blob: 73de35854bfbf5e135ca9f7b2a91d07e6e485d55 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
38 :const:`1.1` do not have an exact representation in binary floating point. End
39 users typically would not expect :const:`1.1` to display as
40 :const:`1.1000000000000001` as it does with binary floating point.
41
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
111 Specification <http://www2.hursley.ibm.com/decimal/decarith.html>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
196 1.3400000000000001
197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
333 If *value* is a :class:`tuple`, it should have three components, a sign
334 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
335 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000336 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000337
338 The *context* precision does not affect how many digits are stored. That is
339 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000340 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341 only three.
342
343 The purpose of the *context* argument is determining what to do if *value* is a
344 malformed string. If the context traps :const:`InvalidOperation`, an exception
345 is raised; otherwise, the constructor returns a new Decimal with the value of
346 :const:`NaN`.
347
348 Once constructed, :class:`Decimal` objects are immutable.
349
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000350 .. versionchanged:: 2.6
351 leading and trailing whitespace characters are permitted when
352 creating a Decimal instance from a string.
353
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000354 Decimal floating point objects share many properties with the other built-in
355 numeric types such as :class:`float` and :class:`int`. All of the usual math
356 operations and special methods apply. Likewise, decimal objects can be
357 copied, pickled, printed, used as dictionary keys, used as set elements,
358 compared, sorted, and coerced to another type (such as :class:`float` or
359 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000360
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000361 In addition to the standard numeric properties, decimal floating point
362 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000363
364
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000365 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 Return the adjusted exponent after shifting out the coefficient's
368 rightmost digits until only the lead digit remains:
369 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
370 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000371
372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000374
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000375 Return a :term:`named tuple` representation of the number:
376 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000377
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000378 .. versionchanged:: 2.6
379 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
381
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000382 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 Return the canonical encoding of the argument. Currently, the encoding of
385 a :class:`Decimal` instance is always canonical, so this operation returns
386 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000391
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000392 Compare the values of two Decimal instances. This operation behaves in
393 the same way as the usual comparison method :meth:`__cmp__`, except that
394 :meth:`compare` returns a Decimal instance rather than an integer, and if
395 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000396
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000397 a or b is a NaN ==> Decimal('NaN')
398 a < b ==> Decimal('-1')
399 a == b ==> Decimal('0')
400 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000403
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000404 This operation is identical to the :meth:`compare` method, except that all
405 NaNs signal. That is, if neither operand is a signaling NaN then any
406 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000411
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000412 Compare two operands using their abstract representation rather than their
413 numerical value. Similar to the :meth:`compare` method, but the result
414 gives a total ordering on :class:`Decimal` instances. Two
415 :class:`Decimal` instances with the same numeric value but different
416 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 >>> Decimal('12.0').compare_total(Decimal('12'))
419 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000420
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000421 Quiet and signaling NaNs are also included in the total ordering. The
422 result of this function is ``Decimal('0')`` if both operands have the same
423 representation, ``Decimal('-1')`` if the first operand is lower in the
424 total order than the second, and ``Decimal('1')`` if the first operand is
425 higher in the total order than the second operand. See the specification
426 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000427
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000428 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000429
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000430 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000431
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000432 Compare two operands using their abstract representation rather than their
433 value as in :meth:`compare_total`, but ignoring the sign of each operand.
434 ``x.compare_total_mag(y)`` is equivalent to
435 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000439 .. method:: conjugate()
440
441 Just returns self, this method is only to comply with the Decimal
442 Specification.
443
444 .. versionadded:: 2.6
445
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000446 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000447
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000448 Return the absolute value of the argument. This operation is unaffected
449 by the context and is quiet: no flags are changed and no rounding is
450 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000455
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000456 Return the negation of the argument. This operation is unaffected by the
457 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000458
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000459 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000460
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000461 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 Return a copy of the first operand with the sign set to be the same as the
464 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000465
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000466 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
467 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 This operation is unaffected by the context and is quiet: no flags are
470 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000473
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000474 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000475
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000476 Return the value of the (natural) exponential function ``e**x`` at the
477 given number. The result is correctly rounded using the
478 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 >>> Decimal(1).exp()
481 Decimal('2.718281828459045235360287471')
482 >>> Decimal(321).exp()
483 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000484
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000485 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000487 .. method:: from_float(f)
488
489 Classmethod that converts a float to a decimal number, exactly.
490
491 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
492 Since 0.1 is not exactly representable in binary floating point, the
493 value is stored as the nearest representable value which is
494 `0x1.999999999999ap-4`. That equivalent value in decimal is
495 `0.1000000000000000055511151231257827021181583404541015625`.
496
497 .. doctest::
498
499 >>> Decimal.from_float(0.1)
500 Decimal('0.1000000000000000055511151231257827021181583404541015625')
501 >>> Decimal.from_float(float('nan'))
502 Decimal('NaN')
503 >>> Decimal.from_float(float('inf'))
504 Decimal('Infinity')
505 >>> Decimal.from_float(float('-inf'))
506 Decimal('-Infinity')
507
508 .. versionadded:: 2.7
509
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000510 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000511
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000512 Fused multiply-add. Return self*other+third with no rounding of the
513 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000514
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000515 >>> Decimal(2).fma(3, 5)
516 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000521
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000522 Return :const:`True` if the argument is canonical and :const:`False`
523 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
524 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000525
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000526 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000527
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000528 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000529
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000530 Return :const:`True` if the argument is a finite number, and
531 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000532
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000533 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000534
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000535 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000536
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000537 Return :const:`True` if the argument is either positive or negative
538 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000539
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000540 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000541
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000542 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000543
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000544 Return :const:`True` if the argument is a (quiet or signaling) NaN and
545 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000546
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000547 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000548
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000549 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000550
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000551 Return :const:`True` if the argument is a *normal* finite number. Return
552 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000553
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000554 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000555
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000556 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000557
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000558 Return :const:`True` if the argument is a quiet NaN, and
559 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000560
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000561 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000562
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000563 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000564
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000565 Return :const:`True` if the argument has a negative sign and
566 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000569
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000570 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000571
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000572 Return :const:`True` if the argument is a signaling NaN and :const:`False`
573 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000574
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000575 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000576
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000577 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000578
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000579 Return :const:`True` if the argument is subnormal, and :const:`False`
580 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000581
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000582 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000583
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000584 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 Return :const:`True` if the argument is a (positive or negative) zero and
587 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000588
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000589 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000590
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000591 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000592
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000593 Return the natural (base e) logarithm of the operand. The result is
594 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000595
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000596 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000597
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000598 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000599
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000600 Return the base ten logarithm of the operand. The result is correctly
601 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000602
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000603 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000604
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000605 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000606
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000607 For a nonzero number, return the adjusted exponent of its operand as a
608 :class:`Decimal` instance. If the operand is a zero then
609 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
610 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
611 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000612
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000613 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000614
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000615 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 :meth:`logical_and` is a logical operation which takes two *logical
618 operands* (see :ref:`logical_operands_label`). The result is the
619 digit-wise ``and`` of the two operands.
620
621 .. versionadded:: 2.6
622
623 .. method:: logical_invert(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000624
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000625 :meth:`logical_invert` is a logical operation. The argument must
626 be a *logical operand* (see :ref:`logical_operands_label`). The
627 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000628
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000629 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 :meth:`logical_or` is a logical operation which takes two *logical
634 operands* (see :ref:`logical_operands_label`). The result is the
635 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000636
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000637 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000638
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000639 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000640
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000641 :meth:`logical_xor` is a logical operation which takes two *logical
642 operands* (see :ref:`logical_operands_label`). The result is the
643 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000644
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000645 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000646
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000647 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000648
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000649 Like ``max(self, other)`` except that the context rounding rule is applied
650 before returning and that :const:`NaN` values are either signaled or
651 ignored (depending on the context and whether they are signaling or
652 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000653
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000654 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000655
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000656 Similar to the :meth:`max` method, but the comparison is done using the
657 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000658
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000659 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000660
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000661 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000662
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000663 Like ``min(self, other)`` except that the context rounding rule is applied
664 before returning and that :const:`NaN` values are either signaled or
665 ignored (depending on the context and whether they are signaling or
666 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000667
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000669
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000670 Similar to the :meth:`min` method, but the comparison is done using the
671 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000672
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000673 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000674
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000675 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 Return the largest number representable in the given context (or in the
678 current thread's context if no context is given) that is smaller than the
679 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000680
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000681 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000682
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000683 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000684
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000685 Return the smallest number representable in the given context (or in the
686 current thread's context if no context is given) that is larger than the
687 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000688
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000689 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000690
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000691 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000692
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000693 If the two operands are unequal, return the number closest to the first
694 operand in the direction of the second operand. If both operands are
695 numerically equal, return a copy of the first operand with the sign set to
696 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000697
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000698 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 Normalize the number by stripping the rightmost trailing zeros and
703 converting any result equal to :const:`Decimal('0')` to
704 :const:`Decimal('0e0')`. Used for producing canonical values for members
705 of an equivalence class. For example, ``Decimal('32.100')`` and
706 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
707 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000710
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000711 Return a string describing the *class* of the operand. The returned value
712 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000713
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000714 * ``"-Infinity"``, indicating that the operand is negative infinity.
715 * ``"-Normal"``, indicating that the operand is a negative normal number.
716 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
717 * ``"-Zero"``, indicating that the operand is a negative zero.
718 * ``"+Zero"``, indicating that the operand is a positive zero.
719 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
720 * ``"+Normal"``, indicating that the operand is a positive normal number.
721 * ``"+Infinity"``, indicating that the operand is positive infinity.
722 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
723 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000724
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000725 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000726
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000727 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000728
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000729 Return a value equal to the first operand after rounding and having the
730 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000731
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000732 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
733 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000734
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000735 Unlike other operations, if the length of the coefficient after the
736 quantize operation would be greater than precision, then an
737 :const:`InvalidOperation` is signaled. This guarantees that, unless there
738 is an error condition, the quantized exponent is always equal to that of
739 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 Also unlike other operations, quantize never signals Underflow, even if
742 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000743
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000744 If the exponent of the second operand is larger than that of the first
745 then rounding may be necessary. In this case, the rounding mode is
746 determined by the ``rounding`` argument if given, else by the given
747 ``context`` argument; if neither argument is given the rounding mode of
748 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 If *watchexp* is set (default), then an error is returned whenever the
751 resulting exponent is greater than :attr:`Emax` or less than
752 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000753
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000754 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000755
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000756 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
757 class does all its arithmetic. Included for compatibility with the
758 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000759
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000760 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000761
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000762 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000763
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000764 Compute the modulo as either a positive or negative value depending on
765 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
766 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000767
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000768 If both are equally close, the one chosen will have the same sign as
769 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000770
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000771 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000772
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000773 Return the result of rotating the digits of the first operand by an amount
774 specified by the second operand. The second operand must be an integer in
775 the range -precision through precision. The absolute value of the second
776 operand gives the number of places to rotate. If the second operand is
777 positive then rotation is to the left; otherwise rotation is to the right.
778 The coefficient of the first operand is padded on the left with zeros to
779 length precision if necessary. The sign and exponent of the first operand
780 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000783
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000784 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000785
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000786 Test whether self and other have the same exponent or whether both are
787 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000788
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000789 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000790
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000791 Return the first operand with exponent adjusted by the second.
792 Equivalently, return the first operand multiplied by ``10**other``. The
793 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000796
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000797 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000798
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000799 Return the result of shifting the digits of the first operand by an amount
800 specified by the second operand. The second operand must be an integer in
801 the range -precision through precision. The absolute value of the second
802 operand gives the number of places to shift. If the second operand is
803 positive then the shift is to the left; otherwise the shift is to the
804 right. Digits shifted into the coefficient are zeros. The sign and
805 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000806
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000807 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000808
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000809 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000810
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000811 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000812
813
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000814 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000815
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000816 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000817
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000818 Engineering notation has an exponent which is a multiple of 3, so there
819 are up to 3 digits left of the decimal place. For example, converts
820 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000821
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000822 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000823
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000824 Identical to the :meth:`to_integral_value` method. The ``to_integral``
825 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000826
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000827 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000828
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000829 Round to the nearest integer, signaling :const:`Inexact` or
830 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
831 determined by the ``rounding`` parameter if given, else by the given
832 ``context``. If neither parameter is given then the rounding mode of the
833 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000834
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000835 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000836
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000837 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000838
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000839 Round to the nearest integer without signaling :const:`Inexact` or
840 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
841 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000842
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000843 .. versionchanged:: 2.6
844 renamed from ``to_integral`` to ``to_integral_value``. The old name
845 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000846
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000847.. _logical_operands_label:
848
849Logical operands
850^^^^^^^^^^^^^^^^
851
852The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
853and :meth:`logical_xor` methods expect their arguments to be *logical
854operands*. A *logical operand* is a :class:`Decimal` instance whose
855exponent and sign are both zero, and whose digits are all either
856:const:`0` or :const:`1`.
857
Georg Brandlb19be572007-12-29 10:57:00 +0000858.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000859
860
861.. _decimal-context:
862
863Context objects
864---------------
865
866Contexts are environments for arithmetic operations. They govern precision, set
867rules for rounding, determine which signals are treated as exceptions, and limit
868the range for exponents.
869
870Each thread has its own current context which is accessed or changed using the
871:func:`getcontext` and :func:`setcontext` functions:
872
873
874.. function:: getcontext()
875
876 Return the current context for the active thread.
877
878
879.. function:: setcontext(c)
880
881 Set the current context for the active thread to *c*.
882
883Beginning with Python 2.5, you can also use the :keyword:`with` statement and
884the :func:`localcontext` function to temporarily change the active context.
885
886
887.. function:: localcontext([c])
888
889 Return a context manager that will set the current context for the active thread
890 to a copy of *c* on entry to the with-statement and restore the previous context
891 when exiting the with-statement. If no context is specified, a copy of the
892 current context is used.
893
894 .. versionadded:: 2.5
895
896 For example, the following code sets the current decimal precision to 42 places,
897 performs a calculation, and then automatically restores the previous context::
898
Georg Brandl8ec7f652007-08-15 14:28:01 +0000899 from decimal import localcontext
900
901 with localcontext() as ctx:
902 ctx.prec = 42 # Perform a high precision calculation
903 s = calculate_something()
904 s = +s # Round the final result back to the default precision
905
906New contexts can also be created using the :class:`Context` constructor
907described below. In addition, the module provides three pre-made contexts:
908
909
910.. class:: BasicContext
911
912 This is a standard context defined by the General Decimal Arithmetic
913 Specification. Precision is set to nine. Rounding is set to
914 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
915 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
916 :const:`Subnormal`.
917
918 Because many of the traps are enabled, this context is useful for debugging.
919
920
921.. class:: ExtendedContext
922
923 This is a standard context defined by the General Decimal Arithmetic
924 Specification. Precision is set to nine. Rounding is set to
925 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
926 exceptions are not raised during computations).
927
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000928 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000929 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
930 raising exceptions. This allows an application to complete a run in the
931 presence of conditions that would otherwise halt the program.
932
933
934.. class:: DefaultContext
935
936 This context is used by the :class:`Context` constructor as a prototype for new
937 contexts. Changing a field (such a precision) has the effect of changing the
938 default for new contexts creating by the :class:`Context` constructor.
939
940 This context is most useful in multi-threaded environments. Changing one of the
941 fields before threads are started has the effect of setting system-wide
942 defaults. Changing the fields after threads have started is not recommended as
943 it would require thread synchronization to prevent race conditions.
944
945 In single threaded environments, it is preferable to not use this context at
946 all. Instead, simply create contexts explicitly as described below.
947
948 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
949 for Overflow, InvalidOperation, and DivisionByZero.
950
951In addition to the three supplied contexts, new contexts can be created with the
952:class:`Context` constructor.
953
954
955.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
956
957 Creates a new context. If a field is not specified or is :const:`None`, the
958 default values are copied from the :const:`DefaultContext`. If the *flags*
959 field is not specified or is :const:`None`, all flags are cleared.
960
961 The *prec* field is a positive integer that sets the precision for arithmetic
962 operations in the context.
963
964 The *rounding* option is one of:
965
966 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
967 * :const:`ROUND_DOWN` (towards zero),
968 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
969 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
970 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
971 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
972 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000973 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000974 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000975
976 The *traps* and *flags* fields list any signals to be set. Generally, new
977 contexts should only set traps and leave the flags clear.
978
979 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
980 for exponents.
981
982 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
983 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
984 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
985
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000986 .. versionchanged:: 2.6
987 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000988
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000989 The :class:`Context` class defines several general purpose methods as well as
990 a large number of methods for doing arithmetic directly in a given context.
991 In addition, for each of the :class:`Decimal` methods described above (with
992 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
993 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
994 equivalent to ``x.exp(context=C)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000995
996
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000997 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000998
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000999 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001000
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001001 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001002
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001003 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001004
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001005 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001006
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001007 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001008
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001009 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001010
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001011 Creates a new Decimal instance from *num* but using *self* as
1012 context. Unlike the :class:`Decimal` constructor, the context precision,
1013 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001014
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001015 This is useful because constants are often given to a greater precision
1016 than is needed by the application. Another benefit is that rounding
1017 immediately eliminates unintended effects from digits beyond the current
1018 precision. In the following example, using unrounded inputs means that
1019 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001020
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001021 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001022
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001023 >>> getcontext().prec = 3
1024 >>> Decimal('3.4445') + Decimal('1.0023')
1025 Decimal('4.45')
1026 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1027 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001028
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001029 This method implements the to-number operation of the IBM specification.
1030 If the argument is a string, no leading or trailing whitespace is
1031 permitted.
1032
Georg Brandlaa5bb322009-01-03 19:44:48 +00001033 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001034
1035 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001036 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001037 the context precision, rounding method, flags, and traps are applied to
1038 the conversion.
1039
1040 .. doctest::
1041
Georg Brandlaa5bb322009-01-03 19:44:48 +00001042 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1043 >>> context.create_decimal_from_float(math.pi)
1044 Decimal('3.1415')
1045 >>> context = Context(prec=5, traps=[Inexact])
1046 >>> context.create_decimal_from_float(math.pi)
1047 Traceback (most recent call last):
1048 ...
1049 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001050
1051 .. versionadded:: 2.7
1052
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001053 .. method:: Etiny()
1054
1055 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1056 value for subnormal results. When underflow occurs, the exponent is set
1057 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001058
1059
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001060 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001061
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001062 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001063
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001064 The usual approach to working with decimals is to create :class:`Decimal`
1065 instances and then apply arithmetic operations which take place within the
1066 current context for the active thread. An alternative approach is to use
1067 context methods for calculating within a specific context. The methods are
1068 similar to those for the :class:`Decimal` class and are only briefly
1069 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001070
1071
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001072 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001073
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001074 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001075
1076
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001077 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001078
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001079 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001080
1081
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001082 .. method:: canonical(x)
1083
1084 Returns the same Decimal object *x*.
1085
1086
1087 .. method:: compare(x, y)
1088
1089 Compares *x* and *y* numerically.
1090
1091
1092 .. method:: compare_signal(x, y)
1093
1094 Compares the values of the two operands numerically.
1095
1096
1097 .. method:: compare_total(x, y)
1098
1099 Compares two operands using their abstract representation.
1100
1101
1102 .. method:: compare_total_mag(x, y)
1103
1104 Compares two operands using their abstract representation, ignoring sign.
1105
1106
1107 .. method:: copy_abs(x)
1108
1109 Returns a copy of *x* with the sign set to 0.
1110
1111
1112 .. method:: copy_negate(x)
1113
1114 Returns a copy of *x* with the sign inverted.
1115
1116
1117 .. method:: copy_sign(x, y)
1118
1119 Copies the sign from *y* to *x*.
1120
1121
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001122 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001123
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001124 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001125
1126
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001127 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001128
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001129 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001130
1131
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001132 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001133
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001134 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001135
1136
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001137 .. method:: exp(x)
1138
1139 Returns `e ** x`.
1140
1141
1142 .. method:: fma(x, y, z)
1143
1144 Returns *x* multiplied by *y*, plus *z*.
1145
1146
1147 .. method:: is_canonical(x)
1148
1149 Returns True if *x* is canonical; otherwise returns False.
1150
1151
1152 .. method:: is_finite(x)
1153
1154 Returns True if *x* is finite; otherwise returns False.
1155
1156
1157 .. method:: is_infinite(x)
1158
1159 Returns True if *x* is infinite; otherwise returns False.
1160
1161
1162 .. method:: is_nan(x)
1163
1164 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1165
1166
1167 .. method:: is_normal(x)
1168
1169 Returns True if *x* is a normal number; otherwise returns False.
1170
1171
1172 .. method:: is_qnan(x)
1173
1174 Returns True if *x* is a quiet NaN; otherwise returns False.
1175
1176
1177 .. method:: is_signed(x)
1178
1179 Returns True if *x* is negative; otherwise returns False.
1180
1181
1182 .. method:: is_snan(x)
1183
1184 Returns True if *x* is a signaling NaN; otherwise returns False.
1185
1186
1187 .. method:: is_subnormal(x)
1188
1189 Returns True if *x* is subnormal; otherwise returns False.
1190
1191
1192 .. method:: is_zero(x)
1193
1194 Returns True if *x* is a zero; otherwise returns False.
1195
1196
1197 .. method:: ln(x)
1198
1199 Returns the natural (base e) logarithm of *x*.
1200
1201
1202 .. method:: log10(x)
1203
1204 Returns the base 10 logarithm of *x*.
1205
1206
1207 .. method:: logb(x)
1208
1209 Returns the exponent of the magnitude of the operand's MSD.
1210
1211
1212 .. method:: logical_and(x, y)
1213
Georg Brandle92818f2009-01-03 20:47:01 +00001214 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001215
1216
1217 .. method:: logical_invert(x)
1218
1219 Invert all the digits in *x*.
1220
1221
1222 .. method:: logical_or(x, y)
1223
Georg Brandle92818f2009-01-03 20:47:01 +00001224 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001225
1226
1227 .. method:: logical_xor(x, y)
1228
Georg Brandle92818f2009-01-03 20:47:01 +00001229 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001230
1231
1232 .. method:: max(x, y)
1233
1234 Compares two values numerically and returns the maximum.
1235
1236
1237 .. method:: max_mag(x, y)
1238
1239 Compares the values numerically with their sign ignored.
1240
1241
1242 .. method:: min(x, y)
1243
1244 Compares two values numerically and returns the minimum.
1245
1246
1247 .. method:: min_mag(x, y)
1248
1249 Compares the values numerically with their sign ignored.
1250
1251
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001252 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001253
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001254 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001255
1256
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001257 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001258
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001259 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001260
1261
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001262 .. method:: next_minus(x)
1263
1264 Returns the largest representable number smaller than *x*.
1265
1266
1267 .. method:: next_plus(x)
1268
1269 Returns the smallest representable number larger than *x*.
1270
1271
1272 .. method:: next_toward(x, y)
1273
1274 Returns the number closest to *x*, in direction towards *y*.
1275
1276
1277 .. method:: normalize(x)
1278
1279 Reduces *x* to its simplest form.
1280
1281
1282 .. method:: number_class(x)
1283
1284 Returns an indication of the class of *x*.
1285
1286
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001287 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001288
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001289 Plus corresponds to the unary prefix plus operator in Python. This
1290 operation applies the context precision and rounding, so it is *not* an
1291 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001292
1293
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001294 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001295
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001296 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001297
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001298 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1299 must be integral. The result will be inexact unless ``y`` is integral and
1300 the result is finite and can be expressed exactly in 'precision' digits.
1301 The result should always be correctly rounded, using the rounding mode of
1302 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001303
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001304 With three arguments, compute ``(x**y) % modulo``. For the three argument
1305 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001306
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001307 - all three arguments must be integral
1308 - ``y`` must be nonnegative
1309 - at least one of ``x`` or ``y`` must be nonzero
1310 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001311
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001312 The result of ``Context.power(x, y, modulo)`` is identical to the result
1313 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1314 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001315
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001316 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001317 ``y`` may now be nonintegral in ``x**y``.
1318 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001319
1320
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001321 .. method:: quantize(x, y)
1322
1323 Returns a value equal to *x* (rounded), having the exponent of *y*.
1324
1325
1326 .. method:: radix()
1327
1328 Just returns 10, as this is Decimal, :)
1329
1330
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001331 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001332
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001333 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001334
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001335 The sign of the result, if non-zero, is the same as that of the original
1336 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001337
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001338 .. method:: remainder_near(x, y)
1339
Georg Brandle92818f2009-01-03 20:47:01 +00001340 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1341 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001342
1343
1344 .. method:: rotate(x, y)
1345
1346 Returns a rotated copy of *x*, *y* times.
1347
1348
1349 .. method:: same_quantum(x, y)
1350
1351 Returns True if the two operands have the same exponent.
1352
1353
1354 .. method:: scaleb (x, y)
1355
1356 Returns the first operand after adding the second value its exp.
1357
1358
1359 .. method:: shift(x, y)
1360
1361 Returns a shifted copy of *x*, *y* times.
1362
1363
1364 .. method:: sqrt(x)
1365
1366 Square root of a non-negative number to context precision.
1367
1368
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001369 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001370
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001371 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001372
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001373
1374 .. method:: to_eng_string(x)
1375
1376 Converts a number to a string, using scientific notation.
1377
1378
1379 .. method:: to_integral_exact(x)
1380
1381 Rounds to an integer.
1382
1383
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001384 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001385
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001386 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001387
Georg Brandlb19be572007-12-29 10:57:00 +00001388.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001389
1390
1391.. _decimal-signals:
1392
1393Signals
1394-------
1395
1396Signals represent conditions that arise during computation. Each corresponds to
1397one context flag and one context trap enabler.
1398
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001399The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001400computation, flags may be checked for informational purposes (for instance, to
1401determine whether a computation was exact). After checking the flags, be sure to
1402clear all flags before starting the next computation.
1403
1404If the context's trap enabler is set for the signal, then the condition causes a
1405Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1406is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1407condition.
1408
1409
1410.. class:: Clamped
1411
1412 Altered an exponent to fit representation constraints.
1413
1414 Typically, clamping occurs when an exponent falls outside the context's
1415 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001416 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001417
1418
1419.. class:: DecimalException
1420
1421 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1422
1423
1424.. class:: DivisionByZero
1425
1426 Signals the division of a non-infinite number by zero.
1427
1428 Can occur with division, modulo division, or when raising a number to a negative
1429 power. If this signal is not trapped, returns :const:`Infinity` or
1430 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1431
1432
1433.. class:: Inexact
1434
1435 Indicates that rounding occurred and the result is not exact.
1436
1437 Signals when non-zero digits were discarded during rounding. The rounded result
1438 is returned. The signal flag or trap is used to detect when results are
1439 inexact.
1440
1441
1442.. class:: InvalidOperation
1443
1444 An invalid operation was performed.
1445
1446 Indicates that an operation was requested that does not make sense. If not
1447 trapped, returns :const:`NaN`. Possible causes include::
1448
1449 Infinity - Infinity
1450 0 * Infinity
1451 Infinity / Infinity
1452 x % 0
1453 Infinity % x
1454 x._rescale( non-integer )
1455 sqrt(-x) and x > 0
1456 0 ** 0
1457 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001458 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001459
1460
1461.. class:: Overflow
1462
1463 Numerical overflow.
1464
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001465 Indicates the exponent is larger than :attr:`Emax` after rounding has
1466 occurred. If not trapped, the result depends on the rounding mode, either
1467 pulling inward to the largest representable finite number or rounding outward
1468 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1469 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001470
1471
1472.. class:: Rounded
1473
1474 Rounding occurred though possibly no information was lost.
1475
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001476 Signaled whenever rounding discards digits; even if those digits are zero
1477 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1478 the result unchanged. This signal is used to detect loss of significant
1479 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001480
1481
1482.. class:: Subnormal
1483
1484 Exponent was lower than :attr:`Emin` prior to rounding.
1485
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001486 Occurs when an operation result is subnormal (the exponent is too small). If
1487 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001488
1489
1490.. class:: Underflow
1491
1492 Numerical underflow with result rounded to zero.
1493
1494 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1495 and :class:`Subnormal` are also signaled.
1496
1497The following table summarizes the hierarchy of signals::
1498
1499 exceptions.ArithmeticError(exceptions.StandardError)
1500 DecimalException
1501 Clamped
1502 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1503 Inexact
1504 Overflow(Inexact, Rounded)
1505 Underflow(Inexact, Rounded, Subnormal)
1506 InvalidOperation
1507 Rounded
1508 Subnormal
1509
Georg Brandlb19be572007-12-29 10:57:00 +00001510.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001511
1512
1513.. _decimal-notes:
1514
1515Floating Point Notes
1516--------------------
1517
1518
1519Mitigating round-off error with increased precision
1520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1521
1522The use of decimal floating point eliminates decimal representation error
1523(making it possible to represent :const:`0.1` exactly); however, some operations
1524can still incur round-off error when non-zero digits exceed the fixed precision.
1525
1526The effects of round-off error can be amplified by the addition or subtraction
1527of nearly offsetting quantities resulting in loss of significance. Knuth
1528provides two instructive examples where rounded floating point arithmetic with
1529insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001530properties of addition:
1531
1532.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001533
1534 # Examples from Seminumerical Algorithms, Section 4.2.2.
1535 >>> from decimal import Decimal, getcontext
1536 >>> getcontext().prec = 8
1537
1538 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1539 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001540 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001541 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001542 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001543
1544 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1545 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001546 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001547 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001548 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001549
1550The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001551expanding the precision sufficiently to avoid loss of significance:
1552
1553.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001554
1555 >>> getcontext().prec = 20
1556 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1557 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001558 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001559 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001560 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001561 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001562 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1563 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001564 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001565 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001566 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001567
1568
1569Special values
1570^^^^^^^^^^^^^^
1571
1572The number system for the :mod:`decimal` module provides special values
1573including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001574and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001575
1576Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1577they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1578not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1579can result from rounding beyond the limits of the largest representable number.
1580
1581The infinities are signed (affine) and can be used in arithmetic operations
1582where they get treated as very large, indeterminate numbers. For instance,
1583adding a constant to infinity gives another infinite result.
1584
1585Some operations are indeterminate and return :const:`NaN`, or if the
1586:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1587``0/0`` returns :const:`NaN` which means "not a number". This variety of
1588:const:`NaN` is quiet and, once created, will flow through other computations
1589always resulting in another :const:`NaN`. This behavior can be useful for a
1590series of computations that occasionally have missing inputs --- it allows the
1591calculation to proceed while flagging specific results as invalid.
1592
1593A variant is :const:`sNaN` which signals rather than remaining quiet after every
1594operation. This is a useful return value when an invalid result needs to
1595interrupt a calculation for special handling.
1596
Mark Dickinson2fc92632008-02-06 22:10:50 +00001597The behavior of Python's comparison operators can be a little surprising where a
1598:const:`NaN` is involved. A test for equality where one of the operands is a
1599quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1600``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001601:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001602``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1603if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001604not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001605specify the behavior of direct comparisons; these rules for comparisons
1606involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1607section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001608and :meth:`compare-signal` methods instead.
1609
Georg Brandl8ec7f652007-08-15 14:28:01 +00001610The signed zeros can result from calculations that underflow. They keep the sign
1611that would have resulted if the calculation had been carried out to greater
1612precision. Since their magnitude is zero, both positive and negative zeros are
1613treated as equal and their sign is informational.
1614
1615In addition to the two signed zeros which are distinct yet equal, there are
1616various representations of zero with differing precisions yet equivalent in
1617value. This takes a bit of getting used to. For an eye accustomed to
1618normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001619the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001620
1621 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001622 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001623
Georg Brandlb19be572007-12-29 10:57:00 +00001624.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001625
1626
1627.. _decimal-threads:
1628
1629Working with threads
1630--------------------
1631
1632The :func:`getcontext` function accesses a different :class:`Context` object for
1633each thread. Having separate thread contexts means that threads may make
1634changes (such as ``getcontext.prec=10``) without interfering with other threads.
1635
1636Likewise, the :func:`setcontext` function automatically assigns its target to
1637the current thread.
1638
1639If :func:`setcontext` has not been called before :func:`getcontext`, then
1640:func:`getcontext` will automatically create a new context for use in the
1641current thread.
1642
1643The new context is copied from a prototype context called *DefaultContext*. To
1644control the defaults so that each thread will use the same values throughout the
1645application, directly modify the *DefaultContext* object. This should be done
1646*before* any threads are started so that there won't be a race condition between
1647threads calling :func:`getcontext`. For example::
1648
1649 # Set applicationwide defaults for all threads about to be launched
1650 DefaultContext.prec = 12
1651 DefaultContext.rounding = ROUND_DOWN
1652 DefaultContext.traps = ExtendedContext.traps.copy()
1653 DefaultContext.traps[InvalidOperation] = 1
1654 setcontext(DefaultContext)
1655
1656 # Afterwards, the threads can be started
1657 t1.start()
1658 t2.start()
1659 t3.start()
1660 . . .
1661
Georg Brandlb19be572007-12-29 10:57:00 +00001662.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001663
1664
1665.. _decimal-recipes:
1666
1667Recipes
1668-------
1669
1670Here are a few recipes that serve as utility functions and that demonstrate ways
1671to work with the :class:`Decimal` class::
1672
1673 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1674 pos='', neg='-', trailneg=''):
1675 """Convert Decimal to a money formatted string.
1676
1677 places: required number of places after the decimal point
1678 curr: optional currency symbol before the sign (may be blank)
1679 sep: optional grouping separator (comma, period, space, or blank)
1680 dp: decimal point indicator (comma or period)
1681 only specify as blank when places is zero
1682 pos: optional sign for positive numbers: '+', space or blank
1683 neg: optional sign for negative numbers: '-', '(', space or blank
1684 trailneg:optional trailing minus indicator: '-', ')', space or blank
1685
1686 >>> d = Decimal('-1234567.8901')
1687 >>> moneyfmt(d, curr='$')
1688 '-$1,234,567.89'
1689 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1690 '1.234.568-'
1691 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1692 '($1,234,567.89)'
1693 >>> moneyfmt(Decimal(123456789), sep=' ')
1694 '123 456 789.00'
1695 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001696 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001697
1698 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001699 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001700 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001701 result = []
1702 digits = map(str, digits)
1703 build, next = result.append, digits.pop
1704 if sign:
1705 build(trailneg)
1706 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001707 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001708 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001709 if not digits:
1710 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001711 i = 0
1712 while digits:
1713 build(next())
1714 i += 1
1715 if i == 3 and digits:
1716 i = 0
1717 build(sep)
1718 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001719 build(neg if sign else pos)
1720 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001721
1722 def pi():
1723 """Compute Pi to the current precision.
1724
1725 >>> print pi()
1726 3.141592653589793238462643383
1727
1728 """
1729 getcontext().prec += 2 # extra digits for intermediate steps
1730 three = Decimal(3) # substitute "three=3.0" for regular floats
1731 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1732 while s != lasts:
1733 lasts = s
1734 n, na = n+na, na+8
1735 d, da = d+da, da+32
1736 t = (t * n) / d
1737 s += t
1738 getcontext().prec -= 2
1739 return +s # unary plus applies the new precision
1740
1741 def exp(x):
1742 """Return e raised to the power of x. Result type matches input type.
1743
1744 >>> print exp(Decimal(1))
1745 2.718281828459045235360287471
1746 >>> print exp(Decimal(2))
1747 7.389056098930650227230427461
1748 >>> print exp(2.0)
1749 7.38905609893
1750 >>> print exp(2+0j)
1751 (7.38905609893+0j)
1752
1753 """
1754 getcontext().prec += 2
1755 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1756 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001757 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001758 i += 1
1759 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001760 num *= x
1761 s += num / fact
1762 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001763 return +s
1764
1765 def cos(x):
1766 """Return the cosine of x as measured in radians.
1767
1768 >>> print cos(Decimal('0.5'))
1769 0.8775825618903727161162815826
1770 >>> print cos(0.5)
1771 0.87758256189
1772 >>> print cos(0.5+0j)
1773 (0.87758256189+0j)
1774
1775 """
1776 getcontext().prec += 2
1777 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1778 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001779 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001780 i += 2
1781 fact *= i * (i-1)
1782 num *= x * x
1783 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001784 s += num / fact * sign
1785 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001786 return +s
1787
1788 def sin(x):
1789 """Return the sine of x as measured in radians.
1790
1791 >>> print sin(Decimal('0.5'))
1792 0.4794255386042030002732879352
1793 >>> print sin(0.5)
1794 0.479425538604
1795 >>> print sin(0.5+0j)
1796 (0.479425538604+0j)
1797
1798 """
1799 getcontext().prec += 2
1800 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1801 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001802 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001803 i += 2
1804 fact *= i * (i-1)
1805 num *= x * x
1806 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001807 s += num / fact * sign
1808 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001809 return +s
1810
1811
Georg Brandlb19be572007-12-29 10:57:00 +00001812.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001813
1814
1815.. _decimal-faq:
1816
1817Decimal FAQ
1818-----------
1819
1820Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1821minimize typing when using the interactive interpreter?
1822
Georg Brandl9f662322008-03-22 11:47:10 +00001823A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001824
1825 >>> D = decimal.Decimal
1826 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001827 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001828
1829Q. In a fixed-point application with two decimal places, some inputs have many
1830places and need to be rounded. Others are not supposed to have excess digits
1831and need to be validated. What methods should be used?
1832
1833A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001834the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001835
1836 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1837
1838 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001839 >>> Decimal('3.214').quantize(TWOPLACES)
1840 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001841
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001842 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001843 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1844 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001845
Raymond Hettingerabe32372008-02-14 02:41:22 +00001846 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001847 Traceback (most recent call last):
1848 ...
Georg Brandl9f662322008-03-22 11:47:10 +00001849 Inexact
Georg Brandl8ec7f652007-08-15 14:28:01 +00001850
1851Q. Once I have valid two place inputs, how do I maintain that invariant
1852throughout an application?
1853
Raymond Hettinger46314812008-02-14 10:46:57 +00001854A. Some operations like addition, subtraction, and multiplication by an integer
1855will automatically preserve fixed point. Others operations, like division and
1856non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001857be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001858
1859 >>> a = Decimal('102.72') # Initial fixed-point values
1860 >>> b = Decimal('3.17')
1861 >>> a + b # Addition preserves fixed-point
1862 Decimal('105.89')
1863 >>> a - b
1864 Decimal('99.55')
1865 >>> a * 42 # So does integer multiplication
1866 Decimal('4314.24')
1867 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1868 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001869 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001870 Decimal('0.03')
1871
1872In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001873to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001874
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001875 >>> def mul(x, y, fp=TWOPLACES):
1876 ... return (x * y).quantize(fp)
1877 >>> def div(x, y, fp=TWOPLACES):
1878 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001879
Raymond Hettinger46314812008-02-14 10:46:57 +00001880 >>> mul(a, b) # Automatically preserve fixed-point
1881 Decimal('325.62')
1882 >>> div(b, a)
1883 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001884
1885Q. There are many ways to express the same value. The numbers :const:`200`,
1886:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1887various precisions. Is there a way to transform them to a single recognizable
1888canonical value?
1889
1890A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001891representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001892
1893 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1894 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001895 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001896
1897Q. Some decimal values always print with exponential notation. Is there a way
1898to get a non-exponential representation?
1899
1900A. For some values, exponential notation is the only way to express the number
1901of significant places in the coefficient. For example, expressing
1902:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1903original's two-place significance.
1904
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001905If an application does not care about tracking significance, it is easy to
Georg Brandl907a7202008-02-22 12:31:45 +00001906remove the exponent and trailing zeroes, losing significance, but keeping the
Georg Brandl9f662322008-03-22 11:47:10 +00001907value unchanged:
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001908
1909 >>> def remove_exponent(d):
1910 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1911
1912 >>> remove_exponent(Decimal('5E+3'))
1913 Decimal('5000')
1914
Georg Brandl8ec7f652007-08-15 14:28:01 +00001915Q. Is there a way to convert a regular float to a :class:`Decimal`?
1916
1917A. Yes, all binary floating point numbers can be exactly expressed as a
1918Decimal. An exact conversion may take more precision than intuition would
Georg Brandl9f662322008-03-22 11:47:10 +00001919suggest, so we trap :const:`Inexact` to signal a need for more precision:
1920
Georg Brandl838b4b02008-03-22 13:07:06 +00001921.. testcode::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001922
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001923 def float_to_decimal(f):
1924 "Convert a floating point number to a Decimal with no loss of information"
1925 n, d = f.as_integer_ratio()
1926 with localcontext() as ctx:
1927 ctx.traps[Inexact] = True
1928 while True:
1929 try:
1930 return Decimal(n) / Decimal(d)
1931 except Inexact:
1932 ctx.prec += 1
Georg Brandl8ec7f652007-08-15 14:28:01 +00001933
Georg Brandl838b4b02008-03-22 13:07:06 +00001934.. doctest::
Georg Brandl9f662322008-03-22 11:47:10 +00001935
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001936 >>> float_to_decimal(math.pi)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001937 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001938
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001939Q. Why isn't the :func:`float_to_decimal` routine included in the module?
Georg Brandl8ec7f652007-08-15 14:28:01 +00001940
1941A. There is some question about whether it is advisable to mix binary and
1942decimal floating point. Also, its use requires some care to avoid the
Georg Brandl9f662322008-03-22 11:47:10 +00001943representation issues associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001944
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001945 >>> float_to_decimal(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001946 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001947
1948Q. Within a complex calculation, how can I make sure that I haven't gotten a
1949spurious result because of insufficient precision or rounding anomalies.
1950
1951A. The decimal module makes it easy to test results. A best practice is to
1952re-run calculations using greater precision and with various rounding modes.
1953Widely differing results indicate insufficient precision, rounding mode issues,
1954ill-conditioned inputs, or a numerically unstable algorithm.
1955
1956Q. I noticed that context precision is applied to the results of operations but
1957not to the inputs. Is there anything to watch out for when mixing values of
1958different precisions?
1959
1960A. Yes. The principle is that all values are considered to be exact and so is
1961the arithmetic on those values. Only the results are rounded. The advantage
1962for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001963results can look odd if you forget that the inputs haven't been rounded:
1964
1965.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001966
1967 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001968 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001969 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001970 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001971 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001972
1973The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001974using the unary plus operation:
1975
1976.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001977
1978 >>> getcontext().prec = 3
1979 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001980 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001981
1982Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001983:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001984
1985 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001986 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001987