Facundo Batista | 353750c | 2007-09-13 18:13:15 +0000 | [diff] [blame] | 1 | ------------------------------------------------------------------------
|
| 2 | -- dqFMA.decTest -- decQuad Fused Multiply Add --
|
Mark Dickinson | fe84cce | 2008-07-27 06:39:07 +0000 | [diff] [blame] | 3 | -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. --
|
Facundo Batista | 353750c | 2007-09-13 18:13:15 +0000 | [diff] [blame] | 4 | ------------------------------------------------------------------------
|
| 5 | -- Please see the document "General Decimal Arithmetic Testcases" --
|
| 6 | -- at http://www2.hursley.ibm.com/decimal for the description of --
|
| 7 | -- these testcases. --
|
| 8 | -- --
|
| 9 | -- These testcases are experimental ('beta' versions), and they --
|
| 10 | -- may contain errors. They are offered on an as-is basis. In --
|
| 11 | -- particular, achieving the same results as the tests here is not --
|
| 12 | -- a guarantee that an implementation complies with any Standard --
|
| 13 | -- or specification. The tests are not exhaustive. --
|
| 14 | -- --
|
| 15 | -- Please send comments, suggestions, and corrections to the author: --
|
| 16 | -- Mike Cowlishaw, IBM Fellow --
|
| 17 | -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
|
| 18 | -- mfc@uk.ibm.com --
|
| 19 | ------------------------------------------------------------------------
|
Mark Dickinson | 539bff4 | 2009-10-08 16:28:39 +0000 | [diff] [blame] | 20 | version: 2.59
|
Facundo Batista | 353750c | 2007-09-13 18:13:15 +0000 | [diff] [blame] | 21 |
|
| 22 | extended: 1
|
| 23 | clamp: 1
|
| 24 | precision: 34
|
| 25 | maxExponent: 6144
|
| 26 | minExponent: -6143
|
| 27 | rounding: half_even
|
| 28 |
|
| 29 | -- These tests comprese three parts:
|
| 30 | -- 1. Sanity checks and other three-operand tests (especially those
|
| 31 | -- where the fused operation makes a difference)
|
| 32 | -- 2. Multiply tests (third operand is neutral zero [0E+emax])
|
| 33 | -- 3. Addition tests (first operand is 1)
|
| 34 | -- The multiply and addition tests are extensive because FMA may have
|
| 35 | -- its own dedicated multiplication or addition routine(s), and they
|
| 36 | -- also inherently check the left-to-right properties.
|
| 37 |
|
| 38 | -- Sanity checks
|
| 39 | dqfma0001 fma 1 1 1 -> 2
|
| 40 | dqfma0002 fma 1 1 2 -> 3
|
| 41 | dqfma0003 fma 2 2 3 -> 7
|
| 42 | dqfma0004 fma 9 9 9 -> 90
|
| 43 | dqfma0005 fma -1 1 1 -> 0
|
| 44 | dqfma0006 fma -1 1 2 -> 1
|
| 45 | dqfma0007 fma -2 2 3 -> -1
|
| 46 | dqfma0008 fma -9 9 9 -> -72
|
| 47 | dqfma0011 fma 1 -1 1 -> 0
|
| 48 | dqfma0012 fma 1 -1 2 -> 1
|
| 49 | dqfma0013 fma 2 -2 3 -> -1
|
| 50 | dqfma0014 fma 9 -9 9 -> -72
|
| 51 | dqfma0015 fma 1 1 -1 -> 0
|
| 52 | dqfma0016 fma 1 1 -2 -> -1
|
| 53 | dqfma0017 fma 2 2 -3 -> 1
|
| 54 | dqfma0018 fma 9 9 -9 -> 72
|
| 55 |
|
| 56 | -- non-integer exacts
|
| 57 | dqfma0100 fma 25.2 63.6 -438 -> 1164.72
|
| 58 | dqfma0101 fma 0.301 0.380 334 -> 334.114380
|
| 59 | dqfma0102 fma 49.2 -4.8 23.3 -> -212.86
|
| 60 | dqfma0103 fma 4.22 0.079 -94.6 -> -94.26662
|
| 61 | dqfma0104 fma 903 0.797 0.887 -> 720.578
|
| 62 | dqfma0105 fma 6.13 -161 65.9 -> -921.03
|
| 63 | dqfma0106 fma 28.2 727 5.45 -> 20506.85
|
| 64 | dqfma0107 fma 4 605 688 -> 3108
|
| 65 | dqfma0108 fma 93.3 0.19 0.226 -> 17.953
|
| 66 | dqfma0109 fma 0.169 -341 5.61 -> -52.019
|
| 67 | dqfma0110 fma -72.2 30 -51.2 -> -2217.2
|
| 68 | dqfma0111 fma -0.409 13 20.4 -> 15.083
|
| 69 | dqfma0112 fma 317 77.0 19.0 -> 24428.0
|
| 70 | dqfma0113 fma 47 6.58 1.62 -> 310.88
|
| 71 | dqfma0114 fma 1.36 0.984 0.493 -> 1.83124
|
| 72 | dqfma0115 fma 72.7 274 1.56 -> 19921.36
|
| 73 | dqfma0116 fma 335 847 83 -> 283828
|
| 74 | dqfma0117 fma 666 0.247 25.4 -> 189.902
|
| 75 | dqfma0118 fma -3.87 3.06 78.0 -> 66.1578
|
| 76 | dqfma0119 fma 0.742 192 35.6 -> 178.064
|
| 77 | dqfma0120 fma -91.6 5.29 0.153 -> -484.411
|
| 78 |
|
| 79 | -- cases where result is different from separate multiply + add; each
|
| 80 | -- is preceded by the result of unfused multiply and add
|
| 81 | -- [this is about 20% of all similar cases in general]
|
| 82 | -- -> 4.500119002100000209469729375698778E+38
|
| 83 | dqfma0202 fma 68537985861355864457.5694 6565875762972086605.85969 35892634447236753.172812 -> 4.500119002100000209469729375698779E+38 Inexact Rounded
|
| 84 | -- -> 5.996248469584594346858881620185514E+41
|
| 85 | dqfma0208 fma 89261822344727628571.9 6717595845654131383336.89 5061036497288796076266.11 -> 5.996248469584594346858881620185513E+41 Inexact Rounded
|
| 86 | -- -> 1.899242968678256924021594770874070E+34
|
| 87 | dqfma0210 fma 320506237232448685.495971 59257597764017967.984448 3205615239077711589912.85 -> 1.899242968678256924021594770874071E+34 Inexact Rounded
|
| 88 | -- -> 7.078596978842809537929699954860309E+37
|
| 89 | dqfma0215 fma 220247843259112263.17995 321392340287987979002.80 47533279819997167655440 -> 7.078596978842809537929699954860308E+37 Inexact Rounded
|
| 90 | -- -> 1.224955667581427559754106862350743E+37
|
| 91 | dqfma0226 fma 23880729790368880412.1449 512947333827064719.55407 217117438419590824502.963 -> 1.224955667581427559754106862350744E+37 Inexact Rounded
|
| 92 | -- -> -2.530094043253148806272276368579144E+42
|
| 93 | dqfma0229 fma 2539892357016099706.4126 -996142232667504817717435 53682082598315949425.937 -> -2.530094043253148806272276368579143E+42 Inexact Rounded
|
| 94 | -- -> 1.713387085759711954319391412788454E+37
|
| 95 | dqfma0233 fma 4546339491341624464.0804 3768717864169205581 83578980278690395184.620 -> 1.713387085759711954319391412788453E+37 Inexact Rounded
|
| 96 | -- -> 4.062275663405823716411579117771547E+35
|
| 97 | dqfma0235 fma 409242119433816131.42253 992633815166741501.477249 70179636544416756129546 -> 4.062275663405823716411579117771548E+35 Inexact Rounded
|
| 98 | -- -> 6.002604327732568490562249875306823E+47
|
| 99 | dqfma0258 fma 817941336593541742159684 733867339769310729266598 78563844650942419311830.8 -> 6.002604327732568490562249875306822E+47 Inexact Rounded
|
| 100 | -- -> -2.027022514381452197510103395283874E+39
|
| 101 | dqfma0264 fma 387617310169161270.737532 -5229442703414956061216.62 57665666816652967150473.5 -> -2.027022514381452197510103395283873E+39 Inexact Rounded
|
| 102 | -- -> -7.856525039803554001144089842730361E+37
|
| 103 | dqfma0267 fma -847655845720565274701.210 92685316564117739.83984 22780950041376424429.5686 -> -7.856525039803554001144089842730360E+37 Inexact Rounded
|
| 104 | -- -> 1.695515562011520746125607502237559E+38
|
| 105 | dqfma0268 fma 21590290365127685.3675 7853139227576541379426.8 -3275859437236180.761544 -> 1.695515562011520746125607502237558E+38 Inexact Rounded
|
| 106 | -- -> -8.448422935783289219748115038014710E+38
|
| 107 | dqfma0269 fma -974320636272862697.971586 867109103641860247440.756 -9775170775902454762.98 -> -8.448422935783289219748115038014709E+38 Inexact Rounded
|
| 108 |
|
| 109 | -- Cases where multiply would overflow or underflow if separate
|
| 110 | dqfma0300 fma 9e+6144 10 0 -> Infinity Overflow Inexact Rounded
|
| 111 | dqfma0301 fma 1e+6144 10 0 -> Infinity Overflow Inexact Rounded
|
| 112 | dqfma0302 fma 1e+6144 10 -1e+6144 -> 9.000000000000000000000000000000000E+6144 Clamped
|
| 113 | dqfma0303 fma 1e+6144 10 -9e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
|
| 114 | -- subnormal etc.
|
| 115 | dqfma0305 fma 1e-6176 0.1 0 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 116 | dqfma0306 fma 1e-6176 0.1 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 117 | dqfma0307 fma 1e-6176 0.1 1e-6176 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
| 118 |
|
| 119 | -- Infinite combinations
|
| 120 | dqfma0800 fma Inf Inf Inf -> Infinity
|
| 121 | dqfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
|
| 122 | dqfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
|
| 123 | dqfma0803 fma Inf -Inf -Inf -> -Infinity
|
| 124 | dqfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
|
| 125 | dqfma0805 fma -Inf Inf -Inf -> -Infinity
|
| 126 | dqfma0806 fma -Inf -Inf Inf -> Infinity
|
| 127 | dqfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
|
| 128 |
|
| 129 | -- Triple NaN propagation
|
| 130 | dqfma0900 fma NaN2 NaN3 NaN5 -> NaN2
|
| 131 | dqfma0901 fma 0 NaN3 NaN5 -> NaN3
|
| 132 | dqfma0902 fma 0 0 NaN5 -> NaN5
|
| 133 | -- first sNaN wins (consider qNaN from earlier sNaN being
|
| 134 | -- overridden by an sNaN in third operand)
|
| 135 | dqfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
|
| 136 | dqfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
|
| 137 | dqfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
|
| 138 | dqfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
|
| 139 | dqfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
|
| 140 | dqfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
|
| 141 |
|
| 142 | -- MULTIPLICATION TESTS ------------------------------------------------
|
| 143 | rounding: half_even
|
| 144 |
|
| 145 | -- sanity checks
|
| 146 | dqfma2000 fma 2 2 0e+6144 -> 4
|
| 147 | dqfma2001 fma 2 3 0e+6144 -> 6
|
| 148 | dqfma2002 fma 5 1 0e+6144 -> 5
|
| 149 | dqfma2003 fma 5 2 0e+6144 -> 10
|
| 150 | dqfma2004 fma 1.20 2 0e+6144 -> 2.40
|
| 151 | dqfma2005 fma 1.20 0 0e+6144 -> 0.00
|
| 152 | dqfma2006 fma 1.20 -2 0e+6144 -> -2.40
|
| 153 | dqfma2007 fma -1.20 2 0e+6144 -> -2.40
|
| 154 | dqfma2008 fma -1.20 0 0e+6144 -> 0.00
|
| 155 | dqfma2009 fma -1.20 -2 0e+6144 -> 2.40
|
| 156 | dqfma2010 fma 5.09 7.1 0e+6144 -> 36.139
|
| 157 | dqfma2011 fma 2.5 4 0e+6144 -> 10.0
|
| 158 | dqfma2012 fma 2.50 4 0e+6144 -> 10.00
|
| 159 | dqfma2013 fma 1.23456789 1.0000000000000000000000000000 0e+6144 -> 1.234567890000000000000000000000000 Rounded
|
| 160 | dqfma2015 fma 2.50 4 0e+6144 -> 10.00
|
| 161 | dqfma2016 fma 9.99999999999999999 9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
|
| 162 | dqfma2017 fma 9.99999999999999999 -9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
|
| 163 | dqfma2018 fma -9.99999999999999999 9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
|
| 164 | dqfma2019 fma -9.99999999999999999 -9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
|
| 165 |
|
| 166 | -- zeros, etc.
|
| 167 | dqfma2021 fma 0 0 0e+6144 -> 0
|
| 168 | dqfma2022 fma 0 -0 0e+6144 -> 0
|
| 169 | dqfma2023 fma -0 0 0e+6144 -> 0
|
| 170 | dqfma2024 fma -0 -0 0e+6144 -> 0
|
| 171 | dqfma2025 fma -0.0 -0.0 0e+6144 -> 0.00
|
| 172 | dqfma2026 fma -0.0 -0.0 0e+6144 -> 0.00
|
| 173 | dqfma2027 fma -0.0 -0.0 0e+6144 -> 0.00
|
| 174 | dqfma2028 fma -0.0 -0.0 0e+6144 -> 0.00
|
| 175 | dqfma2030 fma 5.00 1E-3 0e+6144 -> 0.00500
|
| 176 | dqfma2031 fma 00.00 0.000 0e+6144 -> 0.00000
|
| 177 | dqfma2032 fma 00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
| 178 | dqfma2033 fma 0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
|
| 179 | dqfma2034 fma -5.00 1E-3 0e+6144 -> -0.00500
|
| 180 | dqfma2035 fma -00.00 0.000 0e+6144 -> 0.00000
|
| 181 | dqfma2036 fma -00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
| 182 | dqfma2037 fma -0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
|
| 183 | dqfma2038 fma 5.00 -1E-3 0e+6144 -> -0.00500
|
| 184 | dqfma2039 fma 00.00 -0.000 0e+6144 -> 0.00000
|
| 185 | dqfma2040 fma 00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
| 186 | dqfma2041 fma 0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
|
| 187 | dqfma2042 fma -5.00 -1E-3 0e+6144 -> 0.00500
|
| 188 | dqfma2043 fma -00.00 -0.000 0e+6144 -> 0.00000
|
| 189 | dqfma2044 fma -00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
| 190 | dqfma2045 fma -0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
|
| 191 |
|
| 192 | -- examples from decarith
|
| 193 | dqfma2050 fma 1.20 3 0e+6144 -> 3.60
|
| 194 | dqfma2051 fma 7 3 0e+6144 -> 21
|
| 195 | dqfma2052 fma 0.9 0.8 0e+6144 -> 0.72
|
| 196 | dqfma2053 fma 0.9 -0 0e+6144 -> 0.0
|
| 197 | dqfma2054 fma 654321 654321 0e+6144 -> 428135971041
|
| 198 |
|
| 199 | dqfma2060 fma 123.45 1e7 0e+6144 -> 1.2345E+9
|
| 200 | dqfma2061 fma 123.45 1e8 0e+6144 -> 1.2345E+10
|
| 201 | dqfma2062 fma 123.45 1e+9 0e+6144 -> 1.2345E+11
|
| 202 | dqfma2063 fma 123.45 1e10 0e+6144 -> 1.2345E+12
|
| 203 | dqfma2064 fma 123.45 1e11 0e+6144 -> 1.2345E+13
|
| 204 | dqfma2065 fma 123.45 1e12 0e+6144 -> 1.2345E+14
|
| 205 | dqfma2066 fma 123.45 1e13 0e+6144 -> 1.2345E+15
|
| 206 |
|
| 207 |
|
| 208 | -- test some intermediate lengths
|
| 209 | -- 1234567890123456
|
| 210 | dqfma2080 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
|
| 211 | dqfma2084 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
|
| 212 | dqfma2090 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
|
| 213 | dqfma2094 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
|
| 214 |
|
| 215 | -- test some more edge cases and carries
|
| 216 | dqfma2101 fma 9 9 0e+6144 -> 81
|
| 217 | dqfma2102 fma 9 90 0e+6144 -> 810
|
| 218 | dqfma2103 fma 9 900 0e+6144 -> 8100
|
| 219 | dqfma2104 fma 9 9000 0e+6144 -> 81000
|
| 220 | dqfma2105 fma 9 90000 0e+6144 -> 810000
|
| 221 | dqfma2106 fma 9 900000 0e+6144 -> 8100000
|
| 222 | dqfma2107 fma 9 9000000 0e+6144 -> 81000000
|
| 223 | dqfma2108 fma 9 90000000 0e+6144 -> 810000000
|
| 224 | dqfma2109 fma 9 900000000 0e+6144 -> 8100000000
|
| 225 | dqfma2110 fma 9 9000000000 0e+6144 -> 81000000000
|
| 226 | dqfma2111 fma 9 90000000000 0e+6144 -> 810000000000
|
| 227 | dqfma2112 fma 9 900000000000 0e+6144 -> 8100000000000
|
| 228 | dqfma2113 fma 9 9000000000000 0e+6144 -> 81000000000000
|
| 229 | dqfma2114 fma 9 90000000000000 0e+6144 -> 810000000000000
|
| 230 | dqfma2115 fma 9 900000000000000 0e+6144 -> 8100000000000000
|
| 231 | --dqfma2116 fma 9 9000000000000000 0e+6144 -> 81000000000000000
|
| 232 | --dqfma2117 fma 9 90000000000000000 0e+6144 -> 810000000000000000
|
| 233 | --dqfma2118 fma 9 900000000000000000 0e+6144 -> 8100000000000000000
|
| 234 | --dqfma2119 fma 9 9000000000000000000 0e+6144 -> 81000000000000000000
|
| 235 | --dqfma2120 fma 9 90000000000000000000 0e+6144 -> 810000000000000000000
|
| 236 | --dqfma2121 fma 9 900000000000000000000 0e+6144 -> 8100000000000000000000
|
| 237 | --dqfma2122 fma 9 9000000000000000000000 0e+6144 -> 81000000000000000000000
|
| 238 | --dqfma2123 fma 9 90000000000000000000000 0e+6144 -> 810000000000000000000000
|
| 239 | -- test some more edge cases without carries
|
| 240 | dqfma2131 fma 3 3 0e+6144 -> 9
|
| 241 | dqfma2132 fma 3 30 0e+6144 -> 90
|
| 242 | dqfma2133 fma 3 300 0e+6144 -> 900
|
| 243 | dqfma2134 fma 3 3000 0e+6144 -> 9000
|
| 244 | dqfma2135 fma 3 30000 0e+6144 -> 90000
|
| 245 | dqfma2136 fma 3 300000 0e+6144 -> 900000
|
| 246 | dqfma2137 fma 3 3000000 0e+6144 -> 9000000
|
| 247 | dqfma2138 fma 3 30000000 0e+6144 -> 90000000
|
| 248 | dqfma2139 fma 3 300000000 0e+6144 -> 900000000
|
| 249 | dqfma2140 fma 3 3000000000 0e+6144 -> 9000000000
|
| 250 | dqfma2141 fma 3 30000000000 0e+6144 -> 90000000000
|
| 251 | dqfma2142 fma 3 300000000000 0e+6144 -> 900000000000
|
| 252 | dqfma2143 fma 3 3000000000000 0e+6144 -> 9000000000000
|
| 253 | dqfma2144 fma 3 30000000000000 0e+6144 -> 90000000000000
|
| 254 | dqfma2145 fma 3 300000000000000 0e+6144 -> 900000000000000
|
| 255 | dqfma2146 fma 3 3000000000000000 0e+6144 -> 9000000000000000
|
| 256 | dqfma2147 fma 3 30000000000000000 0e+6144 -> 90000000000000000
|
| 257 | dqfma2148 fma 3 300000000000000000 0e+6144 -> 900000000000000000
|
| 258 | dqfma2149 fma 3 3000000000000000000 0e+6144 -> 9000000000000000000
|
| 259 | dqfma2150 fma 3 30000000000000000000 0e+6144 -> 90000000000000000000
|
| 260 | dqfma2151 fma 3 300000000000000000000 0e+6144 -> 900000000000000000000
|
| 261 | dqfma2152 fma 3 3000000000000000000000 0e+6144 -> 9000000000000000000000
|
| 262 | dqfma2153 fma 3 30000000000000000000000 0e+6144 -> 90000000000000000000000
|
| 263 |
|
| 264 | dqfma2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0e+6144 -> 145433.2908011933696719165119928296 Inexact Rounded
|
| 265 |
|
| 266 | -- test some edge cases with exact rounding
|
| 267 | dqfma2301 fma 900000000000000000 9 0e+6144 -> 8100000000000000000
|
| 268 | dqfma2302 fma 900000000000000000 90 0e+6144 -> 81000000000000000000
|
| 269 | dqfma2303 fma 900000000000000000 900 0e+6144 -> 810000000000000000000
|
| 270 | dqfma2304 fma 900000000000000000 9000 0e+6144 -> 8100000000000000000000
|
| 271 | dqfma2305 fma 900000000000000000 90000 0e+6144 -> 81000000000000000000000
|
| 272 | dqfma2306 fma 900000000000000000 900000 0e+6144 -> 810000000000000000000000
|
| 273 | dqfma2307 fma 900000000000000000 9000000 0e+6144 -> 8100000000000000000000000
|
| 274 | dqfma2308 fma 900000000000000000 90000000 0e+6144 -> 81000000000000000000000000
|
| 275 | dqfma2309 fma 900000000000000000 900000000 0e+6144 -> 810000000000000000000000000
|
| 276 | dqfma2310 fma 900000000000000000 9000000000 0e+6144 -> 8100000000000000000000000000
|
| 277 | dqfma2311 fma 900000000000000000 90000000000 0e+6144 -> 81000000000000000000000000000
|
| 278 | dqfma2312 fma 900000000000000000 900000000000 0e+6144 -> 810000000000000000000000000000
|
| 279 | dqfma2313 fma 900000000000000000 9000000000000 0e+6144 -> 8100000000000000000000000000000
|
| 280 | dqfma2314 fma 900000000000000000 90000000000000 0e+6144 -> 81000000000000000000000000000000
|
| 281 | dqfma2315 fma 900000000000000000 900000000000000 0e+6144 -> 810000000000000000000000000000000
|
| 282 | dqfma2316 fma 900000000000000000 9000000000000000 0e+6144 -> 8100000000000000000000000000000000
|
| 283 | dqfma2317 fma 9000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+34 Rounded
|
| 284 | dqfma2318 fma 90000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+35 Rounded
|
| 285 | dqfma2319 fma 900000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+36 Rounded
|
| 286 | dqfma2320 fma 9000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+37 Rounded
|
| 287 | dqfma2321 fma 90000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+38 Rounded
|
| 288 | dqfma2322 fma 900000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+39 Rounded
|
| 289 | dqfma2323 fma 9000000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+40 Rounded
|
| 290 |
|
| 291 | -- tryzeros cases
|
| 292 | dqfma2504 fma 0E-4260 1000E-4260 0e+6144 -> 0E-6176 Clamped
|
| 293 | dqfma2505 fma 100E+4260 0E+4260 0e+6144 -> 0E+6111 Clamped
|
| 294 |
|
| 295 | -- mixed with zeros
|
| 296 | dqfma2541 fma 0 -1 0e+6144 -> 0
|
| 297 | dqfma2542 fma -0 -1 0e+6144 -> 0
|
| 298 | dqfma2543 fma 0 1 0e+6144 -> 0
|
| 299 | dqfma2544 fma -0 1 0e+6144 -> 0
|
| 300 | dqfma2545 fma -1 0 0e+6144 -> 0
|
| 301 | dqfma2546 fma -1 -0 0e+6144 -> 0
|
| 302 | dqfma2547 fma 1 0 0e+6144 -> 0
|
| 303 | dqfma2548 fma 1 -0 0e+6144 -> 0
|
| 304 |
|
| 305 | dqfma2551 fma 0.0 -1 0e+6144 -> 0.0
|
| 306 | dqfma2552 fma -0.0 -1 0e+6144 -> 0.0
|
| 307 | dqfma2553 fma 0.0 1 0e+6144 -> 0.0
|
| 308 | dqfma2554 fma -0.0 1 0e+6144 -> 0.0
|
| 309 | dqfma2555 fma -1.0 0 0e+6144 -> 0.0
|
| 310 | dqfma2556 fma -1.0 -0 0e+6144 -> 0.0
|
| 311 | dqfma2557 fma 1.0 0 0e+6144 -> 0.0
|
| 312 | dqfma2558 fma 1.0 -0 0e+6144 -> 0.0
|
| 313 |
|
| 314 | dqfma2561 fma 0 -1.0 0e+6144 -> 0.0
|
| 315 | dqfma2562 fma -0 -1.0 0e+6144 -> 0.0
|
| 316 | dqfma2563 fma 0 1.0 0e+6144 -> 0.0
|
| 317 | dqfma2564 fma -0 1.0 0e+6144 -> 0.0
|
| 318 | dqfma2565 fma -1 0.0 0e+6144 -> 0.0
|
| 319 | dqfma2566 fma -1 -0.0 0e+6144 -> 0.0
|
| 320 | dqfma2567 fma 1 0.0 0e+6144 -> 0.0
|
| 321 | dqfma2568 fma 1 -0.0 0e+6144 -> 0.0
|
| 322 |
|
| 323 | dqfma2571 fma 0.0 -1.0 0e+6144 -> 0.00
|
| 324 | dqfma2572 fma -0.0 -1.0 0e+6144 -> 0.00
|
| 325 | dqfma2573 fma 0.0 1.0 0e+6144 -> 0.00
|
| 326 | dqfma2574 fma -0.0 1.0 0e+6144 -> 0.00
|
| 327 | dqfma2575 fma -1.0 0.0 0e+6144 -> 0.00
|
| 328 | dqfma2576 fma -1.0 -0.0 0e+6144 -> 0.00
|
| 329 | dqfma2577 fma 1.0 0.0 0e+6144 -> 0.00
|
| 330 | dqfma2578 fma 1.0 -0.0 0e+6144 -> 0.00
|
| 331 | dqfma2579 fma 1.0 0.0 0e+6144 -> 0.00
|
| 332 | dqfma2530 fma -1.0 -0.0 0e+6144 -> 0.00
|
| 333 | dqfma2531 fma -1.0 0.0 0e+6144 -> 0.00
|
| 334 | dqfma2532 fma 1.0 -0.0 -0e+6144 -> -0.00
|
| 335 | dqfma2533 fma 1.0 0.0 -0e+6144 -> 0.00
|
| 336 | dqfma2534 fma -1.0 -0.0 -0e+6144 -> 0.00
|
| 337 | dqfma2535 fma -1.0 0.0 -0e+6144 -> -0.00
|
| 338 |
|
| 339 |
|
| 340 | -- Specials
|
| 341 | dqfma2580 fma Inf -Inf 0e+6144 -> -Infinity
|
| 342 | dqfma2581 fma Inf -1000 0e+6144 -> -Infinity
|
| 343 | dqfma2582 fma Inf -1 0e+6144 -> -Infinity
|
| 344 | dqfma2583 fma Inf -0 0e+6144 -> NaN Invalid_operation
|
| 345 | dqfma2584 fma Inf 0 0e+6144 -> NaN Invalid_operation
|
| 346 | dqfma2585 fma Inf 1 0e+6144 -> Infinity
|
| 347 | dqfma2586 fma Inf 1000 0e+6144 -> Infinity
|
| 348 | dqfma2587 fma Inf Inf 0e+6144 -> Infinity
|
| 349 | dqfma2588 fma -1000 Inf 0e+6144 -> -Infinity
|
| 350 | dqfma2589 fma -Inf Inf 0e+6144 -> -Infinity
|
| 351 | dqfma2590 fma -1 Inf 0e+6144 -> -Infinity
|
| 352 | dqfma2591 fma -0 Inf 0e+6144 -> NaN Invalid_operation
|
| 353 | dqfma2592 fma 0 Inf 0e+6144 -> NaN Invalid_operation
|
| 354 | dqfma2593 fma 1 Inf 0e+6144 -> Infinity
|
| 355 | dqfma2594 fma 1000 Inf 0e+6144 -> Infinity
|
| 356 | dqfma2595 fma Inf Inf 0e+6144 -> Infinity
|
| 357 |
|
| 358 | dqfma2600 fma -Inf -Inf 0e+6144 -> Infinity
|
| 359 | dqfma2601 fma -Inf -1000 0e+6144 -> Infinity
|
| 360 | dqfma2602 fma -Inf -1 0e+6144 -> Infinity
|
| 361 | dqfma2603 fma -Inf -0 0e+6144 -> NaN Invalid_operation
|
| 362 | dqfma2604 fma -Inf 0 0e+6144 -> NaN Invalid_operation
|
| 363 | dqfma2605 fma -Inf 1 0e+6144 -> -Infinity
|
| 364 | dqfma2606 fma -Inf 1000 0e+6144 -> -Infinity
|
| 365 | dqfma2607 fma -Inf Inf 0e+6144 -> -Infinity
|
| 366 | dqfma2608 fma -1000 Inf 0e+6144 -> -Infinity
|
| 367 | dqfma2609 fma -Inf -Inf 0e+6144 -> Infinity
|
| 368 | dqfma2610 fma -1 -Inf 0e+6144 -> Infinity
|
| 369 | dqfma2611 fma -0 -Inf 0e+6144 -> NaN Invalid_operation
|
| 370 | dqfma2612 fma 0 -Inf 0e+6144 -> NaN Invalid_operation
|
| 371 | dqfma2613 fma 1 -Inf 0e+6144 -> -Infinity
|
| 372 | dqfma2614 fma 1000 -Inf 0e+6144 -> -Infinity
|
| 373 | dqfma2615 fma Inf -Inf 0e+6144 -> -Infinity
|
| 374 |
|
| 375 | dqfma2621 fma NaN -Inf 0e+6144 -> NaN
|
| 376 | dqfma2622 fma NaN -1000 0e+6144 -> NaN
|
| 377 | dqfma2623 fma NaN -1 0e+6144 -> NaN
|
| 378 | dqfma2624 fma NaN -0 0e+6144 -> NaN
|
| 379 | dqfma2625 fma NaN 0 0e+6144 -> NaN
|
| 380 | dqfma2626 fma NaN 1 0e+6144 -> NaN
|
| 381 | dqfma2627 fma NaN 1000 0e+6144 -> NaN
|
| 382 | dqfma2628 fma NaN Inf 0e+6144 -> NaN
|
| 383 | dqfma2629 fma NaN NaN 0e+6144 -> NaN
|
| 384 | dqfma2630 fma -Inf NaN 0e+6144 -> NaN
|
| 385 | dqfma2631 fma -1000 NaN 0e+6144 -> NaN
|
| 386 | dqfma2632 fma -1 NaN 0e+6144 -> NaN
|
| 387 | dqfma2633 fma -0 NaN 0e+6144 -> NaN
|
| 388 | dqfma2634 fma 0 NaN 0e+6144 -> NaN
|
| 389 | dqfma2635 fma 1 NaN 0e+6144 -> NaN
|
| 390 | dqfma2636 fma 1000 NaN 0e+6144 -> NaN
|
| 391 | dqfma2637 fma Inf NaN 0e+6144 -> NaN
|
| 392 |
|
| 393 | dqfma2641 fma sNaN -Inf 0e+6144 -> NaN Invalid_operation
|
| 394 | dqfma2642 fma sNaN -1000 0e+6144 -> NaN Invalid_operation
|
| 395 | dqfma2643 fma sNaN -1 0e+6144 -> NaN Invalid_operation
|
| 396 | dqfma2644 fma sNaN -0 0e+6144 -> NaN Invalid_operation
|
| 397 | dqfma2645 fma sNaN 0 0e+6144 -> NaN Invalid_operation
|
| 398 | dqfma2646 fma sNaN 1 0e+6144 -> NaN Invalid_operation
|
| 399 | dqfma2647 fma sNaN 1000 0e+6144 -> NaN Invalid_operation
|
| 400 | dqfma2648 fma sNaN NaN 0e+6144 -> NaN Invalid_operation
|
| 401 | dqfma2649 fma sNaN sNaN 0e+6144 -> NaN Invalid_operation
|
| 402 | dqfma2650 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
|
| 403 | dqfma2651 fma -Inf sNaN 0e+6144 -> NaN Invalid_operation
|
| 404 | dqfma2652 fma -1000 sNaN 0e+6144 -> NaN Invalid_operation
|
| 405 | dqfma2653 fma -1 sNaN 0e+6144 -> NaN Invalid_operation
|
| 406 | dqfma2654 fma -0 sNaN 0e+6144 -> NaN Invalid_operation
|
| 407 | dqfma2655 fma 0 sNaN 0e+6144 -> NaN Invalid_operation
|
| 408 | dqfma2656 fma 1 sNaN 0e+6144 -> NaN Invalid_operation
|
| 409 | dqfma2657 fma 1000 sNaN 0e+6144 -> NaN Invalid_operation
|
| 410 | dqfma2658 fma Inf sNaN 0e+6144 -> NaN Invalid_operation
|
| 411 | dqfma2659 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
|
| 412 |
|
| 413 | -- propagating NaNs
|
| 414 | dqfma2661 fma NaN9 -Inf 0e+6144 -> NaN9
|
| 415 | dqfma2662 fma NaN8 999 0e+6144 -> NaN8
|
| 416 | dqfma2663 fma NaN71 Inf 0e+6144 -> NaN71
|
| 417 | dqfma2664 fma NaN6 NaN5 0e+6144 -> NaN6
|
| 418 | dqfma2665 fma -Inf NaN4 0e+6144 -> NaN4
|
| 419 | dqfma2666 fma -999 NaN33 0e+6144 -> NaN33
|
| 420 | dqfma2667 fma Inf NaN2 0e+6144 -> NaN2
|
| 421 |
|
| 422 | dqfma2671 fma sNaN99 -Inf 0e+6144 -> NaN99 Invalid_operation
|
| 423 | dqfma2672 fma sNaN98 -11 0e+6144 -> NaN98 Invalid_operation
|
| 424 | dqfma2673 fma sNaN97 NaN 0e+6144 -> NaN97 Invalid_operation
|
| 425 | dqfma2674 fma sNaN16 sNaN94 0e+6144 -> NaN16 Invalid_operation
|
| 426 | dqfma2675 fma NaN95 sNaN93 0e+6144 -> NaN93 Invalid_operation
|
| 427 | dqfma2676 fma -Inf sNaN92 0e+6144 -> NaN92 Invalid_operation
|
| 428 | dqfma2677 fma 088 sNaN91 0e+6144 -> NaN91 Invalid_operation
|
| 429 | dqfma2678 fma Inf sNaN90 0e+6144 -> NaN90 Invalid_operation
|
| 430 | dqfma2679 fma NaN sNaN89 0e+6144 -> NaN89 Invalid_operation
|
| 431 |
|
| 432 | dqfma2681 fma -NaN9 -Inf 0e+6144 -> -NaN9
|
| 433 | dqfma2682 fma -NaN8 999 0e+6144 -> -NaN8
|
| 434 | dqfma2683 fma -NaN71 Inf 0e+6144 -> -NaN71
|
| 435 | dqfma2684 fma -NaN6 -NaN5 0e+6144 -> -NaN6
|
| 436 | dqfma2685 fma -Inf -NaN4 0e+6144 -> -NaN4
|
| 437 | dqfma2686 fma -999 -NaN33 0e+6144 -> -NaN33
|
| 438 | dqfma2687 fma Inf -NaN2 0e+6144 -> -NaN2
|
| 439 |
|
| 440 | dqfma2691 fma -sNaN99 -Inf 0e+6144 -> -NaN99 Invalid_operation
|
| 441 | dqfma2692 fma -sNaN98 -11 0e+6144 -> -NaN98 Invalid_operation
|
| 442 | dqfma2693 fma -sNaN97 NaN 0e+6144 -> -NaN97 Invalid_operation
|
| 443 | dqfma2694 fma -sNaN16 -sNaN94 0e+6144 -> -NaN16 Invalid_operation
|
| 444 | dqfma2695 fma -NaN95 -sNaN93 0e+6144 -> -NaN93 Invalid_operation
|
| 445 | dqfma2696 fma -Inf -sNaN92 0e+6144 -> -NaN92 Invalid_operation
|
| 446 | dqfma2697 fma 088 -sNaN91 0e+6144 -> -NaN91 Invalid_operation
|
| 447 | dqfma2698 fma Inf -sNaN90 0e+6144 -> -NaN90 Invalid_operation
|
| 448 | dqfma2699 fma -NaN -sNaN89 0e+6144 -> -NaN89 Invalid_operation
|
| 449 |
|
| 450 | dqfma2701 fma -NaN -Inf 0e+6144 -> -NaN
|
| 451 | dqfma2702 fma -NaN 999 0e+6144 -> -NaN
|
| 452 | dqfma2703 fma -NaN Inf 0e+6144 -> -NaN
|
| 453 | dqfma2704 fma -NaN -NaN 0e+6144 -> -NaN
|
| 454 | dqfma2705 fma -Inf -NaN0 0e+6144 -> -NaN
|
| 455 | dqfma2706 fma -999 -NaN 0e+6144 -> -NaN
|
| 456 | dqfma2707 fma Inf -NaN 0e+6144 -> -NaN
|
| 457 |
|
| 458 | dqfma2711 fma -sNaN -Inf 0e+6144 -> -NaN Invalid_operation
|
| 459 | dqfma2712 fma -sNaN -11 0e+6144 -> -NaN Invalid_operation
|
| 460 | dqfma2713 fma -sNaN00 NaN 0e+6144 -> -NaN Invalid_operation
|
| 461 | dqfma2714 fma -sNaN -sNaN 0e+6144 -> -NaN Invalid_operation
|
| 462 | dqfma2715 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
|
| 463 | dqfma2716 fma -Inf -sNaN 0e+6144 -> -NaN Invalid_operation
|
| 464 | dqfma2717 fma 088 -sNaN 0e+6144 -> -NaN Invalid_operation
|
| 465 | dqfma2718 fma Inf -sNaN 0e+6144 -> -NaN Invalid_operation
|
| 466 | dqfma2719 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
|
| 467 |
|
| 468 | -- overflow and underflow tests .. note subnormal results
|
| 469 | -- signs
|
| 470 | dqfma2751 fma 1e+4277 1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 471 | dqfma2752 fma 1e+4277 -1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
|
| 472 | dqfma2753 fma -1e+4277 1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
|
| 473 | dqfma2754 fma -1e+4277 -1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 474 | dqfma2755 fma 1e-4277 1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 475 | dqfma2756 fma 1e-4277 -1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 476 | dqfma2757 fma -1e-4277 1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 477 | dqfma2758 fma -1e-4277 -1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 478 |
|
| 479 | -- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
|
| 480 | dqfma2760 fma 1e-6069 1e-101 0e+6144 -> 1E-6170 Subnormal
|
| 481 | dqfma2761 fma 1e-6069 1e-102 0e+6144 -> 1E-6171 Subnormal
|
| 482 | dqfma2762 fma 1e-6069 1e-103 0e+6144 -> 1E-6172 Subnormal
|
| 483 | dqfma2763 fma 1e-6069 1e-104 0e+6144 -> 1E-6173 Subnormal
|
| 484 | dqfma2764 fma 1e-6069 1e-105 0e+6144 -> 1E-6174 Subnormal
|
| 485 | dqfma2765 fma 1e-6069 1e-106 0e+6144 -> 1E-6175 Subnormal
|
| 486 | dqfma2766 fma 1e-6069 1e-107 0e+6144 -> 1E-6176 Subnormal
|
| 487 | dqfma2767 fma 1e-6069 1e-108 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 488 | dqfma2768 fma 1e-6069 1e-109 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 489 | dqfma2769 fma 1e-6069 1e-110 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 490 | -- [no equivalent of 'subnormal' for overflow]
|
| 491 | dqfma2770 fma 1e+40 1e+6101 0e+6144 -> 1.000000000000000000000000000000E+6141 Clamped
|
| 492 | dqfma2771 fma 1e+40 1e+6102 0e+6144 -> 1.0000000000000000000000000000000E+6142 Clamped
|
| 493 | dqfma2772 fma 1e+40 1e+6103 0e+6144 -> 1.00000000000000000000000000000000E+6143 Clamped
|
| 494 | dqfma2773 fma 1e+40 1e+6104 0e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
|
| 495 | dqfma2774 fma 1e+40 1e+6105 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 496 | dqfma2775 fma 1e+40 1e+6106 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 497 | dqfma2776 fma 1e+40 1e+6107 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 498 | dqfma2777 fma 1e+40 1e+6108 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 499 | dqfma2778 fma 1e+40 1e+6109 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 500 | dqfma2779 fma 1e+40 1e+6110 0e+6144 -> Infinity Overflow Inexact Rounded
|
| 501 |
|
| 502 | dqfma2801 fma 1.0000E-6172 1 0e+6144 -> 1.0000E-6172 Subnormal
|
| 503 | dqfma2802 fma 1.000E-6172 1e-1 0e+6144 -> 1.000E-6173 Subnormal
|
| 504 | dqfma2803 fma 1.00E-6172 1e-2 0e+6144 -> 1.00E-6174 Subnormal
|
| 505 | dqfma2804 fma 1.0E-6172 1e-3 0e+6144 -> 1.0E-6175 Subnormal
|
| 506 | dqfma2805 fma 1.0E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal Rounded
|
| 507 | dqfma2806 fma 1.3E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
| 508 | dqfma2807 fma 1.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 509 | dqfma2808 fma 1.7E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 510 | dqfma2809 fma 2.3E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 511 | dqfma2810 fma 2.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 512 | dqfma2811 fma 2.7E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
|
| 513 | dqfma2812 fma 1.49E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
| 514 | dqfma2813 fma 1.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 515 | dqfma2814 fma 1.51E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 516 | dqfma2815 fma 2.49E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 517 | dqfma2816 fma 2.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
| 518 | dqfma2817 fma 2.51E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
|
| 519 |
|
| 520 | dqfma2818 fma 1E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal
|
| 521 | dqfma2819 fma 3E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 522 | dqfma2820 fma 5E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 523 | dqfma2821 fma 7E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
| 524 | dqfma2822 fma 9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
| 525 | dqfma2823 fma 9.9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
| 526 |
|
| 527 | dqfma2824 fma 1E-6172 -1e-4 0e+6144 -> -1E-6176 Subnormal
|
| 528 | dqfma2825 fma 3E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 529 | dqfma2826 fma -5E-6172 1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 530 | dqfma2827 fma 7E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
|
| 531 | dqfma2828 fma -9E-6172 1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
|
| 532 | dqfma2829 fma 9.9E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
|
| 533 | dqfma2830 fma 3.0E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 534 |
|
| 535 | dqfma2831 fma 1.0E-5977 1e-200 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
| 536 | dqfma2832 fma 1.0E-5977 1e-199 0e+6144 -> 1E-6176 Subnormal Rounded
|
| 537 | dqfma2833 fma 1.0E-5977 1e-198 0e+6144 -> 1.0E-6175 Subnormal
|
| 538 | dqfma2834 fma 2.0E-5977 2e-198 0e+6144 -> 4.0E-6175 Subnormal
|
| 539 | dqfma2835 fma 4.0E-5977 4e-198 0e+6144 -> 1.60E-6174 Subnormal
|
| 540 | dqfma2836 fma 10.0E-5977 10e-198 0e+6144 -> 1.000E-6173 Subnormal
|
| 541 | dqfma2837 fma 30.0E-5977 30e-198 0e+6144 -> 9.000E-6173 Subnormal
|
| 542 | dqfma2838 fma 40.0E-5982 40e-166 0e+6144 -> 1.6000E-6145 Subnormal
|
| 543 | dqfma2839 fma 40.0E-5982 40e-165 0e+6144 -> 1.6000E-6144 Subnormal
|
| 544 | dqfma2840 fma 40.0E-5982 40e-164 0e+6144 -> 1.6000E-6143
|
| 545 |
|
| 546 | -- Long operand overflow may be a different path
|
| 547 | dqfma2870 fma 100 9.999E+6143 0e+6144 -> Infinity Inexact Overflow Rounded
|
| 548 | dqfma2871 fma 100 -9.999E+6143 0e+6144 -> -Infinity Inexact Overflow Rounded
|
| 549 | dqfma2872 fma 9.999E+6143 100 0e+6144 -> Infinity Inexact Overflow Rounded
|
| 550 | dqfma2873 fma -9.999E+6143 100 0e+6144 -> -Infinity Inexact Overflow Rounded
|
| 551 |
|
| 552 | -- check for double-rounded subnormals
|
| 553 | dqfma2881 fma 1.2347E-6133 1.2347E-40 0e+6144 -> 1.524E-6173 Inexact Rounded Subnormal Underflow
|
| 554 | dqfma2882 fma 1.234E-6133 1.234E-40 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
|
| 555 | dqfma2883 fma 1.23E-6133 1.23E-40 0e+6144 -> 1.513E-6173 Inexact Rounded Subnormal Underflow
|
| 556 | dqfma2884 fma 1.2E-6133 1.2E-40 0e+6144 -> 1.44E-6173 Subnormal
|
| 557 | dqfma2885 fma 1.2E-6133 1.2E-41 0e+6144 -> 1.44E-6174 Subnormal
|
| 558 | dqfma2886 fma 1.2E-6133 1.2E-42 0e+6144 -> 1.4E-6175 Subnormal Inexact Rounded Underflow
|
| 559 | dqfma2887 fma 1.2E-6133 1.3E-42 0e+6144 -> 1.6E-6175 Subnormal Inexact Rounded Underflow
|
| 560 | dqfma2888 fma 1.3E-6133 1.3E-42 0e+6144 -> 1.7E-6175 Subnormal Inexact Rounded Underflow
|
| 561 | dqfma2889 fma 1.3E-6133 1.3E-43 0e+6144 -> 2E-6176 Subnormal Inexact Rounded Underflow
|
| 562 | dqfma2890 fma 1.3E-6134 1.3E-43 0e+6144 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow
|
| 563 |
|
| 564 | dqfma2891 fma 1.2345E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
|
| 565 | dqfma2892 fma 1.23456E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
|
| 566 | dqfma2893 fma 1.2345E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
|
| 567 | dqfma2894 fma 1.23456E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
|
| 568 | dqfma2895 fma 1.2345E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
|
| 569 | dqfma2896 fma 1.23456E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
|
| 570 |
|
| 571 | -- Now explore the case where we get a normal result with Underflow
|
| 572 | -- prove operands are exact
|
| 573 | dqfma2906 fma 9.999999999999999999999999999999999E-6143 1 0e+6144 -> 9.999999999999999999999999999999999E-6143
|
| 574 | dqfma2907 fma 1 0.09999999999999999999999999999999999 0e+6144 -> 0.09999999999999999999999999999999999
|
| 575 | -- the next rounds to Nmin
|
| 576 | dqfma2908 fma 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 0e+6144 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded
|
| 577 |
|
| 578 | -- hugest
|
| 579 | dqfma2909 fma 9999999999999999999999999999999999 9999999999999999999999999999999999 0e+6144 -> 9.999999999999999999999999999999998E+67 Inexact Rounded
|
| 580 |
|
| 581 | -- Examples from SQL proposal (Krishna Kulkarni)
|
| 582 | precision: 34
|
| 583 | rounding: half_up
|
| 584 | maxExponent: 6144
|
| 585 | minExponent: -6143
|
| 586 | dqfma21001 fma 130E-2 120E-2 0e+6144 -> 1.5600
|
| 587 | dqfma21002 fma 130E-2 12E-1 0e+6144 -> 1.560
|
| 588 | dqfma21003 fma 130E-2 1E0 0e+6144 -> 1.30
|
| 589 | dqfma21004 fma 1E2 1E4 0e+6144 -> 1E+6
|
| 590 |
|
| 591 | -- Null tests
|
| 592 | dqfma2990 fma 10 # 0e+6144 -> NaN Invalid_operation
|
| 593 | dqfma2991 fma # 10 0e+6144 -> NaN Invalid_operation
|
| 594 |
|
| 595 |
|
| 596 | -- ADDITION TESTS ------------------------------------------------------
|
| 597 | rounding: half_even
|
| 598 |
|
| 599 | -- [first group are 'quick confidence check']
|
| 600 | dqadd3001 fma 1 1 1 -> 2
|
| 601 | dqadd3002 fma 1 2 3 -> 5
|
| 602 | dqadd3003 fma 1 '5.75' '3.3' -> 9.05
|
| 603 | dqadd3004 fma 1 '5' '-3' -> 2
|
| 604 | dqadd3005 fma 1 '-5' '-3' -> -8
|
| 605 | dqadd3006 fma 1 '-7' '2.5' -> -4.5
|
| 606 | dqadd3007 fma 1 '0.7' '0.3' -> 1.0
|
| 607 | dqadd3008 fma 1 '1.25' '1.25' -> 2.50
|
| 608 | dqadd3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
|
| 609 | dqadd3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
|
| 610 |
|
| 611 | -- 1234567890123456 1234567890123456
|
| 612 | dqadd3011 fma 1 '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded
|
| 613 | dqadd3012 fma 1 '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded
|
| 614 | dqadd3013 fma 1 '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999'
|
| 615 | dqadd3014 fma 1 '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded
|
| 616 | dqadd3015 fma 1 '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded
|
| 617 | dqadd3016 fma 1 '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded
|
| 618 | dqadd3017 fma 1 '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded
|
| 619 | dqadd3018 fma 1 '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded
|
| 620 | dqadd3019 fma 1 '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded
|
| 621 | dqadd3020 fma 1 '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded
|
| 622 |
|
| 623 | dqadd3021 fma 1 0 1 -> 1
|
| 624 | dqadd3022 fma 1 1 1 -> 2
|
| 625 | dqadd3023 fma 1 2 1 -> 3
|
| 626 | dqadd3024 fma 1 3 1 -> 4
|
| 627 | dqadd3025 fma 1 4 1 -> 5
|
| 628 | dqadd3026 fma 1 5 1 -> 6
|
| 629 | dqadd3027 fma 1 6 1 -> 7
|
| 630 | dqadd3028 fma 1 7 1 -> 8
|
| 631 | dqadd3029 fma 1 8 1 -> 9
|
| 632 | dqadd3030 fma 1 9 1 -> 10
|
| 633 |
|
| 634 | -- some carrying effects
|
| 635 | dqadd3031 fma 1 '0.9998' '0.0000' -> '0.9998'
|
| 636 | dqadd3032 fma 1 '0.9998' '0.0001' -> '0.9999'
|
| 637 | dqadd3033 fma 1 '0.9998' '0.0002' -> '1.0000'
|
| 638 | dqadd3034 fma 1 '0.9998' '0.0003' -> '1.0001'
|
| 639 |
|
| 640 | dqadd3035 fma 1 '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
| 641 | dqadd3036 fma 1 '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
| 642 | dqadd3037 fma 1 '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
| 643 | dqadd3038 fma 1 '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
|
| 644 | dqadd3039 fma 1 '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded
|
| 645 |
|
| 646 | -- symmetry:
|
| 647 | dqadd3040 fma 1 '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
| 648 | dqadd3041 fma 1 '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
| 649 | dqadd3042 fma 1 '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
| 650 | dqadd3044 fma 1 '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
|
| 651 | dqadd3045 fma 1 '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded
|
| 652 |
|
| 653 | -- same, without rounding
|
| 654 | dqadd3046 fma 1 '10000e+9' '7' -> '10000000000007'
|
| 655 | dqadd3047 fma 1 '10000e+9' '70' -> '10000000000070'
|
| 656 | dqadd3048 fma 1 '10000e+9' '700' -> '10000000000700'
|
| 657 | dqadd3049 fma 1 '10000e+9' '7000' -> '10000000007000'
|
| 658 | dqadd3050 fma 1 '10000e+9' '70000' -> '10000000070000'
|
| 659 | dqadd3051 fma 1 '10000e+9' '700000' -> '10000000700000'
|
| 660 | dqadd3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
|
| 661 |
|
| 662 | -- examples from decarith
|
| 663 | dqadd3053 fma 1 '12' '7.00' -> '19.00'
|
| 664 | dqadd3054 fma 1 '1.3' '-1.07' -> '0.23'
|
| 665 | dqadd3055 fma 1 '1.3' '-1.30' -> '0.00'
|
| 666 | dqadd3056 fma 1 '1.3' '-2.07' -> '-0.77'
|
| 667 | dqadd3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
|
| 668 |
|
| 669 | -- leading zero preservation
|
| 670 | dqadd3061 fma 1 1 '0.0001' -> '1.0001'
|
| 671 | dqadd3062 fma 1 1 '0.00001' -> '1.00001'
|
| 672 | dqadd3063 fma 1 1 '0.000001' -> '1.000001'
|
| 673 | dqadd3064 fma 1 1 '0.0000001' -> '1.0000001'
|
| 674 | dqadd3065 fma 1 1 '0.00000001' -> '1.00000001'
|
| 675 |
|
| 676 | -- some funny zeros [in case of bad signum]
|
| 677 | dqadd3070 fma 1 1 0 -> 1
|
| 678 | dqadd3071 fma 1 1 0. -> 1
|
| 679 | dqadd3072 fma 1 1 .0 -> 1.0
|
| 680 | dqadd3073 fma 1 1 0.0 -> 1.0
|
| 681 | dqadd3074 fma 1 1 0.00 -> 1.00
|
| 682 | dqadd3075 fma 1 0 1 -> 1
|
| 683 | dqadd3076 fma 1 0. 1 -> 1
|
| 684 | dqadd3077 fma 1 .0 1 -> 1.0
|
| 685 | dqadd3078 fma 1 0.0 1 -> 1.0
|
| 686 | dqadd3079 fma 1 0.00 1 -> 1.00
|
| 687 |
|
| 688 | -- some carries
|
| 689 | dqadd3080 fma 1 999999998 1 -> 999999999
|
| 690 | dqadd3081 fma 1 999999999 1 -> 1000000000
|
| 691 | dqadd3082 fma 1 99999999 1 -> 100000000
|
| 692 | dqadd3083 fma 1 9999999 1 -> 10000000
|
| 693 | dqadd3084 fma 1 999999 1 -> 1000000
|
| 694 | dqadd3085 fma 1 99999 1 -> 100000
|
| 695 | dqadd3086 fma 1 9999 1 -> 10000
|
| 696 | dqadd3087 fma 1 999 1 -> 1000
|
| 697 | dqadd3088 fma 1 99 1 -> 100
|
| 698 | dqadd3089 fma 1 9 1 -> 10
|
| 699 |
|
| 700 |
|
| 701 | -- more LHS swaps
|
| 702 | dqadd3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
|
| 703 | dqadd3091 fma 1 '-56267E-6' 0 -> '-0.056267'
|
| 704 | dqadd3092 fma 1 '-56267E-5' 0 -> '-0.56267'
|
| 705 | dqadd3093 fma 1 '-56267E-4' 0 -> '-5.6267'
|
| 706 | dqadd3094 fma 1 '-56267E-3' 0 -> '-56.267'
|
| 707 | dqadd3095 fma 1 '-56267E-2' 0 -> '-562.67'
|
| 708 | dqadd3096 fma 1 '-56267E-1' 0 -> '-5626.7'
|
| 709 | dqadd3097 fma 1 '-56267E-0' 0 -> '-56267'
|
| 710 | dqadd3098 fma 1 '-5E-10' 0 -> '-5E-10'
|
| 711 | dqadd3099 fma 1 '-5E-7' 0 -> '-5E-7'
|
| 712 | dqadd3100 fma 1 '-5E-6' 0 -> '-0.000005'
|
| 713 | dqadd3101 fma 1 '-5E-5' 0 -> '-0.00005'
|
| 714 | dqadd3102 fma 1 '-5E-4' 0 -> '-0.0005'
|
| 715 | dqadd3103 fma 1 '-5E-1' 0 -> '-0.5'
|
| 716 | dqadd3104 fma 1 '-5E0' 0 -> '-5'
|
| 717 | dqadd3105 fma 1 '-5E1' 0 -> '-50'
|
| 718 | dqadd3106 fma 1 '-5E5' 0 -> '-500000'
|
| 719 | dqadd3107 fma 1 '-5E33' 0 -> '-5000000000000000000000000000000000'
|
| 720 | dqadd3108 fma 1 '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded
|
| 721 | dqadd3109 fma 1 '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded
|
| 722 | dqadd3110 fma 1 '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded
|
| 723 | dqadd3111 fma 1 '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded
|
| 724 |
|
| 725 | -- more RHS swaps
|
| 726 | dqadd3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
|
| 727 | dqadd3114 fma 1 0 '-56267E-6' -> '-0.056267'
|
| 728 | dqadd3116 fma 1 0 '-56267E-5' -> '-0.56267'
|
| 729 | dqadd3117 fma 1 0 '-56267E-4' -> '-5.6267'
|
| 730 | dqadd3119 fma 1 0 '-56267E-3' -> '-56.267'
|
| 731 | dqadd3120 fma 1 0 '-56267E-2' -> '-562.67'
|
| 732 | dqadd3121 fma 1 0 '-56267E-1' -> '-5626.7'
|
| 733 | dqadd3122 fma 1 0 '-56267E-0' -> '-56267'
|
| 734 | dqadd3123 fma 1 0 '-5E-10' -> '-5E-10'
|
| 735 | dqadd3124 fma 1 0 '-5E-7' -> '-5E-7'
|
| 736 | dqadd3125 fma 1 0 '-5E-6' -> '-0.000005'
|
| 737 | dqadd3126 fma 1 0 '-5E-5' -> '-0.00005'
|
| 738 | dqadd3127 fma 1 0 '-5E-4' -> '-0.0005'
|
| 739 | dqadd3128 fma 1 0 '-5E-1' -> '-0.5'
|
| 740 | dqadd3129 fma 1 0 '-5E0' -> '-5'
|
| 741 | dqadd3130 fma 1 0 '-5E1' -> '-50'
|
| 742 | dqadd3131 fma 1 0 '-5E5' -> '-500000'
|
| 743 | dqadd3132 fma 1 0 '-5E33' -> '-5000000000000000000000000000000000'
|
| 744 | dqadd3133 fma 1 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded
|
| 745 | dqadd3134 fma 1 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded
|
| 746 | dqadd3135 fma 1 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded
|
| 747 | dqadd3136 fma 1 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded
|
| 748 |
|
| 749 | -- related
|
| 750 | dqadd3137 fma 1 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded
|
| 751 | dqadd3138 fma 1 -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded
|
| 752 | dqadd3139 fma 1 '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded
|
| 753 | dqadd3140 fma 1 '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded
|
| 754 | dqadd3141 fma 1 1E+29 0.0000 -> '100000000000000000000000000000.0000'
|
| 755 | dqadd3142 fma 1 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded
|
| 756 | dqadd3143 fma 1 0.000 1E+30 -> '1000000000000000000000000000000.000'
|
| 757 | dqadd3144 fma 1 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded
|
| 758 |
|
| 759 | -- [some of the next group are really constructor tests]
|
| 760 | dqadd3146 fma 1 '00.0' 0 -> '0.0'
|
| 761 | dqadd3147 fma 1 '0.00' 0 -> '0.00'
|
| 762 | dqadd3148 fma 1 0 '0.00' -> '0.00'
|
| 763 | dqadd3149 fma 1 0 '00.0' -> '0.0'
|
| 764 | dqadd3150 fma 1 '00.0' '0.00' -> '0.00'
|
| 765 | dqadd3151 fma 1 '0.00' '00.0' -> '0.00'
|
| 766 | dqadd3152 fma 1 '3' '.3' -> '3.3'
|
| 767 | dqadd3153 fma 1 '3.' '.3' -> '3.3'
|
| 768 | dqadd3154 fma 1 '3.0' '.3' -> '3.3'
|
| 769 | dqadd3155 fma 1 '3.00' '.3' -> '3.30'
|
| 770 | dqadd3156 fma 1 '3' '3' -> '6'
|
| 771 | dqadd3157 fma 1 '3' '+3' -> '6'
|
| 772 | dqadd3158 fma 1 '3' '-3' -> '0'
|
| 773 | dqadd3159 fma 1 '0.3' '-0.3' -> '0.0'
|
| 774 | dqadd3160 fma 1 '0.03' '-0.03' -> '0.00'
|
| 775 |
|
| 776 | -- try borderline precision, with carries, etc.
|
| 777 | dqadd3161 fma 1 '1E+12' '-1' -> '999999999999'
|
| 778 | dqadd3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
|
| 779 | dqadd3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
|
| 780 | dqadd3164 fma 1 '-1' '1E+12' -> '999999999999'
|
| 781 | dqadd3165 fma 1 '7E+12' '-1' -> '6999999999999'
|
| 782 | dqadd3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
|
| 783 | dqadd3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
|
| 784 | dqadd3168 fma 1 '-1' '7E+12' -> '6999999999999'
|
| 785 |
|
| 786 | rounding: half_up
|
| 787 | dqadd3170 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded
|
| 788 | dqadd3171 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded
|
| 789 | dqadd3172 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded
|
| 790 | dqadd3173 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded
|
| 791 | dqadd3174 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded
|
| 792 | dqadd3175 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded
|
| 793 | dqadd3176 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded
|
| 794 | dqadd3177 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded
|
| 795 | dqadd3178 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded
|
| 796 | dqadd3179 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded
|
| 797 | dqadd3180 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded
|
| 798 | dqadd3181 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded
|
| 799 | dqadd3182 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded
|
| 800 | dqadd3183 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded
|
| 801 |
|
| 802 | -- and some more, including residue effects and different roundings
|
| 803 | rounding: half_up
|
| 804 | dqadd3200 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
|
| 805 | dqadd3201 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 806 | dqadd3202 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 807 | dqadd3203 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 808 | dqadd3204 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 809 | dqadd3205 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 810 | dqadd3206 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 811 | dqadd3207 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 812 | dqadd3208 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 813 | dqadd3209 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 814 | dqadd3210 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 815 | dqadd3211 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 816 | dqadd3212 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 817 | dqadd3213 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 818 | dqadd3214 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 819 | dqadd3215 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 820 | dqadd3216 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
|
| 821 | dqadd3217 fma 1 '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 822 | dqadd3218 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 823 | dqadd3219 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 824 |
|
| 825 | rounding: half_even
|
| 826 | dqadd3220 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
|
| 827 | dqadd3221 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 828 | dqadd3222 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 829 | dqadd3223 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 830 | dqadd3224 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 831 | dqadd3225 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 832 | dqadd3226 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 833 | dqadd3227 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 834 | dqadd3228 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 835 | dqadd3229 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 836 | dqadd3230 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 837 | dqadd3231 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 838 | dqadd3232 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 839 | dqadd3233 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 840 | dqadd3234 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 841 | dqadd3235 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 842 | dqadd3236 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
|
| 843 | dqadd3237 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 844 | dqadd3238 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 845 | dqadd3239 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 846 | -- critical few with even bottom digit...
|
| 847 | dqadd3240 fma 1 '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded
|
| 848 | dqadd3241 fma 1 '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded
|
| 849 | dqadd3242 fma 1 '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 850 |
|
| 851 | rounding: down
|
| 852 | dqadd3250 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
|
| 853 | dqadd3251 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 854 | dqadd3252 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 855 | dqadd3253 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 856 | dqadd3254 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 857 | dqadd3255 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 858 | dqadd3256 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 859 | dqadd3257 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 860 | dqadd3258 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 861 | dqadd3259 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 862 | dqadd3260 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 863 | dqadd3261 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 864 | dqadd3262 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 865 | dqadd3263 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 866 | dqadd3264 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 867 | dqadd3265 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
| 868 | dqadd3266 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
|
| 869 | dqadd3267 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 870 | dqadd3268 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 871 | dqadd3269 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
|
| 872 |
|
| 873 | -- 1 in last place tests
|
| 874 | rounding: half_up
|
| 875 | dqadd3301 fma 1 -1 1 -> 0
|
| 876 | dqadd3302 fma 1 0 1 -> 1
|
| 877 | dqadd3303 fma 1 1 1 -> 2
|
| 878 | dqadd3304 fma 1 12 1 -> 13
|
| 879 | dqadd3305 fma 1 98 1 -> 99
|
| 880 | dqadd3306 fma 1 99 1 -> 100
|
| 881 | dqadd3307 fma 1 100 1 -> 101
|
| 882 | dqadd3308 fma 1 101 1 -> 102
|
| 883 | dqadd3309 fma 1 -1 -1 -> -2
|
| 884 | dqadd3310 fma 1 0 -1 -> -1
|
| 885 | dqadd3311 fma 1 1 -1 -> 0
|
| 886 | dqadd3312 fma 1 12 -1 -> 11
|
| 887 | dqadd3313 fma 1 98 -1 -> 97
|
| 888 | dqadd3314 fma 1 99 -1 -> 98
|
| 889 | dqadd3315 fma 1 100 -1 -> 99
|
| 890 | dqadd3316 fma 1 101 -1 -> 100
|
| 891 |
|
| 892 | dqadd3321 fma 1 -0.01 0.01 -> 0.00
|
| 893 | dqadd3322 fma 1 0.00 0.01 -> 0.01
|
| 894 | dqadd3323 fma 1 0.01 0.01 -> 0.02
|
| 895 | dqadd3324 fma 1 0.12 0.01 -> 0.13
|
| 896 | dqadd3325 fma 1 0.98 0.01 -> 0.99
|
| 897 | dqadd3326 fma 1 0.99 0.01 -> 1.00
|
| 898 | dqadd3327 fma 1 1.00 0.01 -> 1.01
|
| 899 | dqadd3328 fma 1 1.01 0.01 -> 1.02
|
| 900 | dqadd3329 fma 1 -0.01 -0.01 -> -0.02
|
| 901 | dqadd3330 fma 1 0.00 -0.01 -> -0.01
|
| 902 | dqadd3331 fma 1 0.01 -0.01 -> 0.00
|
| 903 | dqadd3332 fma 1 0.12 -0.01 -> 0.11
|
| 904 | dqadd3333 fma 1 0.98 -0.01 -> 0.97
|
| 905 | dqadd3334 fma 1 0.99 -0.01 -> 0.98
|
| 906 | dqadd3335 fma 1 1.00 -0.01 -> 0.99
|
| 907 | dqadd3336 fma 1 1.01 -0.01 -> 1.00
|
| 908 |
|
| 909 | -- some more cases where adding 0 affects the coefficient
|
| 910 | dqadd3340 fma 1 1E+3 0 -> 1000
|
| 911 | dqadd3341 fma 1 1E+33 0 -> 1000000000000000000000000000000000
|
| 912 | dqadd3342 fma 1 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded
|
| 913 | dqadd3343 fma 1 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded
|
| 914 | -- which simply follow from these cases ...
|
| 915 | dqadd3344 fma 1 1E+3 1 -> 1001
|
| 916 | dqadd3345 fma 1 1E+33 1 -> 1000000000000000000000000000000001
|
| 917 | dqadd3346 fma 1 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 918 | dqadd3347 fma 1 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
|
| 919 | dqadd3348 fma 1 1E+3 7 -> 1007
|
| 920 | dqadd3349 fma 1 1E+33 7 -> 1000000000000000000000000000000007
|
| 921 | dqadd3350 fma 1 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded
|
| 922 | dqadd3351 fma 1 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
|
| 923 |
|
| 924 | -- tryzeros cases
|
| 925 | rounding: half_up
|
| 926 | dqadd3360 fma 1 0E+50 10000E+1 -> 1.0000E+5
|
| 927 | dqadd3361 fma 1 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded
|
| 928 | dqadd3362 fma 1 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded
|
| 929 | dqadd3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact
|
| 930 | dqadd3364 fma 1 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111
|
| 931 | -- 1 234567890123456789012345678901234
|
| 932 |
|
| 933 | -- a curiosity from JSR 13 testing
|
| 934 | rounding: half_down
|
| 935 | dqadd3370 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
|
| 936 | dqadd3371 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
|
| 937 | rounding: half_up
|
| 938 | dqadd3372 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
|
| 939 | dqadd3373 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
|
| 940 | rounding: half_even
|
| 941 | dqadd3374 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
|
| 942 | dqadd3375 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
|
| 943 |
|
| 944 | -- ulp replacement tests
|
| 945 | dqadd3400 fma 1 1 77e-32 -> 1.00000000000000000000000000000077
|
| 946 | dqadd3401 fma 1 1 77e-33 -> 1.000000000000000000000000000000077
|
| 947 | dqadd3402 fma 1 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded
|
| 948 | dqadd3403 fma 1 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded
|
| 949 | dqadd3404 fma 1 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 950 | dqadd3405 fma 1 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 951 | dqadd3406 fma 1 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 952 |
|
| 953 | dqadd3410 fma 1 10 77e-32 -> 10.00000000000000000000000000000077
|
| 954 | dqadd3411 fma 1 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded
|
| 955 | dqadd3412 fma 1 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded
|
| 956 | dqadd3413 fma 1 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 957 | dqadd3414 fma 1 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 958 | dqadd3415 fma 1 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 959 | dqadd3416 fma 1 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 960 |
|
| 961 | dqadd3420 fma 1 77e-32 1 -> 1.00000000000000000000000000000077
|
| 962 | dqadd3421 fma 1 77e-33 1 -> 1.000000000000000000000000000000077
|
| 963 | dqadd3422 fma 1 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded
|
| 964 | dqadd3423 fma 1 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded
|
| 965 | dqadd3424 fma 1 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 966 | dqadd3425 fma 1 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 967 | dqadd3426 fma 1 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 968 |
|
| 969 | dqadd3430 fma 1 77e-32 10 -> 10.00000000000000000000000000000077
|
| 970 | dqadd3431 fma 1 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded
|
| 971 | dqadd3432 fma 1 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded
|
| 972 | dqadd3433 fma 1 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 973 | dqadd3434 fma 1 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 974 | dqadd3435 fma 1 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 975 | dqadd3436 fma 1 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 976 |
|
| 977 | -- negative ulps
|
| 978 | dqadd36440 fma 1 1 -77e-32 -> 0.99999999999999999999999999999923
|
| 979 | dqadd36441 fma 1 1 -77e-33 -> 0.999999999999999999999999999999923
|
| 980 | dqadd36442 fma 1 1 -77e-34 -> 0.9999999999999999999999999999999923
|
| 981 | dqadd36443 fma 1 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded
|
| 982 | dqadd36444 fma 1 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded
|
| 983 | dqadd36445 fma 1 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 984 | dqadd36446 fma 1 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 985 |
|
| 986 | dqadd36450 fma 1 10 -77e-32 -> 9.99999999999999999999999999999923
|
| 987 | dqadd36451 fma 1 10 -77e-33 -> 9.999999999999999999999999999999923
|
| 988 | dqadd36452 fma 1 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded
|
| 989 | dqadd36453 fma 1 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded
|
| 990 | dqadd36454 fma 1 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 991 | dqadd36455 fma 1 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 992 | dqadd36456 fma 1 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 993 |
|
| 994 | dqadd36460 fma 1 -77e-32 1 -> 0.99999999999999999999999999999923
|
| 995 | dqadd36461 fma 1 -77e-33 1 -> 0.999999999999999999999999999999923
|
| 996 | dqadd36462 fma 1 -77e-34 1 -> 0.9999999999999999999999999999999923
|
| 997 | dqadd36463 fma 1 -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded
|
| 998 | dqadd36464 fma 1 -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded
|
| 999 | dqadd36465 fma 1 -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 1000 | dqadd36466 fma 1 -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
| 1001 |
|
| 1002 | dqadd36470 fma 1 -77e-32 10 -> 9.99999999999999999999999999999923
|
| 1003 | dqadd36471 fma 1 -77e-33 10 -> 9.999999999999999999999999999999923
|
| 1004 | dqadd36472 fma 1 -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded
|
| 1005 | dqadd36473 fma 1 -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded
|
| 1006 | dqadd36474 fma 1 -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 1007 | dqadd36475 fma 1 -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 1008 | dqadd36476 fma 1 -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
| 1009 |
|
| 1010 | -- negative ulps
|
| 1011 | dqadd36480 fma 1 -1 77e-32 -> -0.99999999999999999999999999999923
|
| 1012 | dqadd36481 fma 1 -1 77e-33 -> -0.999999999999999999999999999999923
|
| 1013 | dqadd36482 fma 1 -1 77e-34 -> -0.9999999999999999999999999999999923
|
| 1014 | dqadd36483 fma 1 -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded
|
| 1015 | dqadd36484 fma 1 -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded
|
| 1016 | dqadd36485 fma 1 -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded
|
| 1017 | dqadd36486 fma 1 -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded
|
| 1018 |
|
| 1019 | dqadd36490 fma 1 -10 77e-32 -> -9.99999999999999999999999999999923
|
| 1020 | dqadd36491 fma 1 -10 77e-33 -> -9.999999999999999999999999999999923
|
| 1021 | dqadd36492 fma 1 -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded
|
| 1022 | dqadd36493 fma 1 -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded
|
| 1023 | dqadd36494 fma 1 -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded
|
| 1024 | dqadd36495 fma 1 -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded
|
| 1025 | dqadd36496 fma 1 -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded
|
| 1026 |
|
| 1027 | dqadd36500 fma 1 77e-32 -1 -> -0.99999999999999999999999999999923
|
| 1028 | dqadd36501 fma 1 77e-33 -1 -> -0.999999999999999999999999999999923
|
| 1029 | dqadd36502 fma 1 77e-34 -1 -> -0.9999999999999999999999999999999923
|
| 1030 | dqadd36503 fma 1 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded
|
| 1031 | dqadd36504 fma 1 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded
|
| 1032 | dqadd36505 fma 1 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
|
| 1033 | dqadd36506 fma 1 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
|
| 1034 |
|
| 1035 | dqadd36510 fma 1 77e-32 -10 -> -9.99999999999999999999999999999923
|
| 1036 | dqadd36511 fma 1 77e-33 -10 -> -9.999999999999999999999999999999923
|
| 1037 | dqadd36512 fma 1 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded
|
| 1038 | dqadd36513 fma 1 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded
|
| 1039 | dqadd36514 fma 1 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
|
| 1040 | dqadd36515 fma 1 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
|
| 1041 | dqadd36516 fma 1 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
|
| 1042 |
|
| 1043 | -- and some more residue effects and different roundings
|
| 1044 | rounding: half_up
|
| 1045 | dqadd36540 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
|
| 1046 | dqadd36541 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1047 | dqadd36542 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1048 | dqadd36543 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1049 | dqadd36544 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1050 | dqadd36545 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1051 | dqadd36546 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1052 | dqadd36547 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1053 | dqadd36548 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1054 | dqadd36549 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1055 | dqadd36550 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1056 | dqadd36551 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1057 | dqadd36552 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1058 | dqadd36553 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1059 | dqadd36554 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1060 | dqadd36555 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1061 | dqadd36556 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
|
| 1062 | dqadd36557 fma 1 '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1063 | dqadd36558 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1064 | dqadd36559 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1065 |
|
| 1066 | rounding: half_even
|
| 1067 | dqadd36560 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
|
| 1068 | dqadd36561 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1069 | dqadd36562 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1070 | dqadd36563 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1071 | dqadd36564 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1072 | dqadd36565 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1073 | dqadd36566 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1074 | dqadd36567 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1075 | dqadd36568 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1076 | dqadd36569 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1077 | dqadd36570 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1078 | dqadd36571 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1079 | dqadd36572 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1080 | dqadd36573 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1081 | dqadd36574 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1082 | dqadd36575 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1083 | dqadd36576 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
|
| 1084 | dqadd36577 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1085 | dqadd36578 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1086 | dqadd36579 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1087 |
|
| 1088 | -- critical few with even bottom digit...
|
| 1089 | dqadd37540 fma 1 '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded
|
| 1090 | dqadd37541 fma 1 '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded
|
| 1091 | dqadd37542 fma 1 '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1092 |
|
| 1093 | rounding: down
|
| 1094 | dqadd37550 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
|
| 1095 | dqadd37551 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1096 | dqadd37552 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1097 | dqadd37553 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1098 | dqadd37554 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1099 | dqadd37555 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1100 | dqadd37556 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1101 | dqadd37557 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1102 | dqadd37558 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1103 | dqadd37559 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1104 | dqadd37560 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1105 | dqadd37561 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1106 | dqadd37562 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1107 | dqadd37563 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1108 | dqadd37564 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1109 | dqadd37565 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
| 1110 | dqadd37566 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
|
| 1111 | dqadd37567 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1112 | dqadd37568 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1113 | dqadd37569 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
|
| 1114 |
|
| 1115 | -- more zeros, etc.
|
| 1116 | rounding: half_even
|
| 1117 |
|
| 1118 | dqadd37701 fma 1 5.00 1.00E-3 -> 5.00100
|
| 1119 | dqadd37702 fma 1 00.00 0.000 -> 0.000
|
| 1120 | dqadd37703 fma 1 00.00 0E-3 -> 0.000
|
| 1121 | dqadd37704 fma 1 0E-3 00.00 -> 0.000
|
| 1122 |
|
| 1123 | dqadd37710 fma 1 0E+3 00.00 -> 0.00
|
| 1124 | dqadd37711 fma 1 0E+3 00.0 -> 0.0
|
| 1125 | dqadd37712 fma 1 0E+3 00. -> 0
|
| 1126 | dqadd37713 fma 1 0E+3 00.E+1 -> 0E+1
|
| 1127 | dqadd37714 fma 1 0E+3 00.E+2 -> 0E+2
|
| 1128 | dqadd37715 fma 1 0E+3 00.E+3 -> 0E+3
|
| 1129 | dqadd37716 fma 1 0E+3 00.E+4 -> 0E+3
|
| 1130 | dqadd37717 fma 1 0E+3 00.E+5 -> 0E+3
|
| 1131 | dqadd37718 fma 1 0E+3 -00.0 -> 0.0
|
| 1132 | dqadd37719 fma 1 0E+3 -00. -> 0
|
| 1133 | dqadd37731 fma 1 0E+3 -00.E+1 -> 0E+1
|
| 1134 |
|
| 1135 | dqadd37720 fma 1 00.00 0E+3 -> 0.00
|
| 1136 | dqadd37721 fma 1 00.0 0E+3 -> 0.0
|
| 1137 | dqadd37722 fma 1 00. 0E+3 -> 0
|
| 1138 | dqadd37723 fma 1 00.E+1 0E+3 -> 0E+1
|
| 1139 | dqadd37724 fma 1 00.E+2 0E+3 -> 0E+2
|
| 1140 | dqadd37725 fma 1 00.E+3 0E+3 -> 0E+3
|
| 1141 | dqadd37726 fma 1 00.E+4 0E+3 -> 0E+3
|
| 1142 | dqadd37727 fma 1 00.E+5 0E+3 -> 0E+3
|
| 1143 | dqadd37728 fma 1 -00.00 0E+3 -> 0.00
|
| 1144 | dqadd37729 fma 1 -00.0 0E+3 -> 0.0
|
| 1145 | dqadd37730 fma 1 -00. 0E+3 -> 0
|
| 1146 |
|
| 1147 | dqadd37732 fma 1 0 0 -> 0
|
| 1148 | dqadd37733 fma 1 0 -0 -> 0
|
| 1149 | dqadd37734 fma 1 -0 0 -> 0
|
| 1150 | dqadd37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
|
| 1151 |
|
| 1152 | dqadd37736 fma 1 1 -1 -> 0
|
| 1153 | dqadd37737 fma 1 -1 -1 -> -2
|
| 1154 | dqadd37738 fma 1 1 1 -> 2
|
| 1155 | dqadd37739 fma 1 -1 1 -> 0
|
| 1156 |
|
| 1157 | dqadd37741 fma 1 0 -1 -> -1
|
| 1158 | dqadd37742 fma 1 -0 -1 -> -1
|
| 1159 | dqadd37743 fma 1 0 1 -> 1
|
| 1160 | dqadd37744 fma 1 -0 1 -> 1
|
| 1161 | dqadd37745 fma 1 -1 0 -> -1
|
| 1162 | dqadd37746 fma 1 -1 -0 -> -1
|
| 1163 | dqadd37747 fma 1 1 0 -> 1
|
| 1164 | dqadd37748 fma 1 1 -0 -> 1
|
| 1165 |
|
| 1166 | dqadd37751 fma 1 0.0 -1 -> -1.0
|
| 1167 | dqadd37752 fma 1 -0.0 -1 -> -1.0
|
| 1168 | dqadd37753 fma 1 0.0 1 -> 1.0
|
| 1169 | dqadd37754 fma 1 -0.0 1 -> 1.0
|
| 1170 | dqadd37755 fma 1 -1.0 0 -> -1.0
|
| 1171 | dqadd37756 fma 1 -1.0 -0 -> -1.0
|
| 1172 | dqadd37757 fma 1 1.0 0 -> 1.0
|
| 1173 | dqadd37758 fma 1 1.0 -0 -> 1.0
|
| 1174 |
|
| 1175 | dqadd37761 fma 1 0 -1.0 -> -1.0
|
| 1176 | dqadd37762 fma 1 -0 -1.0 -> -1.0
|
| 1177 | dqadd37763 fma 1 0 1.0 -> 1.0
|
| 1178 | dqadd37764 fma 1 -0 1.0 -> 1.0
|
| 1179 | dqadd37765 fma 1 -1 0.0 -> -1.0
|
| 1180 | dqadd37766 fma 1 -1 -0.0 -> -1.0
|
| 1181 | dqadd37767 fma 1 1 0.0 -> 1.0
|
| 1182 | dqadd37768 fma 1 1 -0.0 -> 1.0
|
| 1183 |
|
| 1184 | dqadd37771 fma 1 0.0 -1.0 -> -1.0
|
| 1185 | dqadd37772 fma 1 -0.0 -1.0 -> -1.0
|
| 1186 | dqadd37773 fma 1 0.0 1.0 -> 1.0
|
| 1187 | dqadd37774 fma 1 -0.0 1.0 -> 1.0
|
| 1188 | dqadd37775 fma 1 -1.0 0.0 -> -1.0
|
| 1189 | dqadd37776 fma 1 -1.0 -0.0 -> -1.0
|
| 1190 | dqadd37777 fma 1 1.0 0.0 -> 1.0
|
| 1191 | dqadd37778 fma 1 1.0 -0.0 -> 1.0
|
| 1192 |
|
| 1193 | -- Specials
|
| 1194 | dqadd37780 fma 1 -Inf -Inf -> -Infinity
|
| 1195 | dqadd37781 fma 1 -Inf -1000 -> -Infinity
|
| 1196 | dqadd37782 fma 1 -Inf -1 -> -Infinity
|
| 1197 | dqadd37783 fma 1 -Inf -0 -> -Infinity
|
| 1198 | dqadd37784 fma 1 -Inf 0 -> -Infinity
|
| 1199 | dqadd37785 fma 1 -Inf 1 -> -Infinity
|
| 1200 | dqadd37786 fma 1 -Inf 1000 -> -Infinity
|
| 1201 | dqadd37787 fma 1 -1000 -Inf -> -Infinity
|
| 1202 | dqadd37788 fma 1 -Inf -Inf -> -Infinity
|
| 1203 | dqadd37789 fma 1 -1 -Inf -> -Infinity
|
| 1204 | dqadd37790 fma 1 -0 -Inf -> -Infinity
|
| 1205 | dqadd37791 fma 1 0 -Inf -> -Infinity
|
| 1206 | dqadd37792 fma 1 1 -Inf -> -Infinity
|
| 1207 | dqadd37793 fma 1 1000 -Inf -> -Infinity
|
| 1208 | dqadd37794 fma 1 Inf -Inf -> NaN Invalid_operation
|
| 1209 |
|
| 1210 | dqadd37800 fma 1 Inf -Inf -> NaN Invalid_operation
|
| 1211 | dqadd37801 fma 1 Inf -1000 -> Infinity
|
| 1212 | dqadd37802 fma 1 Inf -1 -> Infinity
|
| 1213 | dqadd37803 fma 1 Inf -0 -> Infinity
|
| 1214 | dqadd37804 fma 1 Inf 0 -> Infinity
|
| 1215 | dqadd37805 fma 1 Inf 1 -> Infinity
|
| 1216 | dqadd37806 fma 1 Inf 1000 -> Infinity
|
| 1217 | dqadd37807 fma 1 Inf Inf -> Infinity
|
| 1218 | dqadd37808 fma 1 -1000 Inf -> Infinity
|
| 1219 | dqadd37809 fma 1 -Inf Inf -> NaN Invalid_operation
|
| 1220 | dqadd37810 fma 1 -1 Inf -> Infinity
|
| 1221 | dqadd37811 fma 1 -0 Inf -> Infinity
|
| 1222 | dqadd37812 fma 1 0 Inf -> Infinity
|
| 1223 | dqadd37813 fma 1 1 Inf -> Infinity
|
| 1224 | dqadd37814 fma 1 1000 Inf -> Infinity
|
| 1225 | dqadd37815 fma 1 Inf Inf -> Infinity
|
| 1226 |
|
| 1227 | dqadd37821 fma 1 NaN -Inf -> NaN
|
| 1228 | dqadd37822 fma 1 NaN -1000 -> NaN
|
| 1229 | dqadd37823 fma 1 NaN -1 -> NaN
|
| 1230 | dqadd37824 fma 1 NaN -0 -> NaN
|
| 1231 | dqadd37825 fma 1 NaN 0 -> NaN
|
| 1232 | dqadd37826 fma 1 NaN 1 -> NaN
|
| 1233 | dqadd37827 fma 1 NaN 1000 -> NaN
|
| 1234 | dqadd37828 fma 1 NaN Inf -> NaN
|
| 1235 | dqadd37829 fma 1 NaN NaN -> NaN
|
| 1236 | dqadd37830 fma 1 -Inf NaN -> NaN
|
| 1237 | dqadd37831 fma 1 -1000 NaN -> NaN
|
| 1238 | dqadd37832 fma 1 -1 NaN -> NaN
|
| 1239 | dqadd37833 fma 1 -0 NaN -> NaN
|
| 1240 | dqadd37834 fma 1 0 NaN -> NaN
|
| 1241 | dqadd37835 fma 1 1 NaN -> NaN
|
| 1242 | dqadd37836 fma 1 1000 NaN -> NaN
|
| 1243 | dqadd37837 fma 1 Inf NaN -> NaN
|
| 1244 |
|
| 1245 | dqadd37841 fma 1 sNaN -Inf -> NaN Invalid_operation
|
| 1246 | dqadd37842 fma 1 sNaN -1000 -> NaN Invalid_operation
|
| 1247 | dqadd37843 fma 1 sNaN -1 -> NaN Invalid_operation
|
| 1248 | dqadd37844 fma 1 sNaN -0 -> NaN Invalid_operation
|
| 1249 | dqadd37845 fma 1 sNaN 0 -> NaN Invalid_operation
|
| 1250 | dqadd37846 fma 1 sNaN 1 -> NaN Invalid_operation
|
| 1251 | dqadd37847 fma 1 sNaN 1000 -> NaN Invalid_operation
|
| 1252 | dqadd37848 fma 1 sNaN NaN -> NaN Invalid_operation
|
| 1253 | dqadd37849 fma 1 sNaN sNaN -> NaN Invalid_operation
|
| 1254 | dqadd37850 fma 1 NaN sNaN -> NaN Invalid_operation
|
| 1255 | dqadd37851 fma 1 -Inf sNaN -> NaN Invalid_operation
|
| 1256 | dqadd37852 fma 1 -1000 sNaN -> NaN Invalid_operation
|
| 1257 | dqadd37853 fma 1 -1 sNaN -> NaN Invalid_operation
|
| 1258 | dqadd37854 fma 1 -0 sNaN -> NaN Invalid_operation
|
| 1259 | dqadd37855 fma 1 0 sNaN -> NaN Invalid_operation
|
| 1260 | dqadd37856 fma 1 1 sNaN -> NaN Invalid_operation
|
| 1261 | dqadd37857 fma 1 1000 sNaN -> NaN Invalid_operation
|
| 1262 | dqadd37858 fma 1 Inf sNaN -> NaN Invalid_operation
|
| 1263 | dqadd37859 fma 1 NaN sNaN -> NaN Invalid_operation
|
| 1264 |
|
| 1265 | -- propagating NaNs
|
| 1266 | dqadd37861 fma 1 NaN1 -Inf -> NaN1
|
| 1267 | dqadd37862 fma 1 +NaN2 -1000 -> NaN2
|
| 1268 | dqadd37863 fma 1 NaN3 1000 -> NaN3
|
| 1269 | dqadd37864 fma 1 NaN4 Inf -> NaN4
|
| 1270 | dqadd37865 fma 1 NaN5 +NaN6 -> NaN5
|
| 1271 | dqadd37866 fma 1 -Inf NaN7 -> NaN7
|
| 1272 | dqadd37867 fma 1 -1000 NaN8 -> NaN8
|
| 1273 | dqadd37868 fma 1 1000 NaN9 -> NaN9
|
| 1274 | dqadd37869 fma 1 Inf +NaN10 -> NaN10
|
| 1275 | dqadd37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
|
| 1276 | dqadd37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
|
| 1277 | dqadd37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
|
| 1278 | dqadd37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
|
| 1279 | dqadd37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
|
| 1280 | dqadd37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
|
| 1281 | dqadd37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
|
| 1282 | dqadd37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
|
| 1283 | dqadd37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
|
| 1284 | dqadd37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
|
| 1285 | dqadd37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
|
| 1286 | dqadd37882 fma 1 -NaN26 NaN28 -> -NaN26
|
| 1287 | dqadd37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
|
| 1288 | dqadd37884 fma 1 1000 -NaN30 -> -NaN30
|
| 1289 | dqadd37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
|
| 1290 |
|
| 1291 | -- Here we explore near the boundary of rounding a subnormal to Nmin
|
| 1292 | dqadd37575 fma 1 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal
|
| 1293 | dqadd37576 fma 1 -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal
|
| 1294 |
|
| 1295 | -- check overflow edge case
|
| 1296 | -- 1234567890123456
|
| 1297 | dqadd37972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
|
| 1298 | dqadd37973 fma 1 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1299 | dqadd37974 fma 1 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1300 | dqadd37975 fma 1 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded
|
| 1301 | dqadd37976 fma 1 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded
|
| 1302 | dqadd37977 fma 1 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded
|
| 1303 | dqadd37978 fma 1 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded
|
| 1304 | dqadd37979 fma 1 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded
|
| 1305 | dqadd37980 fma 1 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded
|
| 1306 | dqadd37981 fma 1 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1307 | dqadd37982 fma 1 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1308 | dqadd37983 fma 1 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1309 | dqadd37984 fma 1 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1310 |
|
| 1311 | dqadd37985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
|
| 1312 | dqadd37986 fma 1 -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1313 | dqadd37987 fma 1 -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1314 | dqadd37988 fma 1 -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded
|
| 1315 | dqadd37989 fma 1 -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded
|
| 1316 | dqadd37990 fma 1 -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded
|
| 1317 | dqadd37991 fma 1 -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded
|
| 1318 | dqadd37992 fma 1 -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded
|
| 1319 | dqadd37993 fma 1 -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded
|
| 1320 | dqadd37994 fma 1 -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1321 | dqadd37995 fma 1 -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1322 | dqadd37996 fma 1 -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1323 | dqadd37997 fma 1 -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
| 1324 |
|
| 1325 | -- And for round down full and subnormal results
|
| 1326 | rounding: down
|
| 1327 | dqadd371100 fma 1 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact
|
| 1328 | dqadd371101 fma 1 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact
|
| 1329 | dqadd371103 fma 1 +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact
|
| 1330 | dqadd371104 fma 1 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact
|
| 1331 | dqadd371105 fma 1 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact
|
| 1332 | dqadd371106 fma 1 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact
|
| 1333 | dqadd371107 fma 1 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact
|
| 1334 | dqadd371108 fma 1 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact
|
| 1335 | dqadd371109 fma 1 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact
|
| 1336 |
|
| 1337 | rounding: ceiling
|
| 1338 | dqadd371110 fma 1 -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact
|
| 1339 | dqadd371111 fma 1 -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact
|
| 1340 | dqadd371113 fma 1 -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact
|
| 1341 | dqadd371114 fma 1 -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact
|
| 1342 | dqadd371115 fma 1 -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact
|
| 1343 | dqadd371116 fma 1 -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact
|
| 1344 | dqadd371117 fma 1 -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact
|
| 1345 | dqadd371118 fma 1 -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact
|
| 1346 | dqadd371119 fma 1 -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact
|
| 1347 |
|
| 1348 | -- tests based on Gunnar Degnbol's edge case
|
| 1349 | rounding: half_even
|
| 1350 |
|
| 1351 | dqadd371300 fma 1 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1352 | dqadd371310 fma 1 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1353 | dqadd371311 fma 1 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1354 | dqadd371312 fma 1 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1355 | dqadd371313 fma 1 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1356 | dqadd371314 fma 1 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1357 | dqadd371315 fma 1 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1358 | dqadd371316 fma 1 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1359 | dqadd371317 fma 1 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1360 | dqadd371318 fma 1 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1361 | dqadd371319 fma 1 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1362 | dqadd371320 fma 1 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1363 | dqadd371321 fma 1 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1364 | dqadd371322 fma 1 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1365 | dqadd371323 fma 1 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1366 | dqadd371324 fma 1 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1367 | dqadd371325 fma 1 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1368 | dqadd371326 fma 1 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1369 | dqadd371327 fma 1 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1370 | dqadd371328 fma 1 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1371 | dqadd371329 fma 1 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1372 | dqadd371330 fma 1 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1373 | dqadd371331 fma 1 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1374 | dqadd371332 fma 1 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1375 | dqadd371333 fma 1 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1376 | dqadd371334 fma 1 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1377 | dqadd371335 fma 1 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1378 | dqadd371336 fma 1 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1379 | dqadd371337 fma 1 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1380 | dqadd371338 fma 1 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1381 | dqadd371339 fma 1 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1382 |
|
| 1383 | dqadd371340 fma 1 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded
|
| 1384 | dqadd371341 fma 1 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded
|
| 1385 |
|
| 1386 | dqadd371349 fma 1 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1387 | dqadd371350 fma 1 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1388 | dqadd371351 fma 1 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1389 | dqadd371352 fma 1 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1390 | dqadd371353 fma 1 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1391 | dqadd371354 fma 1 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1392 | dqadd371355 fma 1 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1393 | dqadd371356 fma 1 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1394 | dqadd371357 fma 1 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1395 | dqadd371358 fma 1 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1396 | dqadd371359 fma 1 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1397 | dqadd371360 fma 1 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1398 | dqadd371361 fma 1 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1399 | dqadd371362 fma 1 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1400 | dqadd371363 fma 1 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1401 | dqadd371364 fma 1 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
| 1402 | dqadd371365 fma 1 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1403 | dqadd371367 fma 1 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1404 | dqadd371368 fma 1 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1405 | dqadd371369 fma 1 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1406 | dqadd371370 fma 1 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1407 | dqadd371371 fma 1 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1408 | dqadd371372 fma 1 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1409 | dqadd371373 fma 1 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1410 | dqadd371374 fma 1 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1411 | dqadd371375 fma 1 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1412 | dqadd371376 fma 1 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1413 | dqadd371377 fma 1 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1414 | dqadd371378 fma 1 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1415 | dqadd371379 fma 1 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1416 | dqadd371380 fma 1 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1417 | dqadd371381 fma 1 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1418 | dqadd371382 fma 1 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1419 | dqadd371383 fma 1 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1420 | dqadd371384 fma 1 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1421 | dqadd371385 fma 1 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1422 | dqadd371386 fma 1 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1423 | dqadd371387 fma 1 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1424 | dqadd371388 fma 1 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1425 | dqadd371389 fma 1 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1426 | dqadd371390 fma 1 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1427 | dqadd371391 fma 1 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1428 | dqadd371392 fma 1 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1429 | dqadd371393 fma 1 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1430 | dqadd371394 fma 1 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1431 | dqadd371395 fma 1 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1432 | dqadd371396 fma 1 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
| 1433 |
|
| 1434 | -- More GD edge cases, where difference between the unadjusted
|
| 1435 | -- exponents is larger than the maximum precision and one side is 0
|
| 1436 | dqadd371420 fma 1 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345
|
| 1437 | dqadd371421 fma 1 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345
|
| 1438 | dqadd371422 fma 1 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345
|
| 1439 | dqadd371423 fma 1 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345
|
| 1440 | dqadd371424 fma 1 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345
|
| 1441 | dqadd371425 fma 1 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345
|
| 1442 | dqadd371426 fma 1 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345
|
| 1443 | dqadd371427 fma 1 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7
|
| 1444 | dqadd371428 fma 1 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8
|
| 1445 | dqadd371429 fma 1 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9
|
| 1446 | dqadd371430 fma 1 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10
|
| 1447 | dqadd371431 fma 1 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11
|
| 1448 | dqadd371432 fma 1 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12
|
| 1449 | dqadd371433 fma 1 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13
|
| 1450 | dqadd371434 fma 1 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14
|
| 1451 | dqadd371435 fma 1 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15
|
| 1452 | dqadd371436 fma 1 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16
|
| 1453 | dqadd371437 fma 1 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17
|
| 1454 | dqadd371438 fma 1 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18
|
| 1455 | dqadd371439 fma 1 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19
|
| 1456 | dqadd371440 fma 1 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20
|
| 1457 | dqadd371441 fma 1 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21
|
| 1458 | dqadd371442 fma 1 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22
|
| 1459 | dqadd371443 fma 1 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23
|
| 1460 | dqadd371444 fma 1 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24
|
| 1461 | dqadd371445 fma 1 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25
|
| 1462 | dqadd371446 fma 1 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26
|
| 1463 | dqadd371447 fma 1 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27
|
| 1464 | dqadd371448 fma 1 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28
|
| 1465 | dqadd371449 fma 1 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29
|
| 1466 | dqadd371450 fma 1 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30
|
| 1467 | dqadd371451 fma 1 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31
|
| 1468 | dqadd371452 fma 1 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32
|
| 1469 | dqadd371453 fma 1 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33
|
| 1470 | dqadd371454 fma 1 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34
|
| 1471 | dqadd371455 fma 1 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35
|
| 1472 | dqadd371456 fma 1 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36
|
| 1473 |
|
| 1474 | -- same, reversed 0
|
| 1475 | dqadd371460 fma 1 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345
|
| 1476 | dqadd371461 fma 1 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345
|
| 1477 | dqadd371462 fma 1 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345
|
| 1478 | dqadd371463 fma 1 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345
|
| 1479 | dqadd371464 fma 1 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345
|
| 1480 | dqadd371465 fma 1 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345
|
| 1481 | dqadd371466 fma 1 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345
|
| 1482 | dqadd371467 fma 1 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7
|
| 1483 | dqadd371468 fma 1 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8
|
| 1484 | dqadd371469 fma 1 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9
|
| 1485 | dqadd371470 fma 1 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10
|
| 1486 | dqadd371471 fma 1 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11
|
| 1487 | dqadd371472 fma 1 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12
|
| 1488 | dqadd371473 fma 1 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13
|
| 1489 | dqadd371474 fma 1 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14
|
| 1490 | dqadd371475 fma 1 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15
|
| 1491 | dqadd371476 fma 1 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16
|
| 1492 | dqadd371477 fma 1 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17
|
| 1493 | dqadd371478 fma 1 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18
|
| 1494 | dqadd371479 fma 1 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19
|
| 1495 | dqadd371480 fma 1 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20
|
| 1496 | dqadd371481 fma 1 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21
|
| 1497 | dqadd371482 fma 1 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22
|
| 1498 | dqadd371483 fma 1 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23
|
| 1499 | dqadd371484 fma 1 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24
|
| 1500 | dqadd371485 fma 1 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25
|
| 1501 | dqadd371486 fma 1 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26
|
| 1502 | dqadd371487 fma 1 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27
|
| 1503 | dqadd371488 fma 1 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28
|
| 1504 | dqadd371489 fma 1 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29
|
| 1505 | dqadd371490 fma 1 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30
|
| 1506 | dqadd371491 fma 1 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31
|
| 1507 | dqadd371492 fma 1 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32
|
| 1508 | dqadd371493 fma 1 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33
|
| 1509 | dqadd371494 fma 1 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34
|
| 1510 | dqadd371495 fma 1 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35
|
| 1511 | dqadd371496 fma 1 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36
|
| 1512 |
|
| 1513 | -- same, Es on the 0
|
| 1514 | dqadd371500 fma 1 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345
|
| 1515 | dqadd371501 fma 1 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345
|
| 1516 | dqadd371502 fma 1 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345
|
| 1517 | dqadd371503 fma 1 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345
|
| 1518 | dqadd371504 fma 1 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345
|
| 1519 | dqadd371505 fma 1 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345
|
| 1520 | dqadd371506 fma 1 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345
|
| 1521 | dqadd371507 fma 1 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345
|
| 1522 | dqadd371508 fma 1 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345
|
| 1523 | dqadd371509 fma 1 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345
|
| 1524 | dqadd371510 fma 1 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345
|
| 1525 | dqadd371511 fma 1 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345
|
| 1526 | dqadd371512 fma 1 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345
|
| 1527 | dqadd371513 fma 1 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345
|
| 1528 | dqadd371514 fma 1 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345
|
| 1529 | dqadd371515 fma 1 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345
|
| 1530 | dqadd371516 fma 1 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345
|
| 1531 | dqadd371517 fma 1 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345
|
| 1532 | dqadd371518 fma 1 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345
|
| 1533 | dqadd371519 fma 1 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345
|
| 1534 | dqadd371520 fma 1 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345
|
| 1535 | dqadd371521 fma 1 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345
|
| 1536 | dqadd371522 fma 1 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345
|
| 1537 | dqadd371523 fma 1 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345
|
| 1538 | dqadd371524 fma 1 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345
|
| 1539 | dqadd371525 fma 1 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345
|
| 1540 | dqadd371526 fma 1 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345
|
| 1541 | dqadd371527 fma 1 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345
|
| 1542 | dqadd371528 fma 1 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345
|
| 1543 | dqadd371529 fma 1 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345
|
| 1544 | dqadd371530 fma 1 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345
|
| 1545 | dqadd371531 fma 1 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345
|
| 1546 | dqadd371532 fma 1 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345
|
| 1547 | dqadd371533 fma 1 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345
|
| 1548 | -- next four flag Rounded because the 0 extends the result
|
| 1549 | dqadd371534 fma 1 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded
|
| 1550 | dqadd371535 fma 1 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded
|
| 1551 | dqadd371536 fma 1 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded
|
| 1552 | dqadd371537 fma 1 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded
|
| 1553 |
|
| 1554 | -- sum of two opposite-sign operands is exactly 0 and floor => -0
|
| 1555 | rounding: half_up
|
| 1556 | -- exact zeros from zeros
|
| 1557 | dqadd371600 fma 1 0 0E-19 -> 0E-19
|
| 1558 | dqadd371601 fma 1 -0 0E-19 -> 0E-19
|
| 1559 | dqadd371602 fma 1 0 -0E-19 -> 0E-19
|
| 1560 | dqadd371603 fma 1 -0 -0E-19 -> -0E-19
|
| 1561 | -- exact zeros from non-zeros
|
| 1562 | dqadd371611 fma 1 -11 11 -> 0
|
| 1563 | dqadd371612 fma 1 11 -11 -> 0
|
| 1564 | -- overflow
|
| 1565 | dqadd371613 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
| 1566 | dqadd371614 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
| 1567 |
|
| 1568 | rounding: half_down
|
| 1569 | -- exact zeros from zeros
|
| 1570 | dqadd371620 fma 1 0 0E-19 -> 0E-19
|
| 1571 | dqadd371621 fma 1 -0 0E-19 -> 0E-19
|
| 1572 | dqadd371622 fma 1 0 -0E-19 -> 0E-19
|
| 1573 | dqadd371623 fma 1 -0 -0E-19 -> -0E-19
|
| 1574 | -- exact zeros from non-zeros
|
| 1575 | dqadd371631 fma 1 -11 11 -> 0
|
| 1576 | dqadd371632 fma 1 11 -11 -> 0
|
| 1577 | -- overflow
|
| 1578 | dqadd371633 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
| 1579 | dqadd371634 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
| 1580 |
|
| 1581 | rounding: half_even
|
| 1582 | -- exact zeros from zeros
|
| 1583 | dqadd371640 fma 1 0 0E-19 -> 0E-19
|
| 1584 | dqadd371641 fma 1 -0 0E-19 -> 0E-19
|
| 1585 | dqadd371642 fma 1 0 -0E-19 -> 0E-19
|
| 1586 | dqadd371643 fma 1 -0 -0E-19 -> -0E-19
|
| 1587 | -- exact zeros from non-zeros
|
| 1588 | dqadd371651 fma 1 -11 11 -> 0
|
| 1589 | dqadd371652 fma 1 11 -11 -> 0
|
| 1590 | -- overflow
|
| 1591 | dqadd371653 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
| 1592 | dqadd371654 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
| 1593 |
|
| 1594 | rounding: up
|
| 1595 | -- exact zeros from zeros
|
| 1596 | dqadd371660 fma 1 0 0E-19 -> 0E-19
|
| 1597 | dqadd371661 fma 1 -0 0E-19 -> 0E-19
|
| 1598 | dqadd371662 fma 1 0 -0E-19 -> 0E-19
|
| 1599 | dqadd371663 fma 1 -0 -0E-19 -> -0E-19
|
| 1600 | -- exact zeros from non-zeros
|
| 1601 | dqadd371671 fma 1 -11 11 -> 0
|
| 1602 | dqadd371672 fma 1 11 -11 -> 0
|
| 1603 | -- overflow
|
| 1604 | dqadd371673 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
| 1605 | dqadd371674 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
| 1606 |
|
| 1607 | rounding: down
|
| 1608 | -- exact zeros from zeros
|
| 1609 | dqadd371680 fma 1 0 0E-19 -> 0E-19
|
| 1610 | dqadd371681 fma 1 -0 0E-19 -> 0E-19
|
| 1611 | dqadd371682 fma 1 0 -0E-19 -> 0E-19
|
| 1612 | dqadd371683 fma 1 -0 -0E-19 -> -0E-19
|
| 1613 | -- exact zeros from non-zeros
|
| 1614 | dqadd371691 fma 1 -11 11 -> 0
|
| 1615 | dqadd371692 fma 1 11 -11 -> 0
|
| 1616 | -- overflow
|
| 1617 | dqadd371693 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
| 1618 | dqadd371694 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
| 1619 |
|
| 1620 | rounding: ceiling
|
| 1621 | -- exact zeros from zeros
|
| 1622 | dqadd371700 fma 1 0 0E-19 -> 0E-19
|
| 1623 | dqadd371701 fma 1 -0 0E-19 -> 0E-19
|
| 1624 | dqadd371702 fma 1 0 -0E-19 -> 0E-19
|
| 1625 | dqadd371703 fma 1 -0 -0E-19 -> -0E-19
|
| 1626 | -- exact zeros from non-zeros
|
| 1627 | dqadd371711 fma 1 -11 11 -> 0
|
| 1628 | dqadd371712 fma 1 11 -11 -> 0
|
| 1629 | -- overflow
|
| 1630 | dqadd371713 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
| 1631 | dqadd371714 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
| 1632 |
|
| 1633 | -- and the extra-special ugly case; unusual minuses marked by -- *
|
| 1634 | rounding: floor
|
| 1635 | -- exact zeros from zeros
|
| 1636 | dqadd371720 fma 1 0 0E-19 -> 0E-19
|
| 1637 | dqadd371721 fma 1 -0 0E-19 -> -0E-19 -- *
|
| 1638 | dqadd371722 fma 1 0 -0E-19 -> -0E-19 -- *
|
| 1639 | dqadd371723 fma 1 -0 -0E-19 -> -0E-19
|
| 1640 | -- exact zeros from non-zeros
|
| 1641 | dqadd371731 fma 1 -11 11 -> -0 -- *
|
| 1642 | dqadd371732 fma 1 11 -11 -> -0 -- *
|
| 1643 | -- overflow
|
| 1644 | dqadd371733 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
| 1645 | dqadd371734 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
| 1646 |
|
| 1647 | rounding: 05up
|
| 1648 | -- exact zeros from zeros
|
| 1649 | dqadd371740 fma 1 0 0E-19 -> 0E-19
|
| 1650 | dqadd371741 fma 1 -0 0E-19 -> 0E-19
|
| 1651 | dqadd371742 fma 1 0 -0E-19 -> 0E-19
|
| 1652 | dqadd371743 fma 1 -0 -0E-19 -> -0E-19
|
| 1653 | -- exact zeros from non-zeros
|
| 1654 | dqadd371751 fma 1 -11 11 -> 0
|
| 1655 | dqadd371752 fma 1 11 -11 -> 0
|
| 1656 | -- overflow
|
| 1657 | dqadd371753 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
| 1658 | dqadd371754 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
| 1659 |
|
| 1660 | -- Examples from SQL proposal (Krishna Kulkarni)
|
| 1661 | dqadd371761 fma 1 130E-2 120E-2 -> 2.50
|
| 1662 | dqadd371762 fma 1 130E-2 12E-1 -> 2.50
|
| 1663 | dqadd371763 fma 1 130E-2 1E0 -> 2.30
|
| 1664 | dqadd371764 fma 1 1E2 1E4 -> 1.01E+4
|
| 1665 | dqadd371765 fma 1 130E-2 -120E-2 -> 0.10
|
| 1666 | dqadd371766 fma 1 130E-2 -12E-1 -> 0.10
|
| 1667 | dqadd371767 fma 1 130E-2 -1E0 -> 0.30
|
| 1668 | dqadd371768 fma 1 1E2 -1E4 -> -9.9E+3
|
| 1669 |
|
| 1670 | -- Gappy coefficients; check residue handling even with full coefficient gap
|
| 1671 | rounding: half_even
|
| 1672 |
|
| 1673 | dqadd375001 fma 1 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457
|
| 1674 | dqadd375002 fma 1 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded
|
| 1675 | dqadd375003 fma 1 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1676 | dqadd375004 fma 1 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1677 | dqadd375005 fma 1 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1678 | dqadd375006 fma 1 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1679 | dqadd375007 fma 1 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1680 | dqadd375008 fma 1 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1681 | dqadd375009 fma 1 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1682 | dqadd375010 fma 1 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1683 | dqadd375011 fma 1 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1684 | dqadd375012 fma 1 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1685 | dqadd375013 fma 1 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1686 | dqadd375014 fma 1 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1687 | dqadd375015 fma 1 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1688 | dqadd375016 fma 1 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1689 | dqadd375017 fma 1 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1690 | dqadd375018 fma 1 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1691 | dqadd375019 fma 1 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1692 | dqadd375020 fma 1 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1693 | dqadd375021 fma 1 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded
|
| 1694 |
|
| 1695 | -- widening second argument at gap
|
| 1696 | dqadd375030 fma 1 12398765432112345678945678 1 -> 12398765432112345678945679
|
| 1697 | dqadd375031 fma 1 12398765432112345678945678 0.1 -> 12398765432112345678945678.1
|
| 1698 | dqadd375032 fma 1 12398765432112345678945678 0.12 -> 12398765432112345678945678.12
|
| 1699 | dqadd375033 fma 1 12398765432112345678945678 0.123 -> 12398765432112345678945678.123
|
| 1700 | dqadd375034 fma 1 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234
|
| 1701 | dqadd375035 fma 1 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345
|
| 1702 | dqadd375036 fma 1 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456
|
| 1703 | dqadd375037 fma 1 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567
|
| 1704 | dqadd375038 fma 1 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678
|
| 1705 | dqadd375039 fma 1 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1706 | dqadd375040 fma 1 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded
|
| 1707 | dqadd375041 fma 1 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded
|
| 1708 | dqadd375042 fma 1 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1709 | dqadd375043 fma 1 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1710 | dqadd375044 fma 1 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1711 | dqadd375045 fma 1 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1712 | dqadd375046 fma 1 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1713 | dqadd375047 fma 1 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1714 | dqadd375048 fma 1 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
| 1715 | dqadd375049 fma 1 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded
|
| 1716 | -- 90123456
|
| 1717 | rounding: half_even
|
| 1718 | dqadd375050 fma 1 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded
|
| 1719 | dqadd375051 fma 1 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded
|
| 1720 | dqadd375052 fma 1 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded
|
| 1721 | dqadd375053 fma 1 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded
|
| 1722 | dqadd375054 fma 1 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded
|
| 1723 | dqadd375055 fma 1 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded
|
| 1724 | dqadd375056 fma 1 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded
|
| 1725 | dqadd375057 fma 1 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded
|
| 1726 | dqadd375060 fma 1 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded
|
| 1727 | dqadd375061 fma 1 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded
|
| 1728 | dqadd375062 fma 1 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded
|
| 1729 | dqadd375063 fma 1 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded
|
| 1730 | dqadd375064 fma 1 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded
|
| 1731 | dqadd375065 fma 1 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded
|
| 1732 | dqadd375066 fma 1 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded
|
| 1733 | dqadd375067 fma 1 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1734 | -- far-out residues (full coefficient gap is 16+15 digits)
|
| 1735 | rounding: up
|
| 1736 | dqadd375070 fma 1 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001
|
| 1737 | dqadd375071 fma 1 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1738 | dqadd375072 fma 1 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1739 | dqadd375073 fma 1 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1740 | dqadd375074 fma 1 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1741 | dqadd375075 fma 1 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1742 | dqadd375076 fma 1 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1743 | dqadd375077 fma 1 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1744 | dqadd375078 fma 1 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1745 | dqadd375079 fma 1 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1746 | dqadd375080 fma 1 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1747 | dqadd375081 fma 1 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1748 | dqadd375082 fma 1 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1749 | dqadd375083 fma 1 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1750 | dqadd375084 fma 1 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1751 | dqadd375085 fma 1 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1752 | dqadd375086 fma 1 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1753 | dqadd375087 fma 1 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1754 | dqadd375088 fma 1 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1755 | dqadd375089 fma 1 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded
|
| 1756 |
|
Facundo Batista | 9401cbe | 2007-11-23 18:14:50 +0000 | [diff] [blame] | 1757 | -- Destructive subtract (from remainder tests)
|
| 1758 |
|
| 1759 | -- +++ some of these will be off-by-one remainder vs remainderNear
|
| 1760 |
|
| 1761 | dqfma4000 fma -1234567890123456789012345678901233 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> -0.234567890123456789012345678901233
|
| 1762 | dqfma4001 fma -1234567890123456789012345678901222 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> -0.34567890123456789012345678901222
|
| 1763 | dqfma4002 fma -1234567890123456789012345678901111 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.4567890123456789012345678901111
|
| 1764 | dqfma4003 fma -308641972530864197253086419725314 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> -1.308641972530864197253086419725314
|
| 1765 | dqfma4004 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692
|
| 1766 | dqfma4005 fma -246913578024691357802469135780252 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> -1.3086421975308642197530864219748
|
| 1767 | dqfma4006 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247
|
| 1768 | dqfma4007 fma -246913578024691357802469135780247 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> -0.753086421975308642197530864219753
|
| 1769 | dqfma4008 fma -246913578024691357802469135780247 5.000000000000000000000000000000001 1234567890123456789012345678901234 -> -1.246913578024691357802469135780247
|
| 1770 | dqfma4009 fma -246913578024691357802469135780246 5.00000000000000000000000000000001 1234567890123456789012345678901234 -> 1.53086421975308642197530864219754
|
| 1771 | dqfma4010 fma -246913578024691357802469135780242 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.6913578024691357802469135780242
|
| 1772 | dqfma4011 fma -1234567890123456789012345678901232 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> 0.765432109876543210987654321098768
|
| 1773 | dqfma4012 fma -1234567890123456789012345678901221 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> 0.65432109876543210987654321098779
|
| 1774 | dqfma4013 fma -1234567890123456789012345678901110 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> 0.5432109876543210987654321098890
|
| 1775 | dqfma4014 fma -308641972530864197253086419725313 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> 2.691358027469135802746913580274687
|
| 1776 | dqfma4015 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692
|
| 1777 | dqfma4016 fma -246913578024691357802469135780251 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> 3.6913578024691357802469135780251
|
| 1778 | dqfma4017 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247
|
| 1779 | dqfma4018 fma -246913578024691357802469135780246 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> 4.246913578024691357802469135780246
|
| 1780 | dqfma4019 fma -246913578024691357802469135780241 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> 4.3086421975308642197530864219759
|
| 1781 |
|
Facundo Batista | 353750c | 2007-09-13 18:13:15 +0000 | [diff] [blame] | 1782 | -- Null tests
|
| 1783 | dqadd39990 fma 1 10 # -> NaN Invalid_operation
|
| 1784 | dqadd39991 fma 1 # 10 -> NaN Invalid_operation
|
| 1785 |
|
| 1786 |
|