)
1207
1208 *method_to_typeid* is a mapping used to specify the return type of those
1209 exposed methods which should return a proxy. It maps method names to
1210 typeid strings. (If *method_to_typeid* is ``None`` then
1211 :attr:`proxytype._method_to_typeid_` is used instead if it exists.) If a
1212 method's name is not a key of this mapping or if the mapping is ``None``
1213 then the object returned by the method will be copied by value.
1214
1215 *create_method* determines whether a method should be created with name
1216 *typeid* which can be used to tell the server process to create a new
1217 shared object and return a proxy for it. By default it is ``True``.
1218
1219 :class:`BaseManager` instances also have one read-only property:
1220
1221 .. attribute:: address
1222
1223 The address used by the manager.
1224
1225
1226.. class:: SyncManager
1227
1228 A subclass of :class:`BaseManager` which can be used for the synchronization
1229 of processes. Objects of this type are returned by
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001230 :func:`multiprocessing.Manager`.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001231
1232 It also supports creation of shared lists and dictionaries.
1233
1234 .. method:: BoundedSemaphore([value])
1235
1236 Create a shared :class:`threading.BoundedSemaphore` object and return a
1237 proxy for it.
1238
1239 .. method:: Condition([lock])
1240
1241 Create a shared :class:`threading.Condition` object and return a proxy for
1242 it.
1243
1244 If *lock* is supplied then it should be a proxy for a
1245 :class:`threading.Lock` or :class:`threading.RLock` object.
1246
1247 .. method:: Event()
1248
1249 Create a shared :class:`threading.Event` object and return a proxy for it.
1250
1251 .. method:: Lock()
1252
1253 Create a shared :class:`threading.Lock` object and return a proxy for it.
1254
1255 .. method:: Namespace()
1256
1257 Create a shared :class:`Namespace` object and return a proxy for it.
1258
1259 .. method:: Queue([maxsize])
1260
Benjamin Peterson257060a2008-06-28 01:42:41 +00001261 Create a shared :class:`queue.Queue` object and return a proxy for it.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001262
1263 .. method:: RLock()
1264
1265 Create a shared :class:`threading.RLock` object and return a proxy for it.
1266
1267 .. method:: Semaphore([value])
1268
1269 Create a shared :class:`threading.Semaphore` object and return a proxy for
1270 it.
1271
1272 .. method:: Array(typecode, sequence)
1273
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001274 Create an array and return a proxy for it.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001275
1276 .. method:: Value(typecode, value)
1277
1278 Create an object with a writable ``value`` attribute and return a proxy
1279 for it.
1280
1281 .. method:: dict()
1282 dict(mapping)
1283 dict(sequence)
1284
1285 Create a shared ``dict`` object and return a proxy for it.
1286
1287 .. method:: list()
1288 list(sequence)
1289
1290 Create a shared ``list`` object and return a proxy for it.
1291
Georg Brandl3ed41142010-10-15 16:19:43 +00001292 .. note::
1293
1294 Modifications to mutable values or items in dict and list proxies will not
1295 be propagated through the manager, because the proxy has no way of knowing
1296 when its values or items are modified. To modify such an item, you can
1297 re-assign the modified object to the container proxy::
1298
1299 # create a list proxy and append a mutable object (a dictionary)
1300 lproxy = manager.list()
1301 lproxy.append({})
1302 # now mutate the dictionary
1303 d = lproxy[0]
1304 d['a'] = 1
1305 d['b'] = 2
1306 # at this point, the changes to d are not yet synced, but by
1307 # reassigning the dictionary, the proxy is notified of the change
1308 lproxy[0] = d
1309
Benjamin Petersone711caf2008-06-11 16:44:04 +00001310
1311Namespace objects
1312>>>>>>>>>>>>>>>>>
1313
1314A namespace object has no public methods, but does have writable attributes.
1315Its representation shows the values of its attributes.
1316
1317However, when using a proxy for a namespace object, an attribute beginning with
R. David Murray8e8099c2009-04-28 18:02:00 +00001318``'_'`` will be an attribute of the proxy and not an attribute of the referent:
1319
1320.. doctest::
Benjamin Petersone711caf2008-06-11 16:44:04 +00001321
1322 >>> manager = multiprocessing.Manager()
1323 >>> Global = manager.Namespace()
1324 >>> Global.x = 10
1325 >>> Global.y = 'hello'
1326 >>> Global._z = 12.3 # this is an attribute of the proxy
Georg Brandl49702152008-09-29 06:43:45 +00001327 >>> print(Global)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001328 Namespace(x=10, y='hello')
1329
1330
1331Customized managers
1332>>>>>>>>>>>>>>>>>>>
1333
1334To create one's own manager, one creates a subclass of :class:`BaseManager` and
Eli Benderskyd08effe2011-12-31 07:20:26 +02001335uses the :meth:`~BaseManager.register` classmethod to register new types or
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001336callables with the manager class. For example::
Benjamin Petersone711caf2008-06-11 16:44:04 +00001337
1338 from multiprocessing.managers import BaseManager
1339
Éric Araujo28053fb2010-11-22 03:09:19 +00001340 class MathsClass:
Benjamin Petersone711caf2008-06-11 16:44:04 +00001341 def add(self, x, y):
1342 return x + y
1343 def mul(self, x, y):
1344 return x * y
1345
1346 class MyManager(BaseManager):
1347 pass
1348
1349 MyManager.register('Maths', MathsClass)
1350
1351 if __name__ == '__main__':
1352 manager = MyManager()
1353 manager.start()
1354 maths = manager.Maths()
Georg Brandl49702152008-09-29 06:43:45 +00001355 print(maths.add(4, 3)) # prints 7
1356 print(maths.mul(7, 8)) # prints 56
Benjamin Petersone711caf2008-06-11 16:44:04 +00001357
1358
1359Using a remote manager
1360>>>>>>>>>>>>>>>>>>>>>>
1361
1362It is possible to run a manager server on one machine and have clients use it
1363from other machines (assuming that the firewalls involved allow it).
1364
1365Running the following commands creates a server for a single shared queue which
1366remote clients can access::
1367
1368 >>> from multiprocessing.managers import BaseManager
Benjamin Peterson257060a2008-06-28 01:42:41 +00001369 >>> import queue
1370 >>> queue = queue.Queue()
Benjamin Petersone711caf2008-06-11 16:44:04 +00001371 >>> class QueueManager(BaseManager): pass
Jesse Noller45239682008-11-28 18:46:19 +00001372 >>> QueueManager.register('get_queue', callable=lambda:queue)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001373 >>> m = QueueManager(address=('', 50000), authkey='abracadabra')
Jesse Noller45239682008-11-28 18:46:19 +00001374 >>> s = m.get_server()
R. David Murray8e8099c2009-04-28 18:02:00 +00001375 >>> s.serve_forever()
Benjamin Petersone711caf2008-06-11 16:44:04 +00001376
1377One client can access the server as follows::
1378
1379 >>> from multiprocessing.managers import BaseManager
1380 >>> class QueueManager(BaseManager): pass
Jesse Noller45239682008-11-28 18:46:19 +00001381 >>> QueueManager.register('get_queue')
1382 >>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
1383 >>> m.connect()
1384 >>> queue = m.get_queue()
Benjamin Petersone711caf2008-06-11 16:44:04 +00001385 >>> queue.put('hello')
1386
1387Another client can also use it::
1388
1389 >>> from multiprocessing.managers import BaseManager
1390 >>> class QueueManager(BaseManager): pass
R. David Murray8e8099c2009-04-28 18:02:00 +00001391 >>> QueueManager.register('get_queue')
1392 >>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
1393 >>> m.connect()
1394 >>> queue = m.get_queue()
Benjamin Petersone711caf2008-06-11 16:44:04 +00001395 >>> queue.get()
1396 'hello'
1397
Georg Brandl48310cd2009-01-03 21:18:54 +00001398Local processes can also access that queue, using the code from above on the
Jesse Noller45239682008-11-28 18:46:19 +00001399client to access it remotely::
1400
1401 >>> from multiprocessing import Process, Queue
1402 >>> from multiprocessing.managers import BaseManager
1403 >>> class Worker(Process):
1404 ... def __init__(self, q):
1405 ... self.q = q
1406 ... super(Worker, self).__init__()
1407 ... def run(self):
1408 ... self.q.put('local hello')
Georg Brandl48310cd2009-01-03 21:18:54 +00001409 ...
Jesse Noller45239682008-11-28 18:46:19 +00001410 >>> queue = Queue()
1411 >>> w = Worker(queue)
1412 >>> w.start()
1413 >>> class QueueManager(BaseManager): pass
Georg Brandl48310cd2009-01-03 21:18:54 +00001414 ...
Jesse Noller45239682008-11-28 18:46:19 +00001415 >>> QueueManager.register('get_queue', callable=lambda: queue)
1416 >>> m = QueueManager(address=('', 50000), authkey='abracadabra')
1417 >>> s = m.get_server()
1418 >>> s.serve_forever()
Benjamin Petersone711caf2008-06-11 16:44:04 +00001419
1420Proxy Objects
1421~~~~~~~~~~~~~
1422
1423A proxy is an object which *refers* to a shared object which lives (presumably)
1424in a different process. The shared object is said to be the *referent* of the
1425proxy. Multiple proxy objects may have the same referent.
1426
1427A proxy object has methods which invoke corresponding methods of its referent
1428(although not every method of the referent will necessarily be available through
1429the proxy). A proxy can usually be used in most of the same ways that its
R. David Murray8e8099c2009-04-28 18:02:00 +00001430referent can:
1431
1432.. doctest::
Benjamin Petersone711caf2008-06-11 16:44:04 +00001433
1434 >>> from multiprocessing import Manager
1435 >>> manager = Manager()
1436 >>> l = manager.list([i*i for i in range(10)])
Georg Brandl49702152008-09-29 06:43:45 +00001437 >>> print(l)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001438 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Georg Brandl49702152008-09-29 06:43:45 +00001439 >>> print(repr(l))
R. David Murray8e8099c2009-04-28 18:02:00 +00001440 <ListProxy object, typeid 'list' at 0x...>
Benjamin Petersone711caf2008-06-11 16:44:04 +00001441 >>> l[4]
1442 16
1443 >>> l[2:5]
1444 [4, 9, 16]
1445
1446Notice that applying :func:`str` to a proxy will return the representation of
1447the referent, whereas applying :func:`repr` will return the representation of
1448the proxy.
1449
1450An important feature of proxy objects is that they are picklable so they can be
1451passed between processes. Note, however, that if a proxy is sent to the
1452corresponding manager's process then unpickling it will produce the referent
R. David Murray8e8099c2009-04-28 18:02:00 +00001453itself. This means, for example, that one shared object can contain a second:
1454
1455.. doctest::
Benjamin Petersone711caf2008-06-11 16:44:04 +00001456
1457 >>> a = manager.list()
1458 >>> b = manager.list()
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001459 >>> a.append(b) # referent of a now contains referent of b
Georg Brandl49702152008-09-29 06:43:45 +00001460 >>> print(a, b)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001461 [[]] []
1462 >>> b.append('hello')
Georg Brandl49702152008-09-29 06:43:45 +00001463 >>> print(a, b)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001464 [['hello']] ['hello']
1465
1466.. note::
1467
1468 The proxy types in :mod:`multiprocessing` do nothing to support comparisons
R. David Murray8e8099c2009-04-28 18:02:00 +00001469 by value. So, for instance, we have:
Benjamin Petersone711caf2008-06-11 16:44:04 +00001470
R. David Murray8e8099c2009-04-28 18:02:00 +00001471 .. doctest::
Benjamin Petersone711caf2008-06-11 16:44:04 +00001472
R. David Murray8e8099c2009-04-28 18:02:00 +00001473 >>> manager.list([1,2,3]) == [1,2,3]
1474 False
1475
1476 One should just use a copy of the referent instead when making comparisons.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001477
1478.. class:: BaseProxy
1479
1480 Proxy objects are instances of subclasses of :class:`BaseProxy`.
1481
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001482 .. method:: _callmethod(methodname[, args[, kwds]])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001483
1484 Call and return the result of a method of the proxy's referent.
1485
1486 If ``proxy`` is a proxy whose referent is ``obj`` then the expression ::
1487
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001488 proxy._callmethod(methodname, args, kwds)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001489
1490 will evaluate the expression ::
1491
1492 getattr(obj, methodname)(*args, **kwds)
1493
1494 in the manager's process.
1495
1496 The returned value will be a copy of the result of the call or a proxy to
1497 a new shared object -- see documentation for the *method_to_typeid*
1498 argument of :meth:`BaseManager.register`.
1499
Ezio Melottie130a522011-10-19 10:58:56 +03001500 If an exception is raised by the call, then is re-raised by
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001501 :meth:`_callmethod`. If some other exception is raised in the manager's
Benjamin Petersone711caf2008-06-11 16:44:04 +00001502 process then this is converted into a :exc:`RemoteError` exception and is
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001503 raised by :meth:`_callmethod`.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001504
1505 Note in particular that an exception will be raised if *methodname* has
1506 not been *exposed*
1507
R. David Murray8e8099c2009-04-28 18:02:00 +00001508 An example of the usage of :meth:`_callmethod`:
1509
1510 .. doctest::
Benjamin Petersone711caf2008-06-11 16:44:04 +00001511
1512 >>> l = manager.list(range(10))
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001513 >>> l._callmethod('__len__')
Benjamin Petersone711caf2008-06-11 16:44:04 +00001514 10
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001515 >>> l._callmethod('__getslice__', (2, 7)) # equiv to `l[2:7]`
Benjamin Petersone711caf2008-06-11 16:44:04 +00001516 [2, 3, 4, 5, 6]
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001517 >>> l._callmethod('__getitem__', (20,)) # equiv to `l[20]`
Benjamin Petersone711caf2008-06-11 16:44:04 +00001518 Traceback (most recent call last):
1519 ...
1520 IndexError: list index out of range
1521
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001522 .. method:: _getvalue()
Benjamin Petersone711caf2008-06-11 16:44:04 +00001523
1524 Return a copy of the referent.
1525
1526 If the referent is unpicklable then this will raise an exception.
1527
1528 .. method:: __repr__
1529
1530 Return a representation of the proxy object.
1531
1532 .. method:: __str__
1533
1534 Return the representation of the referent.
1535
1536
1537Cleanup
1538>>>>>>>
1539
1540A proxy object uses a weakref callback so that when it gets garbage collected it
1541deregisters itself from the manager which owns its referent.
1542
1543A shared object gets deleted from the manager process when there are no longer
1544any proxies referring to it.
1545
1546
1547Process Pools
1548~~~~~~~~~~~~~
1549
1550.. module:: multiprocessing.pool
1551 :synopsis: Create pools of processes.
1552
1553One can create a pool of processes which will carry out tasks submitted to it
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001554with the :class:`Pool` class.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001555
Jesse Noller1f0b6582010-01-27 03:36:01 +00001556.. class:: multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001557
1558 A process pool object which controls a pool of worker processes to which jobs
1559 can be submitted. It supports asynchronous results with timeouts and
1560 callbacks and has a parallel map implementation.
1561
1562 *processes* is the number of worker processes to use. If *processes* is
1563 ``None`` then the number returned by :func:`cpu_count` is used. If
1564 *initializer* is not ``None`` then each worker process will call
1565 ``initializer(*initargs)`` when it starts.
1566
Georg Brandl17ef0d52010-10-17 06:21:59 +00001567 .. versionadded:: 3.2
1568 *maxtasksperchild* is the number of tasks a worker process can complete
1569 before it will exit and be replaced with a fresh worker process, to enable
1570 unused resources to be freed. The default *maxtasksperchild* is None, which
1571 means worker processes will live as long as the pool.
Jesse Noller1f0b6582010-01-27 03:36:01 +00001572
1573 .. note::
1574
Georg Brandl17ef0d52010-10-17 06:21:59 +00001575 Worker processes within a :class:`Pool` typically live for the complete
1576 duration of the Pool's work queue. A frequent pattern found in other
1577 systems (such as Apache, mod_wsgi, etc) to free resources held by
1578 workers is to allow a worker within a pool to complete only a set
1579 amount of work before being exiting, being cleaned up and a new
1580 process spawned to replace the old one. The *maxtasksperchild*
1581 argument to the :class:`Pool` exposes this ability to the end user.
Jesse Noller1f0b6582010-01-27 03:36:01 +00001582
Benjamin Petersone711caf2008-06-11 16:44:04 +00001583 .. method:: apply(func[, args[, kwds]])
1584
Benjamin Peterson37d2fe02008-10-24 22:28:58 +00001585 Call *func* with arguments *args* and keyword arguments *kwds*. It blocks
Eli Benderskyd08effe2011-12-31 07:20:26 +02001586 until the result is ready. Given this blocks, :meth:`apply_async` is
1587 better suited for performing work in parallel. Additionally, *func*
1588 is only executed in one of the workers of the pool.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001589
Ask Solem1d3b8932010-11-09 21:36:56 +00001590 .. method:: apply_async(func[, args[, kwds[, callback[, error_callback]]]])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001591
1592 A variant of the :meth:`apply` method which returns a result object.
1593
1594 If *callback* is specified then it should be a callable which accepts a
1595 single argument. When the result becomes ready *callback* is applied to
Ask Solem1d3b8932010-11-09 21:36:56 +00001596 it, that is unless the call failed, in which case the *error_callback*
1597 is applied instead
1598
1599 If *error_callback* is specified then it should be a callable which
1600 accepts a single argument. If the target function fails, then
1601 the *error_callback* is called with the exception instance.
1602
1603 Callbacks should complete immediately since otherwise the thread which
1604 handles the results will get blocked.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001605
1606 .. method:: map(func, iterable[, chunksize])
1607
Georg Brandl22b34312009-07-26 14:54:51 +00001608 A parallel equivalent of the :func:`map` built-in function (it supports only
Eli Benderskyd08effe2011-12-31 07:20:26 +02001609 one *iterable* argument though). It blocks until the result is ready.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001610
1611 This method chops the iterable into a number of chunks which it submits to
1612 the process pool as separate tasks. The (approximate) size of these
1613 chunks can be specified by setting *chunksize* to a positive integer.
1614
Sandro Tosidb79e952011-08-08 16:38:13 +02001615 .. method:: map_async(func, iterable[, chunksize[, callback[, error_callback]]])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001616
Georg Brandl502d9a52009-07-26 15:02:41 +00001617 A variant of the :meth:`.map` method which returns a result object.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001618
1619 If *callback* is specified then it should be a callable which accepts a
1620 single argument. When the result becomes ready *callback* is applied to
Ask Solem1d3b8932010-11-09 21:36:56 +00001621 it, that is unless the call failed, in which case the *error_callback*
1622 is applied instead
1623
1624 If *error_callback* is specified then it should be a callable which
1625 accepts a single argument. If the target function fails, then
1626 the *error_callback* is called with the exception instance.
1627
1628 Callbacks should complete immediately since otherwise the thread which
1629 handles the results will get blocked.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001630
1631 .. method:: imap(func, iterable[, chunksize])
1632
Georg Brandl92905032008-11-22 08:51:39 +00001633 A lazier version of :meth:`map`.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001634
1635 The *chunksize* argument is the same as the one used by the :meth:`.map`
1636 method. For very long iterables using a large value for *chunksize* can
Ezio Melottie130a522011-10-19 10:58:56 +03001637 make the job complete **much** faster than using the default value of
Benjamin Petersone711caf2008-06-11 16:44:04 +00001638 ``1``.
1639
Georg Brandl502d9a52009-07-26 15:02:41 +00001640 Also if *chunksize* is ``1`` then the :meth:`!next` method of the iterator
Benjamin Petersone711caf2008-06-11 16:44:04 +00001641 returned by the :meth:`imap` method has an optional *timeout* parameter:
1642 ``next(timeout)`` will raise :exc:`multiprocessing.TimeoutError` if the
1643 result cannot be returned within *timeout* seconds.
1644
1645 .. method:: imap_unordered(func, iterable[, chunksize])
1646
1647 The same as :meth:`imap` except that the ordering of the results from the
1648 returned iterator should be considered arbitrary. (Only when there is
1649 only one worker process is the order guaranteed to be "correct".)
1650
1651 .. method:: close()
1652
1653 Prevents any more tasks from being submitted to the pool. Once all the
1654 tasks have been completed the worker processes will exit.
1655
1656 .. method:: terminate()
1657
1658 Stops the worker processes immediately without completing outstanding
1659 work. When the pool object is garbage collected :meth:`terminate` will be
1660 called immediately.
1661
1662 .. method:: join()
1663
1664 Wait for the worker processes to exit. One must call :meth:`close` or
1665 :meth:`terminate` before using :meth:`join`.
1666
1667
1668.. class:: AsyncResult
1669
1670 The class of the result returned by :meth:`Pool.apply_async` and
1671 :meth:`Pool.map_async`.
1672
Georg Brandle3d70ae2008-11-22 08:54:21 +00001673 .. method:: get([timeout])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001674
1675 Return the result when it arrives. If *timeout* is not ``None`` and the
1676 result does not arrive within *timeout* seconds then
1677 :exc:`multiprocessing.TimeoutError` is raised. If the remote call raised
1678 an exception then that exception will be reraised by :meth:`get`.
1679
1680 .. method:: wait([timeout])
1681
1682 Wait until the result is available or until *timeout* seconds pass.
1683
1684 .. method:: ready()
1685
1686 Return whether the call has completed.
1687
1688 .. method:: successful()
1689
1690 Return whether the call completed without raising an exception. Will
1691 raise :exc:`AssertionError` if the result is not ready.
1692
1693The following example demonstrates the use of a pool::
1694
1695 from multiprocessing import Pool
1696
1697 def f(x):
1698 return x*x
1699
1700 if __name__ == '__main__':
1701 pool = Pool(processes=4) # start 4 worker processes
1702
Georg Brandle3d70ae2008-11-22 08:54:21 +00001703 result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously
Georg Brandl49702152008-09-29 06:43:45 +00001704 print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow
Benjamin Petersone711caf2008-06-11 16:44:04 +00001705
Georg Brandl49702152008-09-29 06:43:45 +00001706 print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"
Benjamin Petersone711caf2008-06-11 16:44:04 +00001707
1708 it = pool.imap(f, range(10))
Georg Brandl49702152008-09-29 06:43:45 +00001709 print(next(it)) # prints "0"
1710 print(next(it)) # prints "1"
1711 print(it.next(timeout=1)) # prints "4" unless your computer is *very* slow
Benjamin Petersone711caf2008-06-11 16:44:04 +00001712
1713 import time
Georg Brandle3d70ae2008-11-22 08:54:21 +00001714 result = pool.apply_async(time.sleep, (10,))
Georg Brandl49702152008-09-29 06:43:45 +00001715 print(result.get(timeout=1)) # raises TimeoutError
Benjamin Petersone711caf2008-06-11 16:44:04 +00001716
1717
1718.. _multiprocessing-listeners-clients:
1719
1720Listeners and Clients
1721~~~~~~~~~~~~~~~~~~~~~
1722
1723.. module:: multiprocessing.connection
1724 :synopsis: API for dealing with sockets.
1725
1726Usually message passing between processes is done using queues or by using
1727:class:`Connection` objects returned by :func:`Pipe`.
1728
1729However, the :mod:`multiprocessing.connection` module allows some extra
1730flexibility. It basically gives a high level message oriented API for dealing
1731with sockets or Windows named pipes, and also has support for *digest
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001732authentication* using the :mod:`hmac` module.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001733
1734
1735.. function:: deliver_challenge(connection, authkey)
1736
1737 Send a randomly generated message to the other end of the connection and wait
1738 for a reply.
1739
1740 If the reply matches the digest of the message using *authkey* as the key
1741 then a welcome message is sent to the other end of the connection. Otherwise
1742 :exc:`AuthenticationError` is raised.
1743
1744.. function:: answerChallenge(connection, authkey)
1745
1746 Receive a message, calculate the digest of the message using *authkey* as the
1747 key, and then send the digest back.
1748
1749 If a welcome message is not received, then :exc:`AuthenticationError` is
1750 raised.
1751
1752.. function:: Client(address[, family[, authenticate[, authkey]]])
1753
1754 Attempt to set up a connection to the listener which is using address
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001755 *address*, returning a :class:`~multiprocessing.Connection`.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001756
1757 The type of the connection is determined by *family* argument, but this can
1758 generally be omitted since it can usually be inferred from the format of
1759 *address*. (See :ref:`multiprocessing-address-formats`)
1760
Alexandre Vassalottic57a84f2009-07-17 12:07:01 +00001761 If *authenticate* is ``True`` or *authkey* is a string then digest
Benjamin Petersone711caf2008-06-11 16:44:04 +00001762 authentication is used. The key used for authentication will be either
Benjamin Petersona786b022008-08-25 21:05:21 +00001763 *authkey* or ``current_process().authkey)`` if *authkey* is ``None``.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001764 If authentication fails then :exc:`AuthenticationError` is raised. See
1765 :ref:`multiprocessing-auth-keys`.
1766
1767.. class:: Listener([address[, family[, backlog[, authenticate[, authkey]]]]])
1768
1769 A wrapper for a bound socket or Windows named pipe which is 'listening' for
1770 connections.
1771
1772 *address* is the address to be used by the bound socket or named pipe of the
1773 listener object.
1774
Benjamin Petersond23f8222009-04-05 19:13:16 +00001775 .. note::
1776
1777 If an address of '0.0.0.0' is used, the address will not be a connectable
1778 end point on Windows. If you require a connectable end-point,
1779 you should use '127.0.0.1'.
1780
Benjamin Petersone711caf2008-06-11 16:44:04 +00001781 *family* is the type of socket (or named pipe) to use. This can be one of
1782 the strings ``'AF_INET'`` (for a TCP socket), ``'AF_UNIX'`` (for a Unix
1783 domain socket) or ``'AF_PIPE'`` (for a Windows named pipe). Of these only
1784 the first is guaranteed to be available. If *family* is ``None`` then the
1785 family is inferred from the format of *address*. If *address* is also
1786 ``None`` then a default is chosen. This default is the family which is
1787 assumed to be the fastest available. See
1788 :ref:`multiprocessing-address-formats`. Note that if *family* is
1789 ``'AF_UNIX'`` and address is ``None`` then the socket will be created in a
1790 private temporary directory created using :func:`tempfile.mkstemp`.
1791
1792 If the listener object uses a socket then *backlog* (1 by default) is passed
1793 to the :meth:`listen` method of the socket once it has been bound.
1794
1795 If *authenticate* is ``True`` (``False`` by default) or *authkey* is not
1796 ``None`` then digest authentication is used.
1797
1798 If *authkey* is a string then it will be used as the authentication key;
1799 otherwise it must be *None*.
1800
1801 If *authkey* is ``None`` and *authenticate* is ``True`` then
Benjamin Petersona786b022008-08-25 21:05:21 +00001802 ``current_process().authkey`` is used as the authentication key. If
Alexandre Vassalottic57a84f2009-07-17 12:07:01 +00001803 *authkey* is ``None`` and *authenticate* is ``False`` then no
Benjamin Petersone711caf2008-06-11 16:44:04 +00001804 authentication is done. If authentication fails then
1805 :exc:`AuthenticationError` is raised. See :ref:`multiprocessing-auth-keys`.
1806
1807 .. method:: accept()
1808
1809 Accept a connection on the bound socket or named pipe of the listener
1810 object and return a :class:`Connection` object. If authentication is
1811 attempted and fails, then :exc:`AuthenticationError` is raised.
1812
1813 .. method:: close()
1814
1815 Close the bound socket or named pipe of the listener object. This is
1816 called automatically when the listener is garbage collected. However it
1817 is advisable to call it explicitly.
1818
1819 Listener objects have the following read-only properties:
1820
1821 .. attribute:: address
1822
1823 The address which is being used by the Listener object.
1824
1825 .. attribute:: last_accepted
1826
1827 The address from which the last accepted connection came. If this is
1828 unavailable then it is ``None``.
1829
1830
1831The module defines two exceptions:
1832
1833.. exception:: AuthenticationError
1834
1835 Exception raised when there is an authentication error.
1836
Benjamin Petersone711caf2008-06-11 16:44:04 +00001837
1838**Examples**
1839
1840The following server code creates a listener which uses ``'secret password'`` as
1841an authentication key. It then waits for a connection and sends some data to
1842the client::
1843
1844 from multiprocessing.connection import Listener
1845 from array import array
1846
1847 address = ('localhost', 6000) # family is deduced to be 'AF_INET'
Senthil Kumaran79941b52010-10-10 06:13:49 +00001848 listener = Listener(address, authkey=b'secret password')
Benjamin Petersone711caf2008-06-11 16:44:04 +00001849
1850 conn = listener.accept()
Georg Brandl49702152008-09-29 06:43:45 +00001851 print('connection accepted from', listener.last_accepted)
Benjamin Petersone711caf2008-06-11 16:44:04 +00001852
1853 conn.send([2.25, None, 'junk', float])
1854
Senthil Kumaran79941b52010-10-10 06:13:49 +00001855 conn.send_bytes(b'hello')
Benjamin Petersone711caf2008-06-11 16:44:04 +00001856
1857 conn.send_bytes(array('i', [42, 1729]))
1858
1859 conn.close()
1860 listener.close()
1861
1862The following code connects to the server and receives some data from the
1863server::
1864
1865 from multiprocessing.connection import Client
1866 from array import array
1867
1868 address = ('localhost', 6000)
Senthil Kumaran79941b52010-10-10 06:13:49 +00001869 conn = Client(address, authkey=b'secret password')
Benjamin Petersone711caf2008-06-11 16:44:04 +00001870
Georg Brandl49702152008-09-29 06:43:45 +00001871 print(conn.recv()) # => [2.25, None, 'junk', float]
Benjamin Petersone711caf2008-06-11 16:44:04 +00001872
Georg Brandl49702152008-09-29 06:43:45 +00001873 print(conn.recv_bytes()) # => 'hello'
Benjamin Petersone711caf2008-06-11 16:44:04 +00001874
1875 arr = array('i', [0, 0, 0, 0, 0])
Georg Brandl49702152008-09-29 06:43:45 +00001876 print(conn.recv_bytes_into(arr)) # => 8
1877 print(arr) # => array('i', [42, 1729, 0, 0, 0])
Benjamin Petersone711caf2008-06-11 16:44:04 +00001878
1879 conn.close()
1880
1881
1882.. _multiprocessing-address-formats:
1883
1884Address Formats
1885>>>>>>>>>>>>>>>
1886
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001887* An ``'AF_INET'`` address is a tuple of the form ``(hostname, port)`` where
Benjamin Petersone711caf2008-06-11 16:44:04 +00001888 *hostname* is a string and *port* is an integer.
1889
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001890* An ``'AF_UNIX'`` address is a string representing a filename on the
Benjamin Petersone711caf2008-06-11 16:44:04 +00001891 filesystem.
1892
1893* An ``'AF_PIPE'`` address is a string of the form
Benjamin Petersonda10d3b2009-01-01 00:23:30 +00001894 :samp:`r'\\\\.\\pipe\\{PipeName}'`. To use :func:`Client` to connect to a named
Georg Brandl1f01deb2009-01-03 22:47:39 +00001895 pipe on a remote computer called *ServerName* one should use an address of the
Benjamin Peterson28d88b42009-01-09 03:03:23 +00001896 form :samp:`r'\\\\{ServerName}\\pipe\\{PipeName}'` instead.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001897
1898Note that any string beginning with two backslashes is assumed by default to be
1899an ``'AF_PIPE'`` address rather than an ``'AF_UNIX'`` address.
1900
1901
1902.. _multiprocessing-auth-keys:
1903
1904Authentication keys
1905~~~~~~~~~~~~~~~~~~~
1906
1907When one uses :meth:`Connection.recv`, the data received is automatically
1908unpickled. Unfortunately unpickling data from an untrusted source is a security
1909risk. Therefore :class:`Listener` and :func:`Client` use the :mod:`hmac` module
1910to provide digest authentication.
1911
1912An authentication key is a string which can be thought of as a password: once a
1913connection is established both ends will demand proof that the other knows the
1914authentication key. (Demonstrating that both ends are using the same key does
1915**not** involve sending the key over the connection.)
1916
1917If authentication is requested but do authentication key is specified then the
Benjamin Petersona786b022008-08-25 21:05:21 +00001918return value of ``current_process().authkey`` is used (see
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00001919:class:`~multiprocessing.Process`). This value will automatically inherited by
1920any :class:`~multiprocessing.Process` object that the current process creates.
1921This means that (by default) all processes of a multi-process program will share
1922a single authentication key which can be used when setting up connections
Benjamin Petersond23f8222009-04-05 19:13:16 +00001923between themselves.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001924
1925Suitable authentication keys can also be generated by using :func:`os.urandom`.
1926
1927
1928Logging
1929~~~~~~~
1930
1931Some support for logging is available. Note, however, that the :mod:`logging`
1932package does not use process shared locks so it is possible (depending on the
1933handler type) for messages from different processes to get mixed up.
1934
1935.. currentmodule:: multiprocessing
1936.. function:: get_logger()
1937
1938 Returns the logger used by :mod:`multiprocessing`. If necessary, a new one
1939 will be created.
1940
Jesse Noller41faa542009-01-25 03:45:53 +00001941 When first created the logger has level :data:`logging.NOTSET` and no
1942 default handler. Messages sent to this logger will not by default propagate
1943 to the root logger.
Benjamin Petersone711caf2008-06-11 16:44:04 +00001944
1945 Note that on Windows child processes will only inherit the level of the
1946 parent process's logger -- any other customization of the logger will not be
1947 inherited.
1948
Jesse Noller41faa542009-01-25 03:45:53 +00001949.. currentmodule:: multiprocessing
1950.. function:: log_to_stderr()
1951
1952 This function performs a call to :func:`get_logger` but in addition to
1953 returning the logger created by get_logger, it adds a handler which sends
1954 output to :data:`sys.stderr` using format
1955 ``'[%(levelname)s/%(processName)s] %(message)s'``.
1956
Benjamin Petersone711caf2008-06-11 16:44:04 +00001957Below is an example session with logging turned on::
1958
Benjamin Peterson206e3072008-10-19 14:07:49 +00001959 >>> import multiprocessing, logging
Jesse Noller41faa542009-01-25 03:45:53 +00001960 >>> logger = multiprocessing.log_to_stderr()
Benjamin Petersone711caf2008-06-11 16:44:04 +00001961 >>> logger.setLevel(logging.INFO)
1962 >>> logger.warning('doomed')
1963 [WARNING/MainProcess] doomed
Benjamin Peterson206e3072008-10-19 14:07:49 +00001964 >>> m = multiprocessing.Manager()
R. David Murray8e8099c2009-04-28 18:02:00 +00001965 [INFO/SyncManager-...] child process calling self.run()
1966 [INFO/SyncManager-...] created temp directory /.../pymp-...
1967 [INFO/SyncManager-...] manager serving at '/.../listener-...'
Benjamin Petersone711caf2008-06-11 16:44:04 +00001968 >>> del m
1969 [INFO/MainProcess] sending shutdown message to manager
R. David Murray8e8099c2009-04-28 18:02:00 +00001970 [INFO/SyncManager-...] manager exiting with exitcode 0
Benjamin Petersone711caf2008-06-11 16:44:04 +00001971
Jesse Noller41faa542009-01-25 03:45:53 +00001972In addition to having these two logging functions, the multiprocessing also
1973exposes two additional logging level attributes. These are :const:`SUBWARNING`
1974and :const:`SUBDEBUG`. The table below illustrates where theses fit in the
1975normal level hierarchy.
1976
1977+----------------+----------------+
1978| Level | Numeric value |
1979+================+================+
1980| ``SUBWARNING`` | 25 |
1981+----------------+----------------+
1982| ``SUBDEBUG`` | 5 |
1983+----------------+----------------+
1984
1985For a full table of logging levels, see the :mod:`logging` module.
1986
1987These additional logging levels are used primarily for certain debug messages
1988within the multiprocessing module. Below is the same example as above, except
1989with :const:`SUBDEBUG` enabled::
1990
1991 >>> import multiprocessing, logging
1992 >>> logger = multiprocessing.log_to_stderr()
1993 >>> logger.setLevel(multiprocessing.SUBDEBUG)
1994 >>> logger.warning('doomed')
1995 [WARNING/MainProcess] doomed
1996 >>> m = multiprocessing.Manager()
R. David Murray8e8099c2009-04-28 18:02:00 +00001997 [INFO/SyncManager-...] child process calling self.run()
1998 [INFO/SyncManager-...] created temp directory /.../pymp-...
1999 [INFO/SyncManager-...] manager serving at '/.../pymp-djGBXN/listener-...'
Jesse Noller41faa542009-01-25 03:45:53 +00002000 >>> del m
2001 [SUBDEBUG/MainProcess] finalizer calling ...
2002 [INFO/MainProcess] sending shutdown message to manager
R. David Murray8e8099c2009-04-28 18:02:00 +00002003 [DEBUG/SyncManager-...] manager received shutdown message
2004 [SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...
2005 [SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...
2006 [SUBDEBUG/SyncManager-...] calling <Finalize object, dead>
2007 [SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...
2008 [INFO/SyncManager-...] manager exiting with exitcode 0
Benjamin Petersone711caf2008-06-11 16:44:04 +00002009
2010The :mod:`multiprocessing.dummy` module
2011~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2012
2013.. module:: multiprocessing.dummy
2014 :synopsis: Dumb wrapper around threading.
2015
2016:mod:`multiprocessing.dummy` replicates the API of :mod:`multiprocessing` but is
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00002017no more than a wrapper around the :mod:`threading` module.
Benjamin Petersone711caf2008-06-11 16:44:04 +00002018
2019
2020.. _multiprocessing-programming:
2021
2022Programming guidelines
2023----------------------
2024
2025There are certain guidelines and idioms which should be adhered to when using
2026:mod:`multiprocessing`.
2027
2028
2029All platforms
2030~~~~~~~~~~~~~
2031
2032Avoid shared state
2033
2034 As far as possible one should try to avoid shifting large amounts of data
2035 between processes.
2036
2037 It is probably best to stick to using queues or pipes for communication
2038 between processes rather than using the lower level synchronization
2039 primitives from the :mod:`threading` module.
2040
2041Picklability
2042
2043 Ensure that the arguments to the methods of proxies are picklable.
2044
2045Thread safety of proxies
2046
2047 Do not use a proxy object from more than one thread unless you protect it
2048 with a lock.
2049
2050 (There is never a problem with different processes using the *same* proxy.)
2051
2052Joining zombie processes
2053
2054 On Unix when a process finishes but has not been joined it becomes a zombie.
2055 There should never be very many because each time a new process starts (or
2056 :func:`active_children` is called) all completed processes which have not
2057 yet been joined will be joined. Also calling a finished process's
2058 :meth:`Process.is_alive` will join the process. Even so it is probably good
2059 practice to explicitly join all the processes that you start.
2060
2061Better to inherit than pickle/unpickle
2062
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00002063 On Windows many types from :mod:`multiprocessing` need to be picklable so
Benjamin Petersone711caf2008-06-11 16:44:04 +00002064 that child processes can use them. However, one should generally avoid
2065 sending shared objects to other processes using pipes or queues. Instead
Eli Benderskyd08effe2011-12-31 07:20:26 +02002066 you should arrange the program so that a process which needs access to a
Benjamin Petersone711caf2008-06-11 16:44:04 +00002067 shared resource created elsewhere can inherit it from an ancestor process.
2068
2069Avoid terminating processes
2070
2071 Using the :meth:`Process.terminate` method to stop a process is liable to
2072 cause any shared resources (such as locks, semaphores, pipes and queues)
2073 currently being used by the process to become broken or unavailable to other
2074 processes.
2075
2076 Therefore it is probably best to only consider using
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00002077 :meth:`Process.terminate` on processes which never use any shared resources.
Benjamin Petersone711caf2008-06-11 16:44:04 +00002078
2079Joining processes that use queues
2080
2081 Bear in mind that a process that has put items in a queue will wait before
2082 terminating until all the buffered items are fed by the "feeder" thread to
2083 the underlying pipe. (The child process can call the
Benjamin Petersonae5360b2008-09-08 23:05:23 +00002084 :meth:`Queue.cancel_join_thread` method of the queue to avoid this behaviour.)
Benjamin Petersone711caf2008-06-11 16:44:04 +00002085
2086 This means that whenever you use a queue you need to make sure that all
2087 items which have been put on the queue will eventually be removed before the
2088 process is joined. Otherwise you cannot be sure that processes which have
2089 put items on the queue will terminate. Remember also that non-daemonic
2090 processes will be automatically be joined.
2091
2092 An example which will deadlock is the following::
2093
2094 from multiprocessing import Process, Queue
2095
2096 def f(q):
2097 q.put('X' * 1000000)
2098
2099 if __name__ == '__main__':
2100 queue = Queue()
2101 p = Process(target=f, args=(queue,))
2102 p.start()
2103 p.join() # this deadlocks
2104 obj = queue.get()
2105
2106 A fix here would be to swap the last two lines round (or simply remove the
2107 ``p.join()`` line).
2108
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00002109Explicitly pass resources to child processes
Benjamin Petersone711caf2008-06-11 16:44:04 +00002110
2111 On Unix a child process can make use of a shared resource created in a
2112 parent process using a global resource. However, it is better to pass the
2113 object as an argument to the constructor for the child process.
2114
2115 Apart from making the code (potentially) compatible with Windows this also
2116 ensures that as long as the child process is still alive the object will not
2117 be garbage collected in the parent process. This might be important if some
2118 resource is freed when the object is garbage collected in the parent
2119 process.
2120
2121 So for instance ::
2122
2123 from multiprocessing import Process, Lock
2124
2125 def f():
2126 ... do something using "lock" ...
2127
2128 if __name__ == '__main__':
2129 lock = Lock()
2130 for i in range(10):
2131 Process(target=f).start()
2132
2133 should be rewritten as ::
2134
2135 from multiprocessing import Process, Lock
2136
2137 def f(l):
2138 ... do something using "l" ...
2139
2140 if __name__ == '__main__':
2141 lock = Lock()
2142 for i in range(10):
2143 Process(target=f, args=(lock,)).start()
2144
Eli Benderskyd08effe2011-12-31 07:20:26 +02002145Beware of replacing :data:`sys.stdin` with a "file like object"
Alexandre Vassalottic57a84f2009-07-17 12:07:01 +00002146
2147 :mod:`multiprocessing` originally unconditionally called::
2148
2149 os.close(sys.stdin.fileno())
2150
2151 in the :meth:`multiprocessing.Process._bootstrap` method --- this resulted
2152 in issues with processes-in-processes. This has been changed to::
2153
2154 sys.stdin.close()
2155 sys.stdin = open(os.devnull)
2156
2157 Which solves the fundamental issue of processes colliding with each other
2158 resulting in a bad file descriptor error, but introduces a potential danger
2159 to applications which replace :func:`sys.stdin` with a "file-like object"
2160 with output buffering. This danger is that if multiple processes call
2161 :func:`close()` on this file-like object, it could result in the same
2162 data being flushed to the object multiple times, resulting in corruption.
2163
2164 If you write a file-like object and implement your own caching, you can
2165 make it fork-safe by storing the pid whenever you append to the cache,
2166 and discarding the cache when the pid changes. For example::
2167
2168 @property
2169 def cache(self):
2170 pid = os.getpid()
2171 if pid != self._pid:
2172 self._pid = pid
2173 self._cache = []
2174 return self._cache
2175
2176 For more information, see :issue:`5155`, :issue:`5313` and :issue:`5331`
Benjamin Petersone711caf2008-06-11 16:44:04 +00002177
2178Windows
2179~~~~~~~
2180
2181Since Windows lacks :func:`os.fork` it has a few extra restrictions:
2182
2183More picklability
2184
2185 Ensure that all arguments to :meth:`Process.__init__` are picklable. This
2186 means, in particular, that bound or unbound methods cannot be used directly
2187 as the ``target`` argument on Windows --- just define a function and use
2188 that instead.
2189
2190 Also, if you subclass :class:`Process` then make sure that instances will be
2191 picklable when the :meth:`Process.start` method is called.
2192
2193Global variables
2194
2195 Bear in mind that if code run in a child process tries to access a global
2196 variable, then the value it sees (if any) may not be the same as the value
2197 in the parent process at the time that :meth:`Process.start` was called.
2198
2199 However, global variables which are just module level constants cause no
2200 problems.
2201
2202Safe importing of main module
2203
2204 Make sure that the main module can be safely imported by a new Python
2205 interpreter without causing unintended side effects (such a starting a new
2206 process).
2207
2208 For example, under Windows running the following module would fail with a
2209 :exc:`RuntimeError`::
2210
2211 from multiprocessing import Process
2212
2213 def foo():
Georg Brandl49702152008-09-29 06:43:45 +00002214 print('hello')
Benjamin Petersone711caf2008-06-11 16:44:04 +00002215
2216 p = Process(target=foo)
2217 p.start()
2218
2219 Instead one should protect the "entry point" of the program by using ``if
2220 __name__ == '__main__':`` as follows::
2221
2222 from multiprocessing import Process, freeze_support
2223
2224 def foo():
Georg Brandl49702152008-09-29 06:43:45 +00002225 print('hello')
Benjamin Petersone711caf2008-06-11 16:44:04 +00002226
2227 if __name__ == '__main__':
2228 freeze_support()
2229 p = Process(target=foo)
2230 p.start()
2231
Benjamin Peterson5289b2b2008-06-28 00:40:54 +00002232 (The ``freeze_support()`` line can be omitted if the program will be run
Benjamin Petersone711caf2008-06-11 16:44:04 +00002233 normally instead of frozen.)
2234
2235 This allows the newly spawned Python interpreter to safely import the module
2236 and then run the module's ``foo()`` function.
2237
2238 Similar restrictions apply if a pool or manager is created in the main
2239 module.
2240
2241
2242.. _multiprocessing-examples:
2243
2244Examples
2245--------
2246
2247Demonstration of how to create and use customized managers and proxies:
2248
2249.. literalinclude:: ../includes/mp_newtype.py
2250
2251
2252Using :class:`Pool`:
2253
2254.. literalinclude:: ../includes/mp_pool.py
2255
2256
2257Synchronization types like locks, conditions and queues:
2258
2259.. literalinclude:: ../includes/mp_synchronize.py
2260
2261
Georg Brandl0b37b332010-09-03 22:49:27 +00002262An example showing how to use queues to feed tasks to a collection of worker
Eli Benderskyd08effe2011-12-31 07:20:26 +02002263processes and collect the results:
Benjamin Petersone711caf2008-06-11 16:44:04 +00002264
2265.. literalinclude:: ../includes/mp_workers.py
2266
2267
2268An example of how a pool of worker processes can each run a
Georg Brandl47d48bb2010-07-10 11:51:06 +00002269:class:`~http.server.SimpleHTTPRequestHandler` instance while sharing a single
2270listening socket.
Benjamin Petersone711caf2008-06-11 16:44:04 +00002271
2272.. literalinclude:: ../includes/mp_webserver.py
2273
2274
2275Some simple benchmarks comparing :mod:`multiprocessing` with :mod:`threading`:
2276
2277.. literalinclude:: ../includes/mp_benchmarks.py
2278