blob: 852fe7ca3fbce31f83732b9d1c608c14fddc5460 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001:mod:`random` --- Generate pseudo-random numbers
2================================================
3
4.. module:: random
5 :synopsis: Generate pseudo-random numbers with various common distributions.
6
Éric Araujo29a0b572011-08-19 02:14:03 +02007**Source code:** :source:`Lib/random.py`
8
9--------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000010
11This module implements pseudo-random number generators for various
12distributions.
13
14For integers, uniform selection from a range. For sequences, uniform selection
15of a random element, a function to generate a random permutation of a list
16in-place, and a function for random sampling without replacement.
17
18On the real line, there are functions to compute uniform, normal (Gaussian),
19lognormal, negative exponential, gamma, and beta distributions. For generating
20distributions of angles, the von Mises distribution is available.
21
Georg Brandld6dd0e62016-02-19 08:57:23 +010022Almost all module functions depend on the basic function :func:`.random`, which
Georg Brandl8ec7f652007-08-15 14:28:01 +000023generates a random float uniformly in the semi-open range [0.0, 1.0). Python
24uses the Mersenne Twister as the core generator. It produces 53-bit precision
25floats and has a period of 2\*\*19937-1. The underlying implementation in C is
26both fast and threadsafe. The Mersenne Twister is one of the most extensively
27tested random number generators in existence. However, being completely
28deterministic, it is not suitable for all purposes, and is completely unsuitable
29for cryptographic purposes.
30
31The functions supplied by this module are actually bound methods of a hidden
32instance of the :class:`random.Random` class. You can instantiate your own
33instances of :class:`Random` to get generators that don't share state. This is
34especially useful for multi-threaded programs, creating a different instance of
35:class:`Random` for each thread, and using the :meth:`jumpahead` method to make
36it likely that the generated sequences seen by each thread don't overlap.
37
38Class :class:`Random` can also be subclassed if you want to use a different
Georg Brandld6dd0e62016-02-19 08:57:23 +010039basic generator of your own devising: in that case, override the :meth:`~Random.random`,
40:meth:`~Random.seed`, :meth:`~Random.getstate`, :meth:`~Random.setstate` and
41:meth:`~Random.jumpahead` methods. Optionally, a new generator can supply a
42:meth:`~Random.getrandbits` method --- this
Georg Brandl8ec7f652007-08-15 14:28:01 +000043allows :meth:`randrange` to produce selections over an arbitrarily large range.
44
45.. versionadded:: 2.4
Benjamin Petersonf2eb2b42008-07-30 13:46:53 +000046 the :meth:`getrandbits` method.
Georg Brandl8ec7f652007-08-15 14:28:01 +000047
48As an example of subclassing, the :mod:`random` module provides the
49:class:`WichmannHill` class that implements an alternative generator in pure
50Python. The class provides a backward compatible way to reproduce results from
51earlier versions of Python, which used the Wichmann-Hill algorithm as the core
52generator. Note that this Wichmann-Hill generator can no longer be recommended:
53its period is too short by contemporary standards, and the sequence generated is
54known to fail some stringent randomness tests. See the references below for a
55recent variant that repairs these flaws.
56
57.. versionchanged:: 2.3
Andrew M. Kuchling25d6ddd2010-02-22 02:29:10 +000058 MersenneTwister replaced Wichmann-Hill as the default generator.
59
60The :mod:`random` module also provides the :class:`SystemRandom` class which
61uses the system function :func:`os.urandom` to generate random numbers
62from sources provided by the operating system.
Georg Brandl8ec7f652007-08-15 14:28:01 +000063
Antoine Pitrou79a16a82013-08-16 19:19:40 +020064.. warning::
65
66 The pseudo-random generators of this module should not be used for
67 security purposes. Use :func:`os.urandom` or :class:`SystemRandom` if
68 you require a cryptographically secure pseudo-random number generator.
69
70
Georg Brandl8ec7f652007-08-15 14:28:01 +000071Bookkeeping functions:
72
73
Raymond Hettinger9b7ae962017-01-06 16:13:37 -080074.. function:: seed(a=None)
Georg Brandl8ec7f652007-08-15 14:28:01 +000075
Raymond Hettinger9b7ae962017-01-06 16:13:37 -080076 Initialize internal state of the random number generator.
Georg Brandl8ec7f652007-08-15 14:28:01 +000077
Raymond Hettinger9b7ae962017-01-06 16:13:37 -080078 ``None`` or no argument seeds from current time or from an operating
79 system specific randomness source if available (see the :func:`os.urandom`
80 function for details on availability).
81
82 If *a* is not ``None`` or an :class:`int` or a :class:`long`, then
83 ``hash(a)`` is used instead. Note that the hash values for some types
84 are nondeterministic when :envvar:`PYTHONHASHSEED` is enabled.
Raymond Hettinger56c51522016-08-31 14:57:32 -070085
Georg Brandl8ec7f652007-08-15 14:28:01 +000086 .. versionchanged:: 2.4
87 formerly, operating system resources were not used.
88
Georg Brandl8ec7f652007-08-15 14:28:01 +000089.. function:: getstate()
90
91 Return an object capturing the current internal state of the generator. This
92 object can be passed to :func:`setstate` to restore the state.
93
94 .. versionadded:: 2.1
95
Martin v. Löwis6b449f42007-12-03 19:20:02 +000096 .. versionchanged:: 2.6
97 State values produced in Python 2.6 cannot be loaded into earlier versions.
98
Georg Brandl8ec7f652007-08-15 14:28:01 +000099
100.. function:: setstate(state)
101
102 *state* should have been obtained from a previous call to :func:`getstate`, and
103 :func:`setstate` restores the internal state of the generator to what it was at
Sandro Tosi106c2502012-08-12 15:11:58 +0200104 the time :func:`getstate` was called.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000105
106 .. versionadded:: 2.1
107
108
109.. function:: jumpahead(n)
110
111 Change the internal state to one different from and likely far away from the
112 current state. *n* is a non-negative integer which is used to scramble the
113 current state vector. This is most useful in multi-threaded programs, in
Georg Brandl907a7202008-02-22 12:31:45 +0000114 conjunction with multiple instances of the :class:`Random` class:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115 :meth:`setstate` or :meth:`seed` can be used to force all instances into the
116 same internal state, and then :meth:`jumpahead` can be used to force the
117 instances' states far apart.
118
119 .. versionadded:: 2.1
120
121 .. versionchanged:: 2.3
122 Instead of jumping to a specific state, *n* steps ahead, ``jumpahead(n)``
123 jumps to another state likely to be separated by many steps.
124
125
126.. function:: getrandbits(k)
127
128 Returns a python :class:`long` int with *k* random bits. This method is supplied
129 with the MersenneTwister generator and some other generators may also provide it
130 as an optional part of the API. When available, :meth:`getrandbits` enables
131 :meth:`randrange` to handle arbitrarily large ranges.
132
133 .. versionadded:: 2.4
134
135Functions for integers:
136
137
Ezio Melottied3f5902012-09-14 06:48:32 +0300138.. function:: randrange(stop)
139 randrange(start, stop[, step])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000140
141 Return a randomly selected element from ``range(start, stop, step)``. This is
142 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
143 range object.
144
145 .. versionadded:: 1.5.2
146
147
148.. function:: randint(a, b)
149
150 Return a random integer *N* such that ``a <= N <= b``.
151
152Functions for sequences:
153
154
155.. function:: choice(seq)
156
157 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
158 raises :exc:`IndexError`.
159
160
161.. function:: shuffle(x[, random])
162
163 Shuffle the sequence *x* in place. The optional argument *random* is a
164 0-argument function returning a random float in [0.0, 1.0); by default, this is
Georg Brandld6dd0e62016-02-19 08:57:23 +0100165 the function :func:`.random`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000166
167 Note that for even rather small ``len(x)``, the total number of permutations of
168 *x* is larger than the period of most random number generators; this implies
169 that most permutations of a long sequence can never be generated.
170
171
172.. function:: sample(population, k)
173
174 Return a *k* length list of unique elements chosen from the population sequence.
175 Used for random sampling without replacement.
176
177 .. versionadded:: 2.3
178
179 Returns a new list containing elements from the population while leaving the
180 original population unchanged. The resulting list is in selection order so that
181 all sub-slices will also be valid random samples. This allows raffle winners
182 (the sample) to be partitioned into grand prize and second place winners (the
183 subslices).
184
Georg Brandl7c3e79f2007-11-02 20:06:17 +0000185 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl8ec7f652007-08-15 14:28:01 +0000186 contains repeats, then each occurrence is a possible selection in the sample.
187
188 To choose a sample from a range of integers, use an :func:`xrange` object as an
189 argument. This is especially fast and space efficient for sampling from a large
190 population: ``sample(xrange(10000000), 60)``.
191
192The following functions generate specific real-valued distributions. Function
193parameters are named after the corresponding variables in the distribution's
194equation, as used in common mathematical practice; most of these equations can
195be found in any statistics text.
196
197
198.. function:: random()
199
200 Return the next random floating point number in the range [0.0, 1.0).
201
202
203.. function:: uniform(a, b)
204
Georg Brandl9f7fb842009-01-18 13:24:10 +0000205 Return a random floating point number *N* such that ``a <= N <= b`` for
206 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandlafeea072008-09-21 08:03:21 +0000207
Raymond Hettinger2c0cdca2009-06-11 23:14:53 +0000208 The end-point value ``b`` may or may not be included in the range
209 depending on floating-point rounding in the equation ``a + (b-a) * random()``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000210
Georg Brandl21c69b12011-09-17 20:36:28 +0200211
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000212.. function:: triangular(low, high, mode)
213
Georg Brandl9f7fb842009-01-18 13:24:10 +0000214 Return a random floating point number *N* such that ``low <= N <= high`` and
Raymond Hettingerd1452402008-03-24 06:07:49 +0000215 with the specified *mode* between those bounds. The *low* and *high* bounds
216 default to zero and one. The *mode* argument defaults to the midpoint
217 between the bounds, giving a symmetric distribution.
Raymond Hettingerc4f7bab2008-03-23 19:37:53 +0000218
Raymond Hettingerd1452402008-03-24 06:07:49 +0000219 .. versionadded:: 2.6
Raymond Hettingerc4f7bab2008-03-23 19:37:53 +0000220
Georg Brandl8ec7f652007-08-15 14:28:01 +0000221
222.. function:: betavariate(alpha, beta)
223
Georg Brandl9f7fb842009-01-18 13:24:10 +0000224 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
225 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226
227
228.. function:: expovariate(lambd)
229
Mark Dickinsone6dc5312009-01-07 17:48:33 +0000230 Exponential distribution. *lambd* is 1.0 divided by the desired
231 mean. It should be nonzero. (The parameter would be called
232 "lambda", but that is a reserved word in Python.) Returned values
233 range from 0 to positive infinity if *lambd* is positive, and from
234 negative infinity to 0 if *lambd* is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000235
236
237.. function:: gammavariate(alpha, beta)
238
Georg Brandl9f7fb842009-01-18 13:24:10 +0000239 Gamma distribution. (*Not* the gamma function!) Conditions on the
240 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000241
Georg Brandl21c69b12011-09-17 20:36:28 +0200242 The probability distribution function is::
243
244 x ** (alpha - 1) * math.exp(-x / beta)
245 pdf(x) = --------------------------------------
246 math.gamma(alpha) * beta ** alpha
247
Georg Brandl8ec7f652007-08-15 14:28:01 +0000248
249.. function:: gauss(mu, sigma)
250
Georg Brandl9f7fb842009-01-18 13:24:10 +0000251 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
252 deviation. This is slightly faster than the :func:`normalvariate` function
253 defined below.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000254
255
256.. function:: lognormvariate(mu, sigma)
257
258 Log normal distribution. If you take the natural logarithm of this
259 distribution, you'll get a normal distribution with mean *mu* and standard
260 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
261 zero.
262
263
264.. function:: normalvariate(mu, sigma)
265
266 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
267
268
269.. function:: vonmisesvariate(mu, kappa)
270
271 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
272 is the concentration parameter, which must be greater than or equal to zero. If
273 *kappa* is equal to zero, this distribution reduces to a uniform random angle
274 over the range 0 to 2\*\ *pi*.
275
276
277.. function:: paretovariate(alpha)
278
279 Pareto distribution. *alpha* is the shape parameter.
280
281
282.. function:: weibullvariate(alpha, beta)
283
284 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
285 parameter.
286
287
288Alternative Generators:
289
290.. class:: WichmannHill([seed])
291
292 Class that implements the Wichmann-Hill algorithm as the core generator. Has all
293 of the same methods as :class:`Random` plus the :meth:`whseed` method described
294 below. Because this class is implemented in pure Python, it is not threadsafe
295 and may require locks between calls. The period of the generator is
296 6,953,607,871,644 which is small enough to require care that two independent
297 random sequences do not overlap.
298
299
300.. function:: whseed([x])
301
302 This is obsolete, supplied for bit-level compatibility with versions of Python
303 prior to 2.1. See :func:`seed` for details. :func:`whseed` does not guarantee
304 that distinct integer arguments yield distinct internal states, and can yield no
305 more than about 2\*\*24 distinct internal states in all.
306
307
308.. class:: SystemRandom([seed])
309
310 Class that uses the :func:`os.urandom` function for generating random numbers
311 from sources provided by the operating system. Not available on all systems.
312 Does not rely on software state and sequences are not reproducible. Accordingly,
313 the :meth:`seed` and :meth:`jumpahead` methods have no effect and are ignored.
314 The :meth:`getstate` and :meth:`setstate` methods raise
315 :exc:`NotImplementedError` if called.
316
317 .. versionadded:: 2.4
318
319Examples of basic usage::
320
321 >>> random.random() # Random float x, 0.0 <= x < 1.0
322 0.37444887175646646
323 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
324 1.1800146073117523
325 >>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
326 7
327 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
328 26
329 >>> random.choice('abcdefghij') # Choose a random element
330 'c'
331
332 >>> items = [1, 2, 3, 4, 5, 6, 7]
333 >>> random.shuffle(items)
334 >>> items
335 [7, 3, 2, 5, 6, 4, 1]
336
337 >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
338 [4, 1, 5]
339
340
341
342.. seealso::
343
344 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
345 equidistributed uniform pseudorandom number generator", ACM Transactions on
Serhiy Storchaka0092bc72016-11-26 13:43:39 +0200346 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000347
348 Wichmann, B. A. & Hill, I. D., "Algorithm AS 183: An efficient and portable
349 pseudo-random number generator", Applied Statistics 31 (1982) 188-190.
350
Raymond Hettingerfff2f4b2009-04-01 20:50:58 +0000351 `Complementary-Multiply-with-Carry recipe
Andrew M. Kuchlinge9d35ef2009-04-02 00:02:14 +0000352 <http://code.activestate.com/recipes/576707/>`_ for a compatible alternative
353 random number generator with a long period and comparatively simple update
Raymond Hettingerfff2f4b2009-04-01 20:50:58 +0000354 operations.