blob: 13d6e62eb70efe4e589a696e25d068bcee31a63a [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes6f341092008-04-18 23:13:07 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Michael W. Hudson9ef852c2005-04-06 13:05:18 +000056#include "longintrepr.h" /* just for SHIFT */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Neal Norwitz5f95a792008-01-25 08:04:16 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Tim Peters1d120612000-10-12 06:10:25 +000063/* Call is_error when errno != 0, and where x is the result libm
64 * returned. is_error will usually set up an exception and return
65 * true (1), but may return false (0) without setting up an exception.
66 */
67static int
68is_error(double x)
Guido van Rossum8832b621991-12-16 15:44:24 +000069{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +000070 int result = 1; /* presumption of guilt */
71 assert(errno); /* non-zero errno is a precondition for calling */
72 if (errno == EDOM)
73 PyErr_SetString(PyExc_ValueError, "math domain error");
Tim Petersa40c7932001-09-05 22:36:56 +000074
Antoine Pitrouc7c96a92010-05-09 15:15:40 +000075 else if (errno == ERANGE) {
76 /* ANSI C generally requires libm functions to set ERANGE
77 * on overflow, but also generally *allows* them to set
78 * ERANGE on underflow too. There's no consistency about
79 * the latter across platforms.
80 * Alas, C99 never requires that errno be set.
81 * Here we suppress the underflow errors (libm functions
82 * should return a zero on underflow, and +- HUGE_VAL on
83 * overflow, so testing the result for zero suffices to
84 * distinguish the cases).
85 *
86 * On some platforms (Ubuntu/ia64) it seems that errno can be
87 * set to ERANGE for subnormal results that do *not* underflow
88 * to zero. So to be safe, we'll ignore ERANGE whenever the
89 * function result is less than one in absolute value.
90 */
91 if (fabs(x) < 1.0)
92 result = 0;
93 else
94 PyErr_SetString(PyExc_OverflowError,
95 "math range error");
96 }
97 else
98 /* Unexpected math error */
99 PyErr_SetFromErrno(PyExc_ValueError);
100 return result;
Guido van Rossum8832b621991-12-16 15:44:24 +0000101}
102
Christian Heimes6f341092008-04-18 23:13:07 +0000103/*
Mark Dickinson92483cd2008-04-20 21:39:04 +0000104 wrapper for atan2 that deals directly with special cases before
105 delegating to the platform libm for the remaining cases. This
106 is necessary to get consistent behaviour across platforms.
107 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
108 always follow C99.
109*/
110
111static double
112m_atan2(double y, double x)
113{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000114 if (Py_IS_NAN(x) || Py_IS_NAN(y))
115 return Py_NAN;
116 if (Py_IS_INFINITY(y)) {
117 if (Py_IS_INFINITY(x)) {
118 if (copysign(1., x) == 1.)
119 /* atan2(+-inf, +inf) == +-pi/4 */
120 return copysign(0.25*Py_MATH_PI, y);
121 else
122 /* atan2(+-inf, -inf) == +-pi*3/4 */
123 return copysign(0.75*Py_MATH_PI, y);
124 }
125 /* atan2(+-inf, x) == +-pi/2 for finite x */
126 return copysign(0.5*Py_MATH_PI, y);
127 }
128 if (Py_IS_INFINITY(x) || y == 0.) {
129 if (copysign(1., x) == 1.)
130 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
131 return copysign(0., y);
132 else
133 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
134 return copysign(Py_MATH_PI, y);
135 }
136 return atan2(y, x);
Mark Dickinson92483cd2008-04-20 21:39:04 +0000137}
138
139/*
Mark Dickinson717d5d02008-12-11 21:59:08 +0000140 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
141 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
142 special values directly, passing positive non-special values through to
143 the system log/log10.
144 */
145
146static double
147m_log(double x)
148{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000149 if (Py_IS_FINITE(x)) {
150 if (x > 0.0)
151 return log(x);
152 errno = EDOM;
153 if (x == 0.0)
154 return -Py_HUGE_VAL; /* log(0) = -inf */
155 else
156 return Py_NAN; /* log(-ve) = nan */
157 }
158 else if (Py_IS_NAN(x))
159 return x; /* log(nan) = nan */
160 else if (x > 0.0)
161 return x; /* log(inf) = inf */
162 else {
163 errno = EDOM;
164 return Py_NAN; /* log(-inf) = nan */
165 }
Mark Dickinson717d5d02008-12-11 21:59:08 +0000166}
167
168static double
169m_log10(double x)
170{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000171 if (Py_IS_FINITE(x)) {
172 if (x > 0.0)
173 return log10(x);
174 errno = EDOM;
175 if (x == 0.0)
176 return -Py_HUGE_VAL; /* log10(0) = -inf */
177 else
178 return Py_NAN; /* log10(-ve) = nan */
179 }
180 else if (Py_IS_NAN(x))
181 return x; /* log10(nan) = nan */
182 else if (x > 0.0)
183 return x; /* log10(inf) = inf */
184 else {
185 errno = EDOM;
186 return Py_NAN; /* log10(-inf) = nan */
187 }
Mark Dickinson717d5d02008-12-11 21:59:08 +0000188}
189
190
191/*
Christian Heimes6f341092008-04-18 23:13:07 +0000192 math_1 is used to wrap a libm function f that takes a double
193 arguments and returns a double.
194
195 The error reporting follows these rules, which are designed to do
196 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
197 platforms.
198
199 - a NaN result from non-NaN inputs causes ValueError to be raised
200 - an infinite result from finite inputs causes OverflowError to be
201 raised if can_overflow is 1, or raises ValueError if can_overflow
202 is 0.
203 - if the result is finite and errno == EDOM then ValueError is
204 raised
205 - if the result is finite and nonzero and errno == ERANGE then
206 OverflowError is raised
207
208 The last rule is used to catch overflow on platforms which follow
209 C89 but for which HUGE_VAL is not an infinity.
210
211 For the majority of one-argument functions these rules are enough
212 to ensure that Python's functions behave as specified in 'Annex F'
213 of the C99 standard, with the 'invalid' and 'divide-by-zero'
214 floating-point exceptions mapping to Python's ValueError and the
215 'overflow' floating-point exception mapping to OverflowError.
216 math_1 only works for functions that don't have singularities *and*
217 the possibility of overflow; fortunately, that covers everything we
218 care about right now.
219*/
220
Barry Warsaw8b43b191996-12-09 22:32:36 +0000221static PyObject *
Christian Heimes6f341092008-04-18 23:13:07 +0000222math_1(PyObject *arg, double (*func) (double), int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000223{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000224 double x, r;
225 x = PyFloat_AsDouble(arg);
226 if (x == -1.0 && PyErr_Occurred())
227 return NULL;
228 errno = 0;
229 PyFPE_START_PROTECT("in math_1", return 0);
230 r = (*func)(x);
231 PyFPE_END_PROTECT(r);
232 if (Py_IS_NAN(r)) {
233 if (!Py_IS_NAN(x))
234 errno = EDOM;
235 else
236 errno = 0;
237 }
238 else if (Py_IS_INFINITY(r)) {
239 if (Py_IS_FINITE(x))
240 errno = can_overflow ? ERANGE : EDOM;
241 else
242 errno = 0;
243 }
244 if (errno && is_error(r))
245 return NULL;
246 else
247 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000248}
249
Christian Heimes6f341092008-04-18 23:13:07 +0000250/*
251 math_2 is used to wrap a libm function f that takes two double
252 arguments and returns a double.
253
254 The error reporting follows these rules, which are designed to do
255 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
256 platforms.
257
258 - a NaN result from non-NaN inputs causes ValueError to be raised
259 - an infinite result from finite inputs causes OverflowError to be
260 raised.
261 - if the result is finite and errno == EDOM then ValueError is
262 raised
263 - if the result is finite and nonzero and errno == ERANGE then
264 OverflowError is raised
265
266 The last rule is used to catch overflow on platforms which follow
267 C89 but for which HUGE_VAL is not an infinity.
268
269 For most two-argument functions (copysign, fmod, hypot, atan2)
270 these rules are enough to ensure that Python's functions behave as
271 specified in 'Annex F' of the C99 standard, with the 'invalid' and
272 'divide-by-zero' floating-point exceptions mapping to Python's
273 ValueError and the 'overflow' floating-point exception mapping to
274 OverflowError.
275*/
276
Barry Warsaw8b43b191996-12-09 22:32:36 +0000277static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000278math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000279{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000280 PyObject *ox, *oy;
281 double x, y, r;
282 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
283 return NULL;
284 x = PyFloat_AsDouble(ox);
285 y = PyFloat_AsDouble(oy);
286 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
287 return NULL;
288 errno = 0;
289 PyFPE_START_PROTECT("in math_2", return 0);
290 r = (*func)(x, y);
291 PyFPE_END_PROTECT(r);
292 if (Py_IS_NAN(r)) {
293 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
294 errno = EDOM;
295 else
296 errno = 0;
297 }
298 else if (Py_IS_INFINITY(r)) {
299 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
300 errno = ERANGE;
301 else
302 errno = 0;
303 }
304 if (errno && is_error(r))
305 return NULL;
306 else
307 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000308}
309
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000310#define FUNC1(funcname, func, can_overflow, docstring) \
311 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
312 return math_1(args, func, can_overflow); \
313 }\
314 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000315
Fred Drake40c48682000-07-03 18:11:56 +0000316#define FUNC2(funcname, func, docstring) \
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000317 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
318 return math_2(args, func, #funcname); \
319 }\
320 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000321
Christian Heimes6f341092008-04-18 23:13:07 +0000322FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000323 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000324FUNC1(acosh, acosh, 0,
325 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
326FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000327 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000328FUNC1(asinh, asinh, 0,
329 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
330FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000331 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Mark Dickinson92483cd2008-04-20 21:39:04 +0000332FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000333 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
334 "Unlike atan(y/x), the signs of both x and y are considered.")
Christian Heimes6f341092008-04-18 23:13:07 +0000335FUNC1(atanh, atanh, 0,
336 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
337FUNC1(ceil, ceil, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000338 "ceil(x)\n\nReturn the ceiling of x as a float.\n"
339 "This is the smallest integral value >= x.")
Christian Heimeseebb79c2008-01-03 22:32:26 +0000340FUNC2(copysign, copysign,
Georg Brandl46d441e2010-03-21 19:01:15 +0000341 "copysign(x, y)\n\nReturn x with the sign of y.")
Christian Heimes6f341092008-04-18 23:13:07 +0000342FUNC1(cos, cos, 0,
343 "cos(x)\n\nReturn the cosine of x (measured in radians).")
344FUNC1(cosh, cosh, 1,
345 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
346FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000347 "exp(x)\n\nReturn e raised to the power of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000348FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000349 "fabs(x)\n\nReturn the absolute value of the float x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000350FUNC1(floor, floor, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000351 "floor(x)\n\nReturn the floor of x as a float.\n"
352 "This is the largest integral value <= x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000353FUNC1(log1p, log1p, 1,
Georg Brandl46d441e2010-03-21 19:01:15 +0000354 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
355 "The result is computed in a way which is accurate for x near zero.")
Christian Heimes6f341092008-04-18 23:13:07 +0000356FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000357 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000358FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000359 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000360FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000361 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000362FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000363 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000364FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000365 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000366
Mark Dickinson99dfe922008-05-23 01:35:30 +0000367/* Precision summation function as msum() by Raymond Hettinger in
368 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
369 enhanced with the exact partials sum and roundoff from Mark
370 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000371 See those links for more details, proofs and other references.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000372
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000373 Note 1: IEEE 754R floating point semantics are assumed,
374 but the current implementation does not re-establish special
375 value semantics across iterations (i.e. handling -Inf + Inf).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000376
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000377 Note 2: No provision is made for intermediate overflow handling;
Raymond Hettinger2a9179a2008-05-29 08:38:23 +0000378 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000379 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
380 overflow of the first partial sum.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000381
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000382 Note 3: The intermediate values lo, yr, and hi are declared volatile so
Mark Dickinson2fcd8c92008-06-20 15:26:19 +0000383 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Raymond Hettingerd6234142008-06-09 11:24:47 +0000384 Also, the volatile declaration forces the values to be stored in memory as
385 regular doubles instead of extended long precision (80-bit) values. This
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000386 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000387 can be resolved exactly into double-sized hi and lo values. As long as the
Raymond Hettingerd6234142008-06-09 11:24:47 +0000388 hi value gets forced into a double before yr and lo are computed, the extra
389 bits in downstream extended precision operations (x87 for example) will be
390 exactly zero and therefore can be losslessly stored back into a double,
391 thereby preventing double rounding.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000392
Raymond Hettingerd6234142008-06-09 11:24:47 +0000393 Note 4: A similar implementation is in Modules/cmathmodule.c.
394 Be sure to update both when making changes.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000395
Mark Dickinsonff3fdce2008-07-30 16:25:16 +0000396 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000397 because the start argument doesn't make sense in the context of
398 accurate summation. Since the partials table is collapsed before
399 returning a result, sum(seq2, start=sum(seq1)) may not equal the
400 accurate result returned by sum(itertools.chain(seq1, seq2)).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000401*/
402
403#define NUM_PARTIALS 32 /* initial partials array size, on stack */
404
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000405/* Extend the partials array p[] by doubling its size. */
406static int /* non-zero on error */
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000407_fsum_realloc(double **p_ptr, Py_ssize_t n,
Raymond Hettingerd6234142008-06-09 11:24:47 +0000408 double *ps, Py_ssize_t *m_ptr)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000409{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000410 void *v = NULL;
411 Py_ssize_t m = *m_ptr;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000412
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000413 m += m; /* double */
414 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
415 double *p = *p_ptr;
416 if (p == ps) {
417 v = PyMem_Malloc(sizeof(double) * m);
418 if (v != NULL)
419 memcpy(v, ps, sizeof(double) * n);
420 }
421 else
422 v = PyMem_Realloc(p, sizeof(double) * m);
423 }
424 if (v == NULL) { /* size overflow or no memory */
425 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
426 return 1;
427 }
428 *p_ptr = (double*) v;
429 *m_ptr = m;
430 return 0;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000431}
432
433/* Full precision summation of a sequence of floats.
434
435 def msum(iterable):
436 partials = [] # sorted, non-overlapping partial sums
437 for x in iterable:
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000438 i = 0
439 for y in partials:
440 if abs(x) < abs(y):
441 x, y = y, x
442 hi = x + y
443 lo = y - (hi - x)
444 if lo:
445 partials[i] = lo
446 i += 1
447 x = hi
448 partials[i:] = [x]
Mark Dickinson99dfe922008-05-23 01:35:30 +0000449 return sum_exact(partials)
450
451 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
452 are exactly equal to x+y. The inner loop applies hi/lo summation to each
453 partial so that the list of partial sums remains exact.
454
455 Sum_exact() adds the partial sums exactly and correctly rounds the final
456 result (using the round-half-to-even rule). The items in partials remain
457 non-zero, non-special, non-overlapping and strictly increasing in
458 magnitude, but possibly not all having the same sign.
459
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000460 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
461*/
462
Mark Dickinson99dfe922008-05-23 01:35:30 +0000463static PyObject*
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000464math_fsum(PyObject *self, PyObject *seq)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000465{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000466 PyObject *item, *iter, *sum = NULL;
467 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
468 double x, y, t, ps[NUM_PARTIALS], *p = ps;
469 double xsave, special_sum = 0.0, inf_sum = 0.0;
470 volatile double hi, yr, lo;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000471
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000472 iter = PyObject_GetIter(seq);
473 if (iter == NULL)
474 return NULL;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000475
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000476 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000477
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000478 for(;;) { /* for x in iterable */
479 assert(0 <= n && n <= m);
480 assert((m == NUM_PARTIALS && p == ps) ||
481 (m > NUM_PARTIALS && p != NULL));
Mark Dickinson99dfe922008-05-23 01:35:30 +0000482
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000483 item = PyIter_Next(iter);
484 if (item == NULL) {
485 if (PyErr_Occurred())
486 goto _fsum_error;
487 break;
488 }
489 x = PyFloat_AsDouble(item);
490 Py_DECREF(item);
491 if (PyErr_Occurred())
492 goto _fsum_error;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000493
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000494 xsave = x;
495 for (i = j = 0; j < n; j++) { /* for y in partials */
496 y = p[j];
497 if (fabs(x) < fabs(y)) {
498 t = x; x = y; y = t;
499 }
500 hi = x + y;
501 yr = hi - x;
502 lo = y - yr;
503 if (lo != 0.0)
504 p[i++] = lo;
505 x = hi;
506 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000507
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000508 n = i; /* ps[i:] = [x] */
509 if (x != 0.0) {
510 if (! Py_IS_FINITE(x)) {
511 /* a nonfinite x could arise either as
512 a result of intermediate overflow, or
513 as a result of a nan or inf in the
514 summands */
515 if (Py_IS_FINITE(xsave)) {
516 PyErr_SetString(PyExc_OverflowError,
517 "intermediate overflow in fsum");
518 goto _fsum_error;
519 }
520 if (Py_IS_INFINITY(xsave))
521 inf_sum += xsave;
522 special_sum += xsave;
523 /* reset partials */
524 n = 0;
525 }
526 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
527 goto _fsum_error;
528 else
529 p[n++] = x;
530 }
531 }
Mark Dickinson99dfe922008-05-23 01:35:30 +0000532
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000533 if (special_sum != 0.0) {
534 if (Py_IS_NAN(inf_sum))
535 PyErr_SetString(PyExc_ValueError,
536 "-inf + inf in fsum");
537 else
538 sum = PyFloat_FromDouble(special_sum);
539 goto _fsum_error;
540 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000541
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000542 hi = 0.0;
543 if (n > 0) {
544 hi = p[--n];
545 /* sum_exact(ps, hi) from the top, stop when the sum becomes
546 inexact. */
547 while (n > 0) {
548 x = hi;
549 y = p[--n];
550 assert(fabs(y) < fabs(x));
551 hi = x + y;
552 yr = hi - x;
553 lo = y - yr;
554 if (lo != 0.0)
555 break;
556 }
557 /* Make half-even rounding work across multiple partials.
558 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
559 digit to two instead of down to zero (the 1e-16 makes the 1
560 slightly closer to two). With a potential 1 ULP rounding
561 error fixed-up, math.fsum() can guarantee commutativity. */
562 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
563 (lo > 0.0 && p[n-1] > 0.0))) {
564 y = lo * 2.0;
565 x = hi + y;
566 yr = x - hi;
567 if (y == yr)
568 hi = x;
569 }
570 }
571 sum = PyFloat_FromDouble(hi);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000572
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000573_fsum_error:
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000574 PyFPE_END_PROTECT(hi)
575 Py_DECREF(iter);
576 if (p != ps)
577 PyMem_Free(p);
578 return sum;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000579}
580
581#undef NUM_PARTIALS
582
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000583PyDoc_STRVAR(math_fsum_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +0000584"fsum(iterable)\n\n\
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000585Return an accurate floating point sum of values in the iterable.\n\
586Assumes IEEE-754 floating point arithmetic.");
Mark Dickinson99dfe922008-05-23 01:35:30 +0000587
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000588static PyObject *
589math_factorial(PyObject *self, PyObject *arg)
590{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000591 long i, x;
592 PyObject *result, *iobj, *newresult;
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000593
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000594 if (PyFloat_Check(arg)) {
595 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
596 if (dx != floor(dx)) {
597 PyErr_SetString(PyExc_ValueError,
598 "factorial() only accepts integral values");
599 return NULL;
600 }
601 }
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000602
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000603 x = PyInt_AsLong(arg);
604 if (x == -1 && PyErr_Occurred())
605 return NULL;
606 if (x < 0) {
607 PyErr_SetString(PyExc_ValueError,
608 "factorial() not defined for negative values");
609 return NULL;
610 }
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000611
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000612 result = (PyObject *)PyInt_FromLong(1);
613 if (result == NULL)
614 return NULL;
615 for (i=1 ; i<=x ; i++) {
616 iobj = (PyObject *)PyInt_FromLong(i);
617 if (iobj == NULL)
618 goto error;
619 newresult = PyNumber_Multiply(result, iobj);
620 Py_DECREF(iobj);
621 if (newresult == NULL)
622 goto error;
623 Py_DECREF(result);
624 result = newresult;
625 }
626 return result;
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000627
628error:
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000629 Py_DECREF(result);
630 return NULL;
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000631}
632
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000633PyDoc_STRVAR(math_factorial_doc,
634"factorial(x) -> Integral\n"
635"\n"
636"Find x!. Raise a ValueError if x is negative or non-integral.");
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000637
Barry Warsaw8b43b191996-12-09 22:32:36 +0000638static PyObject *
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000639math_trunc(PyObject *self, PyObject *number)
640{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000641 return PyObject_CallMethod(number, "__trunc__", NULL);
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000642}
643
644PyDoc_STRVAR(math_trunc_doc,
645"trunc(x:Real) -> Integral\n"
646"\n"
Raymond Hettingerfe424f72008-02-02 05:24:44 +0000647"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000648
649static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000650math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000651{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000652 int i;
653 double x = PyFloat_AsDouble(arg);
654 if (x == -1.0 && PyErr_Occurred())
655 return NULL;
656 /* deal with special cases directly, to sidestep platform
657 differences */
658 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
659 i = 0;
660 }
661 else {
662 PyFPE_START_PROTECT("in math_frexp", return 0);
663 x = frexp(x, &i);
664 PyFPE_END_PROTECT(x);
665 }
666 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000667}
668
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000669PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +0000670"frexp(x)\n"
671"\n"
672"Return the mantissa and exponent of x, as pair (m, e).\n"
673"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000674"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000675
Barry Warsaw8b43b191996-12-09 22:32:36 +0000676static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +0000677math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000678{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000679 double x, r;
680 PyObject *oexp;
681 long exp;
682 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
683 return NULL;
Mark Dickinsonf8476c12008-05-09 17:54:23 +0000684
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000685 if (PyLong_Check(oexp)) {
686 /* on overflow, replace exponent with either LONG_MAX
687 or LONG_MIN, depending on the sign. */
688 exp = PyLong_AsLong(oexp);
689 if (exp == -1 && PyErr_Occurred()) {
690 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
691 if (Py_SIZE(oexp) < 0) {
692 exp = LONG_MIN;
693 }
694 else {
695 exp = LONG_MAX;
696 }
697 PyErr_Clear();
698 }
699 else {
700 /* propagate any unexpected exception */
701 return NULL;
702 }
703 }
704 }
705 else if (PyInt_Check(oexp)) {
706 exp = PyInt_AS_LONG(oexp);
707 }
708 else {
709 PyErr_SetString(PyExc_TypeError,
710 "Expected an int or long as second argument "
711 "to ldexp.");
712 return NULL;
713 }
Mark Dickinsonf8476c12008-05-09 17:54:23 +0000714
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000715 if (x == 0. || !Py_IS_FINITE(x)) {
716 /* NaNs, zeros and infinities are returned unchanged */
717 r = x;
718 errno = 0;
719 } else if (exp > INT_MAX) {
720 /* overflow */
721 r = copysign(Py_HUGE_VAL, x);
722 errno = ERANGE;
723 } else if (exp < INT_MIN) {
724 /* underflow to +-0 */
725 r = copysign(0., x);
726 errno = 0;
727 } else {
728 errno = 0;
729 PyFPE_START_PROTECT("in math_ldexp", return 0);
730 r = ldexp(x, (int)exp);
731 PyFPE_END_PROTECT(r);
732 if (Py_IS_INFINITY(r))
733 errno = ERANGE;
734 }
Mark Dickinsonf8476c12008-05-09 17:54:23 +0000735
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000736 if (errno && is_error(r))
737 return NULL;
738 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000739}
740
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000741PyDoc_STRVAR(math_ldexp_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +0000742"ldexp(x, i)\n\n\
743Return x * (2**i).");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000744
Barry Warsaw8b43b191996-12-09 22:32:36 +0000745static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000746math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000747{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000748 double y, x = PyFloat_AsDouble(arg);
749 if (x == -1.0 && PyErr_Occurred())
750 return NULL;
751 /* some platforms don't do the right thing for NaNs and
752 infinities, so we take care of special cases directly. */
753 if (!Py_IS_FINITE(x)) {
754 if (Py_IS_INFINITY(x))
755 return Py_BuildValue("(dd)", copysign(0., x), x);
756 else if (Py_IS_NAN(x))
757 return Py_BuildValue("(dd)", x, x);
758 }
Mark Dickinsonb2f70902008-04-20 01:39:24 +0000759
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000760 errno = 0;
761 PyFPE_START_PROTECT("in math_modf", return 0);
762 x = modf(x, &y);
763 PyFPE_END_PROTECT(x);
764 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000765}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000766
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000767PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +0000768"modf(x)\n"
769"\n"
770"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000771"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000772
Tim Peters78526162001-09-05 00:53:45 +0000773/* A decent logarithm is easy to compute even for huge longs, but libm can't
774 do that by itself -- loghelper can. func is log or log10, and name is
775 "log" or "log10". Note that overflow isn't possible: a long can contain
776 no more than INT_MAX * SHIFT bits, so has value certainly less than
777 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
778 small enough to fit in an IEEE single. log and log10 are even smaller.
779*/
780
781static PyObject*
Neal Norwitz45e230a2006-11-19 21:26:53 +0000782loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +0000783{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000784 /* If it is long, do it ourselves. */
785 if (PyLong_Check(arg)) {
786 double x;
787 int e;
788 x = _PyLong_AsScaledDouble(arg, &e);
789 if (x <= 0.0) {
790 PyErr_SetString(PyExc_ValueError,
791 "math domain error");
792 return NULL;
793 }
794 /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
795 log(x) + log(2) * e * PyLong_SHIFT.
796 CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
797 so force use of double. */
798 x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
799 return PyFloat_FromDouble(x);
800 }
Tim Peters78526162001-09-05 00:53:45 +0000801
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000802 /* Else let libm handle it by itself. */
803 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +0000804}
805
806static PyObject *
807math_log(PyObject *self, PyObject *args)
808{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000809 PyObject *arg;
810 PyObject *base = NULL;
811 PyObject *num, *den;
812 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000813
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000814 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
815 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000816
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000817 num = loghelper(arg, m_log, "log");
818 if (num == NULL || base == NULL)
819 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000820
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000821 den = loghelper(base, m_log, "log");
822 if (den == NULL) {
823 Py_DECREF(num);
824 return NULL;
825 }
Raymond Hettinger866964c2002-12-14 19:51:34 +0000826
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000827 ans = PyNumber_Divide(num, den);
828 Py_DECREF(num);
829 Py_DECREF(den);
830 return ans;
Tim Peters78526162001-09-05 00:53:45 +0000831}
832
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000833PyDoc_STRVAR(math_log_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +0000834"log(x[, base])\n\n\
835Return the logarithm of x to the given base.\n\
Raymond Hettinger866964c2002-12-14 19:51:34 +0000836If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +0000837
838static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000839math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +0000840{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000841 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +0000842}
843
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000844PyDoc_STRVAR(math_log10_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +0000845"log10(x)\n\nReturn the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +0000846
Christian Heimes6f341092008-04-18 23:13:07 +0000847static PyObject *
848math_fmod(PyObject *self, PyObject *args)
849{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000850 PyObject *ox, *oy;
851 double r, x, y;
852 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
853 return NULL;
854 x = PyFloat_AsDouble(ox);
855 y = PyFloat_AsDouble(oy);
856 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
857 return NULL;
858 /* fmod(x, +/-Inf) returns x for finite x. */
859 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
860 return PyFloat_FromDouble(x);
861 errno = 0;
862 PyFPE_START_PROTECT("in math_fmod", return 0);
863 r = fmod(x, y);
864 PyFPE_END_PROTECT(r);
865 if (Py_IS_NAN(r)) {
866 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
867 errno = EDOM;
868 else
869 errno = 0;
870 }
871 if (errno && is_error(r))
872 return NULL;
873 else
874 return PyFloat_FromDouble(r);
Christian Heimes6f341092008-04-18 23:13:07 +0000875}
876
877PyDoc_STRVAR(math_fmod_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +0000878"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
Christian Heimes6f341092008-04-18 23:13:07 +0000879" x % y may differ.");
880
881static PyObject *
882math_hypot(PyObject *self, PyObject *args)
883{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000884 PyObject *ox, *oy;
885 double r, x, y;
886 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
887 return NULL;
888 x = PyFloat_AsDouble(ox);
889 y = PyFloat_AsDouble(oy);
890 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
891 return NULL;
892 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
893 if (Py_IS_INFINITY(x))
894 return PyFloat_FromDouble(fabs(x));
895 if (Py_IS_INFINITY(y))
896 return PyFloat_FromDouble(fabs(y));
897 errno = 0;
898 PyFPE_START_PROTECT("in math_hypot", return 0);
899 r = hypot(x, y);
900 PyFPE_END_PROTECT(r);
901 if (Py_IS_NAN(r)) {
902 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
903 errno = EDOM;
904 else
905 errno = 0;
906 }
907 else if (Py_IS_INFINITY(r)) {
908 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
909 errno = ERANGE;
910 else
911 errno = 0;
912 }
913 if (errno && is_error(r))
914 return NULL;
915 else
916 return PyFloat_FromDouble(r);
Christian Heimes6f341092008-04-18 23:13:07 +0000917}
918
919PyDoc_STRVAR(math_hypot_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +0000920"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
Christian Heimes6f341092008-04-18 23:13:07 +0000921
922/* pow can't use math_2, but needs its own wrapper: the problem is
923 that an infinite result can arise either as a result of overflow
924 (in which case OverflowError should be raised) or as a result of
925 e.g. 0.**-5. (for which ValueError needs to be raised.)
926*/
927
928static PyObject *
929math_pow(PyObject *self, PyObject *args)
930{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000931 PyObject *ox, *oy;
932 double r, x, y;
933 int odd_y;
Christian Heimes6f341092008-04-18 23:13:07 +0000934
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000935 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
936 return NULL;
937 x = PyFloat_AsDouble(ox);
938 y = PyFloat_AsDouble(oy);
939 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
940 return NULL;
Mark Dickinsona1293eb2008-04-19 19:41:52 +0000941
Antoine Pitrouc7c96a92010-05-09 15:15:40 +0000942 /* deal directly with IEEE specials, to cope with problems on various
943 platforms whose semantics don't exactly match C99 */
944 r = 0.; /* silence compiler warning */
945 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
946 errno = 0;
947 if (Py_IS_NAN(x))
948 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
949 else if (Py_IS_NAN(y))
950 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
951 else if (Py_IS_INFINITY(x)) {
952 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
953 if (y > 0.)
954 r = odd_y ? x : fabs(x);
955 else if (y == 0.)
956 r = 1.;
957 else /* y < 0. */
958 r = odd_y ? copysign(0., x) : 0.;
959 }
960 else if (Py_IS_INFINITY(y)) {
961 if (fabs(x) == 1.0)
962 r = 1.;
963 else if (y > 0. && fabs(x) > 1.0)
964 r = y;
965 else if (y < 0. && fabs(x) < 1.0) {
966 r = -y; /* result is +inf */
967 if (x == 0.) /* 0**-inf: divide-by-zero */
968 errno = EDOM;
969 }
970 else
971 r = 0.;
972 }
973 }
974 else {
975 /* let libm handle finite**finite */
976 errno = 0;
977 PyFPE_START_PROTECT("in math_pow", return 0);
978 r = pow(x, y);
979 PyFPE_END_PROTECT(r);
980 /* a NaN result should arise only from (-ve)**(finite
981 non-integer); in this case we want to raise ValueError. */
982 if (!Py_IS_FINITE(r)) {
983 if (Py_IS_NAN(r)) {
984 errno = EDOM;
985 }
986 /*
987 an infinite result here arises either from:
988 (A) (+/-0.)**negative (-> divide-by-zero)
989 (B) overflow of x**y with x and y finite
990 */
991 else if (Py_IS_INFINITY(r)) {
992 if (x == 0.)
993 errno = EDOM;
994 else
995 errno = ERANGE;
996 }
997 }
998 }
Christian Heimes6f341092008-04-18 23:13:07 +0000999
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001000 if (errno && is_error(r))
1001 return NULL;
1002 else
1003 return PyFloat_FromDouble(r);
Christian Heimes6f341092008-04-18 23:13:07 +00001004}
1005
1006PyDoc_STRVAR(math_pow_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +00001007"pow(x, y)\n\nReturn x**y (x to the power of y).");
Christian Heimes6f341092008-04-18 23:13:07 +00001008
Christian Heimese2ca4242008-01-03 20:23:15 +00001009static const double degToRad = Py_MATH_PI / 180.0;
1010static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001011
1012static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001013math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001014{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001015 double x = PyFloat_AsDouble(arg);
1016 if (x == -1.0 && PyErr_Occurred())
1017 return NULL;
1018 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001019}
1020
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001021PyDoc_STRVAR(math_degrees_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +00001022"degrees(x)\n\n\
1023Convert angle x from radians to degrees.");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001024
1025static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001026math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001027{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001028 double x = PyFloat_AsDouble(arg);
1029 if (x == -1.0 && PyErr_Occurred())
1030 return NULL;
1031 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001032}
1033
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001034PyDoc_STRVAR(math_radians_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +00001035"radians(x)\n\n\
1036Convert angle x from degrees to radians.");
Tim Peters78526162001-09-05 00:53:45 +00001037
Christian Heimese2ca4242008-01-03 20:23:15 +00001038static PyObject *
1039math_isnan(PyObject *self, PyObject *arg)
1040{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001041 double x = PyFloat_AsDouble(arg);
1042 if (x == -1.0 && PyErr_Occurred())
1043 return NULL;
1044 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimese2ca4242008-01-03 20:23:15 +00001045}
1046
1047PyDoc_STRVAR(math_isnan_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +00001048"isnan(x) -> bool\n\n\
1049Check if float x is not a number (NaN).");
Christian Heimese2ca4242008-01-03 20:23:15 +00001050
1051static PyObject *
1052math_isinf(PyObject *self, PyObject *arg)
1053{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001054 double x = PyFloat_AsDouble(arg);
1055 if (x == -1.0 && PyErr_Occurred())
1056 return NULL;
1057 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimese2ca4242008-01-03 20:23:15 +00001058}
1059
1060PyDoc_STRVAR(math_isinf_doc,
Georg Brandl46d441e2010-03-21 19:01:15 +00001061"isinf(x) -> bool\n\n\
1062Check if float x is infinite (positive or negative).");
Christian Heimese2ca4242008-01-03 20:23:15 +00001063
Barry Warsaw8b43b191996-12-09 22:32:36 +00001064static PyMethodDef math_methods[] = {
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001065 {"acos", math_acos, METH_O, math_acos_doc},
1066 {"acosh", math_acosh, METH_O, math_acosh_doc},
1067 {"asin", math_asin, METH_O, math_asin_doc},
1068 {"asinh", math_asinh, METH_O, math_asinh_doc},
1069 {"atan", math_atan, METH_O, math_atan_doc},
1070 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
1071 {"atanh", math_atanh, METH_O, math_atanh_doc},
1072 {"ceil", math_ceil, METH_O, math_ceil_doc},
1073 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
1074 {"cos", math_cos, METH_O, math_cos_doc},
1075 {"cosh", math_cosh, METH_O, math_cosh_doc},
1076 {"degrees", math_degrees, METH_O, math_degrees_doc},
1077 {"exp", math_exp, METH_O, math_exp_doc},
1078 {"fabs", math_fabs, METH_O, math_fabs_doc},
1079 {"factorial", math_factorial, METH_O, math_factorial_doc},
1080 {"floor", math_floor, METH_O, math_floor_doc},
1081 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
1082 {"frexp", math_frexp, METH_O, math_frexp_doc},
1083 {"fsum", math_fsum, METH_O, math_fsum_doc},
1084 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
1085 {"isinf", math_isinf, METH_O, math_isinf_doc},
1086 {"isnan", math_isnan, METH_O, math_isnan_doc},
1087 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1088 {"log", math_log, METH_VARARGS, math_log_doc},
1089 {"log1p", math_log1p, METH_O, math_log1p_doc},
1090 {"log10", math_log10, METH_O, math_log10_doc},
1091 {"modf", math_modf, METH_O, math_modf_doc},
1092 {"pow", math_pow, METH_VARARGS, math_pow_doc},
1093 {"radians", math_radians, METH_O, math_radians_doc},
1094 {"sin", math_sin, METH_O, math_sin_doc},
1095 {"sinh", math_sinh, METH_O, math_sinh_doc},
1096 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1097 {"tan", math_tan, METH_O, math_tan_doc},
1098 {"tanh", math_tanh, METH_O, math_tanh_doc},
1099 {"trunc", math_trunc, METH_O, math_trunc_doc},
1100 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001101};
1102
Guido van Rossumc6e22901998-12-04 19:26:43 +00001103
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001104PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001105"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001106"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001107
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001108PyMODINIT_FUNC
Thomas Woutersf3f33dc2000-07-21 06:00:07 +00001109initmath(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001110{
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001111 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001112
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001113 m = Py_InitModule3("math", math_methods, module_doc);
1114 if (m == NULL)
1115 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001116
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001117 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1118 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001119
Christian Heimes6f341092008-04-18 23:13:07 +00001120 finally:
Antoine Pitrouc7c96a92010-05-09 15:15:40 +00001121 return;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001122}