Armin Rigo | a871ef2 | 2006-02-08 12:53:56 +0000 | [diff] [blame] | 1 | #include "rotatingtree.h" |
| 2 | |
| 3 | #define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2)) |
| 4 | |
| 5 | /* The randombits() function below is a fast-and-dirty generator that |
| 6 | * is probably irregular enough for our purposes. Note that it's biased: |
| 7 | * I think that ones are slightly more probable than zeroes. It's not |
| 8 | * important here, though. |
| 9 | */ |
| 10 | |
| 11 | static unsigned int random_value = 1; |
| 12 | static unsigned int random_stream = 0; |
| 13 | |
| 14 | static int |
| 15 | randombits(int bits) |
| 16 | { |
| 17 | int result; |
Tim Peters | 219c164 | 2006-02-15 03:01:30 +0000 | [diff] [blame] | 18 | if (random_stream < (1U << bits)) { |
Armin Rigo | a871ef2 | 2006-02-08 12:53:56 +0000 | [diff] [blame] | 19 | random_value *= 1082527; |
| 20 | random_stream = random_value; |
| 21 | } |
| 22 | result = random_stream & ((1<<bits)-1); |
| 23 | random_stream >>= bits; |
| 24 | return result; |
| 25 | } |
| 26 | |
| 27 | |
| 28 | /* Insert a new node into the tree. |
| 29 | (*root) is modified to point to the new root. */ |
| 30 | void |
| 31 | RotatingTree_Add(rotating_node_t **root, rotating_node_t *node) |
| 32 | { |
| 33 | while (*root != NULL) { |
| 34 | if (KEY_LOWER_THAN(node->key, (*root)->key)) |
| 35 | root = &((*root)->left); |
| 36 | else |
| 37 | root = &((*root)->right); |
| 38 | } |
| 39 | node->left = NULL; |
| 40 | node->right = NULL; |
| 41 | *root = node; |
| 42 | } |
| 43 | |
| 44 | /* Locate the node with the given key. This is the most complicated |
| 45 | function because it occasionally rebalances the tree to move the |
| 46 | resulting node closer to the root. */ |
| 47 | rotating_node_t * |
| 48 | RotatingTree_Get(rotating_node_t **root, void *key) |
| 49 | { |
| 50 | if (randombits(3) != 4) { |
| 51 | /* Fast path, no rebalancing */ |
| 52 | rotating_node_t *node = *root; |
| 53 | while (node != NULL) { |
| 54 | if (node->key == key) |
| 55 | return node; |
| 56 | if (KEY_LOWER_THAN(key, node->key)) |
| 57 | node = node->left; |
| 58 | else |
| 59 | node = node->right; |
| 60 | } |
| 61 | return NULL; |
| 62 | } |
| 63 | else { |
| 64 | rotating_node_t **pnode = root; |
| 65 | rotating_node_t *node = *pnode; |
| 66 | rotating_node_t *next; |
| 67 | int rotate; |
| 68 | if (node == NULL) |
| 69 | return NULL; |
| 70 | while (1) { |
| 71 | if (node->key == key) |
| 72 | return node; |
| 73 | rotate = !randombits(1); |
| 74 | if (KEY_LOWER_THAN(key, node->key)) { |
| 75 | next = node->left; |
| 76 | if (next == NULL) |
| 77 | return NULL; |
| 78 | if (rotate) { |
| 79 | node->left = next->right; |
| 80 | next->right = node; |
| 81 | *pnode = next; |
| 82 | } |
| 83 | else |
| 84 | pnode = &(node->left); |
| 85 | } |
| 86 | else { |
| 87 | next = node->right; |
| 88 | if (next == NULL) |
| 89 | return NULL; |
| 90 | if (rotate) { |
| 91 | node->right = next->left; |
| 92 | next->left = node; |
| 93 | *pnode = next; |
| 94 | } |
| 95 | else |
| 96 | pnode = &(node->right); |
| 97 | } |
| 98 | node = next; |
| 99 | } |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | /* Enumerate all nodes in the tree. The callback enumfn() should return |
| 104 | zero to continue the enumeration, or non-zero to interrupt it. |
| 105 | A non-zero value is directly returned by RotatingTree_Enum(). */ |
| 106 | int |
| 107 | RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn, |
| 108 | void *arg) |
| 109 | { |
| 110 | int result; |
| 111 | rotating_node_t *node; |
| 112 | while (root != NULL) { |
| 113 | result = RotatingTree_Enum(root->left, enumfn, arg); |
| 114 | if (result != 0) return result; |
| 115 | node = root->right; |
| 116 | result = enumfn(root, arg); |
| 117 | if (result != 0) return result; |
| 118 | root = node; |
| 119 | } |
| 120 | return 0; |
| 121 | } |